
Latin American Applied Research  36:255-261 (2006) 

255 

AN MILP FRAMEWORK FOR DYNAMIC VEHICLE ROUTING 
PROBLEMS WITH TIME WINDOWS 

 

R. DONDO and J. CERDÁ 
 

INTEC (Universidad Nacional del Litoral - CONICET) 
Address: Güemes 3450 – (3000) Santa Fe – Argentina. Tel. +54(342)4559174/77 Fax: +54(342)4550944 

E-mail: rdondo@ceride.gov.ar 
 

Abstract−− A key issue in logistics is the efficient 
management of a vehicle fleet servicing a set of cus-
tomers with known demands. Every vehicle route 
must start and finish at the assigned depot, each cus-
tomer is to be visited by a single vehicle and vehicle 
capacities must not be exceeded. These are the con-
straints for the capacitated vehicle routing problem 
(VRP) whose objective is usually the minimization of 
the travel distance. When every customer has an 
associated time window, we are dealing with the ve-
hicle routing problem with time windows (VRPTW), 
an NP-hard problem extensively studied. In the 
static VPRTW, all the problem data are given. A 
more challenging subject is the dynamic VRPTW 
(DRVPTW) where routes must be periodically up-
dated because of new service requests. In DVRPTW, 
the information on the problem is time-dependent 
since the data are in part given a priori and in part 
dynamically updated. As a result, the best solution 
must be periodically revised. There are two classes of 
DVRPTW solution methodologies: the immediate 
assignment that updates vehicle routes as soon as a 
new service request is received, and the deferred 
assignment retaining the new service calls for a cer-
tain time period before dispatching them all at once. 
The latter type has been adopted in this paper. At 
the time of revising their routes, the vehicles are al-
ready on duty and some nodes have already been 
visited. The remaining old customers that have des-
ignated vehicles are either being serviced or awaiting 
service. The customers to be considered in the 
DVRPTW include not only old customers still to be 
serviced but also new visit requests. The DVRPTW 
is tackled by solving a series of static VRPTW prob-
lems, with each one being defined every time the in-
put data is updated. The approach assumes that each 
vehicle will start its new route at the location where 
it is servicing or to which it is traveling. 

Keywords−− Dynamic routing problems, MILP 
reactive strategy, Deferred assignment. 

I. INTRODUCTION 
The dynamic vehicle routing problem with time 

windows (DVRPTW) represents an interesting research 
issue since it presents some distinctive features with 
regards to the static VRPTW. In addition to the routing 
issue, another major topic is the dynamic scenario 
within which decisions are to be taken.  Repeated 
changes in vehicle routing and scheduling have to be 
made at different times over a rolling time-horizon that 

should account for new service calls but also for earlier 
routing decisions. Real-world experience indicates that 
dynamic routing problems must be studied because:  
i) The economic benefits of an efficient logistical 

system are very significant 
ii) Distribution scenarios where the information is 

dynamically updated are more frequent. 
iii) Real-time data processing is becoming a feasible 

option due to the dramatic advances in computa-
tion and communications technology. 

In dynamic routing problems, when re-routing is 
executed, the vehicle fleet is already on duty and some 
nodes already serviced are no longer considered. The 
remaining “old” customers that have designated vehi-
cles are either being serviced or waiting for the service. 
Therefore, the set of customers in the DVRPTW prob-
lem  should include old nodes still to be serviced and 
new pickup requests. Since quick execution time is a 
pre-requisite for on-line solution of the DVRPTW, a 
good trade-off between the solution quality and the re-
quired computer time must be achieved. Most proposed 
solution algorithms for the DRPTW are heuris-
tics/methaheuristics but little research has been focused 
on model-based reactive formulations. This work intro-
duces a reactive solution strategy for the DVRPTW that 
is based on a novel mixed integer linear problem 
(MILP) formulation and accounts for heterogeneous 
fleets. Using both angular and Euclidean metrics to 
identify neighboring routes for a given node, a small set 
of candidate tours for the (re)insertion of old/new cus-
tomers can be defined and embedded in the formulation. 
Each time the proposed MILP model is solved, multiple 
vehicle-to-node (re)assignment and reordering of nodes 
are simultaneously performed. The proposed mathe-
matical model has been derived by reformulating the 
reactive approach of Dondo and Cerdá (2005). The new 
methodology applies an “insertion & local search” 
strategy each time the vehicle routes & schedules are 
updated. By using such a two-step search strategy, the 
new customers are first assigned to vehicles while al-
lowing a partial reassignment of old nodes  (the inser-
tion step), and subsequently the nodes on a given route 
visited by the same vehicle are optimally reordered (the 
local search step). The approach can be regarded as a 
deferred assignment methodology that retains the new 
service calls for a certain period of time before dispatch-
ing them all at once. The method was applied to a 
DVRPTW example that involves 50 nodes and 8 vehi-
cles yielding satisfactory results at low CPU time. 
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II. PROBLEM STATEMENT 
Consider a route-network represented by an undi-

rected graph G{I, P, N} with I = {i1, i2, ..., in} denoting 
the set of nodes or customers, and P = {p1, p2, ..., pl} 
representing the set of depots. Nodes and depots are 
connected by a set of route segments N = {(i,j) / i,j ∈ I 
∪P}. For each customer i ∈ I, there is a known load li to 
be picked-up (delivered) within a time window [ai, bi], 
where ai is the earliest service time and bi is the latest 
service time. There is set of vehicles V = {v1, v2, ..., vm} 
that must transport the load from (to) nodes i ∈ I to 
(from) depots p ∈ P. In addition, vehicle-dependent unit 
costs C = {cij

v}, vehicle-dependent travel times Γ = 
{tij

v} and travel distances D = {dij} are given data for 
any route segment (i,j) ∈N.  The service time on node i 
is denoted sti

v. To apply the proposed approach, the set I 
is split into a pair of non-intersecting subsets  I = { Iold 
∪ Inew}, where Iold denotes the set of old nodes already 
scheduled o serviced and Inew stands for the new cus-
tomers to be inserted on the vehicle routes. In turn, the 
set Iold comprises the nodes earlier serviced (I1 old) and 
those still to be visited or being currently serviced (I2 old) 
at the update time; i.e. Iold = {I1 old ∪ I2 old }. Problem 
DVRPTW should only account for the nodes included 
in I2 old and Inew. The sets Iold , Inew ,  I1 old and I2 

old  all 
change with the update time tn. Customers already vis-
ited are transferred from I2 old to I1 old . In the same way, 
the vehicle set V can be decomposed into the pair of 
non-intersecting sets  {Vold ∪ Vnew}, where Vold stands 
for the vehicle fleet on duty and Vnew represent stand-by 
vehicles that have not yet been used. Vehicles that have 
already completed their tours are ignored by deleting 
them from the set Vold. For the multi-depot case, only 
vehicles belonging to  Vold  have designated depots while 
the ones for stand-by vehicles will be chosen by the 
DVRPTW. The problem goal is to find the updated ve-
hicle routes & schedules that minimize a combination of 
vehicle fixed costs, travel time, distance-based and in-
convenience costs. The solution must satisfy the follow-
ing constraints: (i) each vehicle route must end at the 
same depot from which it departures; (ii) though the 
vehicle assignment may change when updating the 
routes, each node must be visited by a single vehicle; 
(iii) the total amount of load assigned to vehicle v along 
the tour must never exceed its capacity qv ; (iv) the dura-
tion of the trip for any vehicle v should be shorter than a 
maximum allowed routing time tvv

max; (v) the service at 
node i should start within the time window [ai, bi]. The 
proposed approach assumes that each vehicle will start 
its updated route at the node to (at) which is traveling 
(servicing) at the update time. Vehicle assignments for 
such old nodes i ∈(I2 

old )F ⊂ I2 
old  that become the start-

ing points of the updated routes are consequently fro-
zen. If vehicle v is the designated vehicle for node i ∈(I2 
old )F  at the update time tn, must still be visiting i at time 
tn+1. Therefore, the set (I2 

old)F  will contain as many 
elements as the cardinality of the set Vold, i.e. a single 
frozen node for every vehicle already on duty. Each 

element of (I2 
old)F  will be represented by iv

start with 
v∈Vold  being the vehicle allocated to node i at the pre-
vious routing revision. On the other hand, non-frozen 
old nodes i∈(I2 

old)NF  and new nodes i ∈ Inew can be 
(re)assigned but to a small set of neighboring routes in 
order to reduce the DVRPTW problem size. In other 
words, any node i ∈{(I2 

old)NF ∪ Inew} can be 
(re)allocated to a vehicle v ∈Vi ⊂ V, where Vi is the set 
of vehicles traveling along neighboring routes around 
node i. To define the notion of neighboring route, two 
different metrics are used. A metric based on angles is 
defined to measure the “distance” between a node i and 
a given route traveled by vehicle v. In addition, an 
Euclidean metric is defined to measure the distance be-
tween a node i and the starting location of vehicle v. If 
both the angle and the Euclidean distances are less than 
some specified values, the vth-route is regarded as a 
neighboring trip and the node i can be (re)assigned to 
vehicle v during the rerouting process. As already men-
tioned, the vehicle v∈Vold starts its updated route pro-
vided by DVRPTW at node iv

start. Therefore,  iv
start will 

precede any node j∈{(I2 
old)NF ∪ Inew} located on the 

same route and visited by vehicle v∈Vj. If PRj stands for 
the set of nodes that should precede node j, then node 
iv

start will belong to PRj. Selected customer time win-
dows often prescribe beforehand some precedence rela-
tionship between some pairs of nodes if a common ve-
hicle visits them. Before solving the dynamic VRPTW 
problem, some TW-based rules are applied to identify 
such precedence relationships between nodes and sub-
sequently include them into the set PRi  for each node 
i∈I.  

III. THE DVRPTW FORMULATION 
The proposed MILP formulation requires to define 

the following binary variables: (i) The assignment vari-
able Yiv to allocate vehicle v∈ V to customer i ∈ {(I2 

old 
)NF  ∪ Inew}. (ii) The assignment variable Xvp to allocate 
vehicles v∈ Vnew to depots p∈ Pv . (iii) The sequencing 
variable Sij to denote that the customer site i∈ {I2 

old ∪ 
Inew} is visited before (Sij =1) or after the node j (Sij = 0). 
A single Sij  is required to define the precedence rela-
tionship for a pair of nodes (i,j). In the case node i be-
longs to PRj ⊆{I2 

old ∪ Inew} and both nodes (i,j) are ser-
viced by the same vehicle (Yiv = Yjv = 1), then Sij =1 and, 
consequently, such a sequencing variable can be deleted 
from the problem formulation.   

Objective function: The goal is to find an updated 
set of routes & schedules for the vehicle fleet that ac-
counts for the new service requests and the current state 
of the distribution in progress scenario and minimizes 
an appropriate combination of vehicles fixed costs 
(Σv∈VΣp∈P cfv), distance costs (Σv∈V CVv), travel time 
costs (Σv∈V ρtTVv) and inconvenience costs (Σi∈I ρi 
(Δai+Δbi) + Σv∈V ρv Δvv). Costs due to time windows 
violations (Σi∈I ρi (Δai+Δbi)) are also known as “cus-
tomer dissatisfaction”. 



R. DONDO, J. CERDÁ 

257 

∑∑ ∑
∈∈ ∈

Δ+Δ+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Δ+++

Ii
iii

Vv
vvvtvv baTTVCVcfMin )(X   

Pp
pv ρρρ

 
 (1)

Constraints: 
Assignment of vehicles to customers: Every node i ∈ 
{(I2 

old )NF  ∪ Inew} must be assigned to a single vehicle 
v∈ Vi. The summation is extended over the subset of 
vehicles Vi that can be allocated to node i. 
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Forbidden vehicle assignments. If the pair of nodes 
(i,j)∈ {I2 

old ∪ Inew : i< j}  satisfies the following condi-
tion ( ) ( )[ ]iv

ij
v

jjj
v

ij
v

ii btstabtsta >++∧>++  , then they are 
said to be incompatible nodes in the sense that they can-
not be serviced by the same vehicle. Otherwise, at least 
one of the time window constraints would be violated. If  
the pair (i,j) are incompatible nodes, then the constraint 
(3.a) is to be incorporated in the problem formulation. If 
a particular node j ∈{(I2 

old )NF ∪ Inew} is incompatible 
with  the frozen old node iv

start  , then  Eq. (3.a) reduces 
to constraint (3.b), Yjv is made equal to 0 and deleted 
from the problem formulation.  
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Assignment of vehicles to depots: A single depot p∈ 
Pv should be assigned, if used, to every vehicle v∈Vnew  
where Pv is the set of feasible depots for v. In such a 
case, the summation on Eq. (4) will be equal one; oth-
erwise it should be zero.   
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Vehicle capacity constraints: Equations (5) state that 
the overall cargo transported by vehicle v to the as-
signed depot, including those ones picked-up at nodes 
i∈(I1 

old)v  must never exceed its capacity qv. (I1 
old)v  

stands for old nodes already serviced by vehicle v while 
(I2 

old )v comprises the old nodes that can be visited by 
vehicle v∈Vi, including iv

start.  Eq. (5.a) is written for 
vehicles on duty (v∈Vold ) with known depots while Eq. 
(5.b) applies to stand-by vehicles v∈Vnew  that, if used, 
are housed at depots selected by the DVRPTW. 
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Time windows and maximum service time con-
straints: Constraints (6) ensure that the updated sched-
ule does not violate time windows and maximum ser-
vice time hard constraints. If regarded as soft con-

straints, they can be violated at a penalty cost that is 
proportional to the violation size given by the terms Δai, 
Δbi and ΔTv, respectively. Timing constraints can be 
treated as hard constraints by driving Δai, Δbi and Δtv  in 
Eqs. (6.a) and (6.b) to zero. 
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Node sequencing constraints: If a pair of nodes 
i,j∈ {I2 

old ∪ Inew} are on the same tour and node i is 
visited before, then the pickup service at node j can 
never start at a time Tj earlier than the vehicle departure 
time from node i increased by the travel time tij.  The 
departure time from node i is found by simply adding 
the service time sti to the time Ti at which the service 
begins. This conditional constraint given by Eqs. (7.a) 
should become active only if both requirements are sat-
isfied: (i) both nodes have been assigned to the same 
vehicle (Yiv = Yjv, = 1, for some vehicle v) and (ii) node i 
is visited earlier (Sij  = 1).  If both are on the same tour 
but node j is first serviced (Sij = 0), then Eq. (7.b) will be 
binding and Eqs. (7.a) will become redundant.  Other-
wise, Yiv + Yjv < 2 and constraints (7.a) and (7.b) both 
become redundant. Similar relationships between the 
distance-based traveling costs for any pair nodes (i,j) ∈ 
{I2

old ∪ Inew} can also be written .  
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If i∈PRj , then every node j located on the same 
route will be preceded by node i. In such a case, Eqs. 
(7.a) and (7.b) reduce to constraints (7.c) that become 
active only if nodes i and j are visited by the same vehi-
cle v (Yiv = Yjv = 1).  
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On the other hand,  i = iv 
start will be the starting point of 

the new route for vehicle v and, therefore, it will pre-
cede every node j located on the same route. In such a 
case,  Yiv = 1 and Eq. (7.c) reduces to constraint (7.d). 
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Furthermore, the following condition must be satisfied 
for the initial node of a tour traveled by vehicle v∈Vnew, 
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Since the initial node of the vth-tour is not known be-
forehand, the condition (7.e) is applied to any node 
i∈{I2 

old ∪ Inew} that can be (re)assigned to vehicle v 
∈Vi

new. 
End tour conditions: Eqs. (8) state that both the total 
distance-based traveling cost (CVv) and the total travel 
time (TVv) associated to the vth-tour can be obtained 
from the travel cost/time (Ci/Ti) to spend up to the last 
node serviced by v, by simply adding to it the cost (cip

v) 
/time (sti+tip

v)  required to return to the starting depot. 
Since the last node visited by vehicle v is not known 
beforehand, the constraints (8) are written for any node 
i∈{I2 

old ∪ Inew}. Constraints (8.a) apply to old vehicles 
v∈Vold while constraints (8.b) are written for new vehi-
cles.  
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IV. AN INSERTION & LOCAL SEARCH 
STRATEGY 

The mathematical model introduced in the previous 
section has been embedded into an insertion & local 
search procedure that is summarized in Figure 1. The 
procedure parameters are the following: (1) ϕ1: maxi-
mum angular distance from node i to the currently as-
signed vth-route axis θv , below which node i must still 
be serviced by the same vehicle v in the next iteration. If 
node i is farther than ϕ1 , then it could be transferred to 
another tour. (2) ϕ0: maximum angular distance with 
respect to another vth-route axis θv below which node i 
can be serviced by vehicle v∈Vi on the next iteration. 
(3) d1

max: maximum Euclidean distance from node i to 
the Cartesian location of the currently assigned vehicle 
v∈Vi , below which node i will be serviced by the same 
vehicle v∈Vi on the next iteration. If node i is farther 
than d1

max , then it could be transferred to a neighboring 
tour. (4) d0

max: maximum Euclidean distance from node 
i to the Cartesian location of another vehicle v, below 
which node i can be serviced by vehicle v on the next 
iteration. These parameters govern the shapes and sizes 
of the operational zones for old vehicles v∈Vold and de-
termine the levels of zone overlapping. In the initial step 
of the procedure, parameters ϕ1, ϕ0, d1

max, d0
max are all 

tuned. In addition, the time step Δt is adopted, the itera-
tion number n is set equal 0 and the update time to is 
made equal to 0. Initially, Iold = I1

old∪I2
old is an empty 

set and Inew includes all service requests available at t= 
0. Moreover, the sets (I2

old)F & (I2
old)NF  are also empty 

sets and the available vehicles all belong to the set Vnew. 
In step 2, the resulting DVRPTW mathematical formu-
lation is solved. 

 
Step 1. Initialize model parameters. 
  1a. Settings: Set the values for the procedure parameters ϕ1, 
ϕ0 , d1

max,  d0
max and the update time step Δt. 

  1b. Iteration number: n = 0; re-routing time: t0 = 0. 
  1c. Set  Iold = I1

old = I2 
old = (I2 

old)F =(I2 
old)NF= ∅; Inew 

={all service calls at t0 = 0}; Vold = ∅ ; Vnew ={all available  
vehicles at t0 = 0}; Vi = V for any i∈Inew. 

Step 2. Solve the DVRPTW mathematical formulation to 
find the best initial vehicle routes. 
Step 3. Update the model parameters. 
  3a. n = n+1, tn+1 = tn + Δt. 
  3b. Update the node sets I1

old , I2
old , (I2

old)F , (I2
old)NF  and Inew 

as well as the vehicle sets Vold and Vnew. If n  > nmax or  
I2

old = Inew = ∅, END. Otherwise, go to step (3c). 
  3c. Update the preceding node sets PRi , i∈I2

old 
  3d. Determine the equivalent Cartesian coordinates for used 
vehicles (xv, yv) 
  3e. Compute equivalent vehicle polar coordinates  (θv, rv) 
from their Cartesian coordinates 
  3f. Determine the Euclidean distance from nodes to vehicles 
(div) and the angular distances from nodes to routes (ϕiv) 
  3h. Define the set of neighboring tours for every node i∈ 
I2

old∪ Inew through the sets Vi , i∈(I2
old)NF  ∪ Inew. 

Step 4. Solve the DVRPTW model in two steps. 
  4a. Re(assignment) of vehicles to nodes. Solve the 
DVRPTW while keeping unchanged the ordering of old 
nodes if they remain on the same route through the sets PRi . 
4b. Reordering of nodes on every route. Solve the 
DVRPTW keeping unchanged the set of nodes visited by 
each used vehicle found in step 4a. 
  4c. Return to step 3. 

Figure 1: The solution strategy 
 
After finding the best routes for the used vehicles, 

values of the distances ϕ and d for every pair (i,v) are 
determined in order to find the set of  neighboring tours 
for every non-frozen node at the next iteration (step 3). 
Moreover, scheduled & serviced nodes are transferred 
from Inew to I2

old while used vehicles are moved from 
Vnew to Vold. In addition, n = n+1, tn+1 = tn + Δt , the old 
nodes already visited are transferred from I2

old to I1
old 

and new service calls are incorporated in Inew. Further-
more, unused and new available vehicles are included in 
Vnew and the node iv

start on every route is identified to 
define the set (I2

old)F = {iv
start , v ∈ Vold} and, conse-

quently, (I2
old)NF = I2

old - (I2
old)F . Additionally, the 

precedence ordering of old nodes i∈ I2
old on the current 

routes are stored in the sets PRi. After that, the step 4 is 
executed and the DVRPTW model is solved again but 
this time in two steps to first find the nodes to be visited 
by each vehicle (the insertion step) and then the way 
they are sequenced on each route (the local search step). 
While making the insertion step, the ordering of old 
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nodes located on the same route at the previous itera-
tion, given by PRi, are preserved if they are still visited 
by a common vehicle on the next iteration. By doing 
that, a great deal of sequencing variables can be deleted 
from the problem formulation.  Similarly, assignment 
variables Yiv and constraints (2)-(5) can be omitted dur-
ing the local search step. After updating the routes, step 
3 is repeated again and the procedure ends when either 
the last routing update has been executed (n > nmax ) or 
all customers have been serviced (I2

old = Inew = ∅).  
 

V. AN ILLUSTRATIVE EXAMPLE 

The proposed dynamic VRPTW framework has been 
tested by tackling a variant of the fifty-node Solomon 
benchmark problem R-110 (Solomon, 1987). Changes 
were introduced in problem R-110 to mimic a dynamic 
scenario. The example involves a central depot hosting 
an homogeneous fleet of 8 vehicles (V1-V8) all featur-
ing a capacity qv = 200 and a maximum service time 
tvv

max = 230.  Six of them, namely V1-V6, are ready to 
perform pickup tasks at t = 0. The other two vehicles 
V7-V8 will be held in reserve waiting for additional 
service calls that can hardly be satisfied by the vehicles 
on duty without violating time constraints (See Table 1).  
At t = 0, just 25 service requests represented by the first 
25 nodes of the benchmark problem R-110 have been 
received. The selected objective function includes trav-
eled distances and inconvenience costs (ρi = ρv = 1) but 
no fixed costs (cfv = 0). In addition, it was adopted ρt = 
1.10-4 to also minimize both the overall idle time and 
the vehicle schedule makespan. Time window-based 
rules identifying incompatible nodes have been applied 
before tackling the formulation in order to initialize the 
sets PRi. The resulting VRPTW problem was solved to 
establish the optimal routes & schedules for the six ve-
hicles V1-V6 on a 733 Mhz 256 MB RAM Pentium III 
PC using ILOG OPL Studio 3.7 with the CPLEX 9.0 
solver. The optimal solution featuring just non-
overlapping routes and no time window constraint vio-
lations has been found in 4.12 s and is shown in Table 2 
and Fig 2. Nodes already serviced at the next update 
time are highlighted in this table. Vehicle tours are as-
sumed to be periodically updated after some fixed pe-
riod of time (Δt = 40) to schedule additional pickup ser-
vices. While the six vehicles are servicing customers, 
eight new requests have been accepted within the time 
interval [t = 0, t = 40] (see Table 1). Since Δt = 40, the 
first update of vehicle routes and schedules is made at t 
= 40. At that time, services at nodes n2 and n5 have 
been completed while pickup tasks at nodes n12 and 
n21 by vehicles V3 and V6 are just being performed 
(see Table 2). Therefore, vehicles V3 and V6 will be 
ready to start the updated routes from such nodes after 
completing the ongoing services. In turn, vehicles V1 
and V4 are moving along the route segments connecting 
the pairs of nodes (n2, n15) and (n5, n17), respectively. 
Therefore, vehicles V1 and V6 will still be allocated to 
nodes n15 and n17, respectively, from which they are 

going to start the updated routes. All other vehicle-node 
assignments can be redefined and the unused vehicles 
V7  and V8 are now feasible choices. As the scheduled 
vehicle V5 is still idle at t = 40, then every node previ-
ously assigned to V5, even the earliest visited n7, can be 
transferred to another route. In particular, n7 was reallo-
cated to vehicle V2.  

Table 1: Services requested while the vehicles are on duty 
Service requests arriving within the time period [t = 0, t = 40] 
Node n28 n31 n29 n47 n30 n40 n49 n44 

ai 40 40 40 40 40 51 93 40 
bi 79 85 98 116 123 128 132 138 

Load 16 27 9 27 21 9 30 18 
Service requests arriving within the time period [t = 40, t = 80]  
Node n34 n38 n46 n50 n26 n27 n43 n41 

ai 100 80 93 105 117 80 115 80 
bi 143 145 150 152 156 156 158 159 

Load 14 16 1 13 17 16 7 5 
Service requests arriving within the time period [t = 80,t =120] 
Node n37 n42 n32 n36 n35 N33 n39 n45 n48 

ai 120 120 120 120 120 120 120 120 125 
bi 160 172 175 178 178 179 186 189 192 

Load 8 5 23 5 8 11 31 16 36 
Node locations are detailed in Solomon (1987)  

Results for this routes & schedules adjust are summa-
rized in Table 2 and depicted in Fig. 2. It can be noted 
that node n13 previously assigned to vehicle V1 was 
reallocated to V6. Similarly, old nodes n1, n6, n7, n9, 
n20 and n24 were inserted in other routes. The second 
routing update is performed at t = 80 to incorporate the 
service calls received within the time period [t = 40, t = 
80] while permitting the use of the additional vehicle 
V8. Nonetheless, time window constraint violations 
cannot be avoided during the second update and their 
sizes are given by: Δbn27 = 20.90, Δbn43 = 3.30, Δbn50 = 
1.00. The last solution update was performed at t = 120 
to meet service requests received during the period [t = 
80, t = 120]. Several time window (Δbn50 = 1.00, Δbn27 = 
20.90, Δbn24= 27.30, Δbn43 = 3.30, Δtn42 = 8.40) and a 
maximum service time constraint (Δtv7 = 27.30) viola-
tion arise. This indicates that at least one more vehicle is 
necessary to avoid customer’s dissatisfactions. The final 
tours assigned to each vehicle are the following: 

V1: D - n2 - n15 - n40 – n26 – n37 – n45 – D 
V2: D - n31 – n7 – n18 – n8 – n46 – n36 – n48 – D 
V3: D - n12 – n30 – n20 – n34 – n35 – n1 – D 
V4: D - n5 – n17 – n16 – n44 – n6 – n33 – D 
V5: D - n19 – n47 – n49 – n11 – n10 – n32 – D 
V6: D - n21 – n4 – n25 – n23 – n22 – n41 – n39 – D 
V7: D - n28 – n29 – n9 – n3 – n50 – n27 – n24 – D 
V8: D - n14 – n38 – n43 – n42 – n13 – D 

 
Computational data for successive solved problems 

are summarized in Table 3. This table also reports the 
customer-status at each update-time and problem-
resolution-times (including both re-assignment and re-
sequencing stages). 
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Table 2: Vehicle routing & schedules for the dy-
namic instance of problem R-110 

Vehicle Node Waiting 
Time 

Arrival 
time 

Load 

Initial solution 
V1 
 
 

V2 
 

V3 
 
 
 

V4 
 
 
 
 

V5 
 
 
 
 
 

V6 

n2 
n15 
n13 
n18 
n8 
n12 
n9 
n3 
n24 
n5 
n17 
n16 
n14 
n6 
n7 
n19 
n11 
n10 
n20 
n1 
n21 
n4 
n25 
n23 
n22 

2.00 
0.00 
0.00 

61.20 
0.00 

23.00 
0.00 
7.50 
0.00 
0.00 

10.40 
0.00 
0.00 
0.00 

44.80 
0.00 
0.00 
0.00 
0.00 
0.00 

19.00 
14.00 
0.00 
0.00 
0.00 

20.00 
43.00 
73.00 
77.00 
97.40 
38.00 
73.50 
106.00 
130.10 
20.60 
51.00 
72.20 
93.40 
125.80 
66.00 
87.20 
104.30 
125.50 
151.30 
177.80 
37.00 
71.00 
91.00 
119.00 
140.20 

 
 

38 
 

21 
 
 
 

51 
 
 
 
 

70 
 
 
 
 
 

69 
 
 
 
 

83 
First solution update (t = 40) 

V1 
 

V2 
 
 
 

V3 
 
 
 

V4 
 
 
 
 

V5 
 
 
 
 

V6 
 
 
 
 

V7 

n15 
n40 
n31 
n7 

n18 
n8 

n30 
n3 

n20 
n1 

n17 
n16 
n44 
n14 
n6 

n19 
n47 
n49 
n11 
n10 
n4 

n25 
n23 
n22 
n13 
n28 
n29 
n9 

n24 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
10.40 
0.00 
0.00 
0.00 
0.00 
21.00 
0.00 
0.00 
0.00 
0.00 
14.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

43.00 
75.40 
57.50 
78.70 
98.70 
119.10 
74.90 
106.10 
138.50 
165.00 
51.00 
72.20 
88.30 
104.00 
136.40 
53.00 
74.20 
96.40 
120.70 
141.90 
71.00 
91.00 
119.00 
140.20 
171.40 
46.30 
79.80 
109.90 
146.80 

 
24 
 
 
 
53 
 
 
 
72 
 
 
 
 
88 
 
 
 
 
102 
 
 
 
 
106 
 
 
 
44 

Second solution update (t = 80) 
V1 
V2 

 
 

V3 
 
 

V4 
 

V5 
 
 
 

V6 
 
 
 

V7 
 
 
 

V8 
 

t26 
t18 
t8 
t46 
t20 
t34 
t24 
t44 
t6 
t49 
t11 
t10 
t1 
t25 
t23 
t22 
t41 
t9 
t3 

t50* 
t27* 
t14 
t38 

t43* 
t13 

24.50 
0.00 
0.00 
0.00 

17.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

117.00 

98.70 
119.10 
138.40 
109.00 
141.40 
171.40 
88.30 
119.60 
93.30 
117.60 
138.80 
164.40 
91.00 
119.00 
140.20 
154.40 
109.90 
134.80 
153.00 
176.90 
112.00 
133.20 
161.30 
194.40 

41 
 
 
54 
 
 
66 
 
68 
 
 
 
112 
 
 
 
88 
 
 
 
83 
 
 
 
66 

Third solution update (t = 120) 
V1 

 
V2 

 
 

V3 
 
 

V4 
V5 

 
V6 

 
 

V7** 
 
 
 

V8 

t37 
t45 
t46 
t36 
t48 
t34 
t35 
t1 
t33 
t10 
t32 
t22 
t41 
t39 
t3 

t50* 
t27* 
t24* 
t38 
t43 

t42* 
t13 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

153.90 
186.70 
138.40 
160.40 
184.00 
141.40 
161.60 
198.80 
165.20 
138.80 
159.10 
140.20 
154.40 
183.10 
134.80 
153.00 
176.90 
217.30 
133.20 
161.30 
180.40 
194.70 

 
65 
 
 

85 
 
 

81 
79 
 

125 
 
 

119 
 
 
 

86 
 
 
 

71 
 
DISCUSSION AND CONCLUSIONS 

In this work, a novel MILP model-based algorithmic 
procedure for solving the dynamic version of the 
VRPTW problem has been developed. The proposed 
DVRPTW approach is capable of handling multiple 
depots and heterogeneous vehicles fleets. The MILP 
problem representation was embedded into an insertion 
& local search solution strategy. In this way, each time 
the vehicle routes are updated, the DVRPTW formula-
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tion is tackled by using a two-step solution strategy. 
First, dynamically revealed service requests are inserted 
in the current routes while allowing some degree of re-
assignment of scheduled nodes. However, the prece-
dence relationships among old nodes on every tour are 
preserved during Step 1. A better solution is subse-
quently found by swapping nodes of any given tour at 
Step 2. A relatively hard DVRPTW instance that ini-
tially involves 25 nodes and then gradually incorporates 
25 further customers to service with a fleet of 8 vehicles 
was successfully solved. Vehicle routes have been up-
dated three times while the vehicles were on duty. Effi-
cient tours were obtained through solving MILP formu-
lations with rather low requirement of binary variables. 
Therefore, the proposed approach seems to be very 
promising to utilize it in “real time” environments. 

Initial Solution (t = 0)

 

First Solution Update (t = 40)

 

Routes traveled by the vehicles up to time t.

Second Solution Update (t = 80)

 

"Future" routes to be traveled by the vehicles

Third Solution Update (t = 120)

 

Figure 2: Geographical view of successive solution up-
dates 

Table 3: Computational results for successive solu-
tion updates 

Nodes 
status 

Stage Problem 
size 

CPU 
time(s) 

Schedule 
update 
time S R I  B R C  

t = 40 4 21 8 Insertion 
Reorder 

89 
61 

156 
156 

1597 
100 

 
60.4 

t = 80 12 17 8 Insertion 
Reorder 

83 
20 

126 
126 

1849 
54 

 
62.3 

t = 120 12 13 9 Insertion 
Reorder 

75 
18 

108 
108 

1434 
49 

 
5.2 

S: Nodes serviced up to the next update-time 
R: Nodes subject to re-programming 
I: Inserted nodes 

B: Binary variables 
R: Real variables 
C: Constraints 
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