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Abstract−− This paper describes circuits for exe-
cuting the most complex operations of public-key 
cryptography and gives estimations of their execu-
tion time within field programmable devices. The 
following operations are considered: mod n exponen-
tiation, mod p division, mod f(x) multiplication of 
polynomials, mod f(x) division of polynomials and 
point multiplication over an elliptic curve. 
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I. INTRODUCTION 
The designer of systems including cryptographic algo-
rithms – ciphering / deciphering, digital signature, au-
thentication - is often faced with the following apparent 
contradiction: on the one hand, in many cases crypto-
graphic algorithms are used within real time systems, so 
that their response time must be short; on the other 
hand, the security is related to the algorithm complexity. 
In order to make compatible those apparently contradic-
tory characteristics, a possible solution is the use of spe-
cific hardware, that is, circuits specifically designed for 
executing those complex algorithms: they implement 
the particular computation primitives of the algorithms 
and take profit of their inherent parallelism. Among the 
technologies at hand for developing specific circuits are 
the field programmable devices, for example the Field 
Programmable Gate Arrays (FPGA). They constitute an 
attractive option for small production quantities as their 
non-recurrent engineering costs are much lower than 
those corresponding to Application Specific Integrated 
Circuits (ASIC). Furthermore, in order to reduce their 
size, and so the unit cost, an interesting possibility is to 
reconfigure them at run time so that the same program-
mable device can execute different predefined func-
tions. 

This paper describes circuits for executing the most 
complex operations of public-key cryptography and 
gives estimations of their execution time within field 
programmable devices. It is organized in the following 
way: section II briefly describes the main public-key 
cryptographic algorithms and deduces a list of complex 
computation primitives that should be implemented in 
hardware. Section III to VII propose generic algorithms1 
and circuits for executing the mod n exponentiation, the 

                                                           
1 Most algorithms are described in Ada and complete source 
programs are available at 
http://www.ii.uam.es/∼gsutter/arithmetic. 

mod p division, the mod f(x) multiplication of polyno-
mials, the mod f(x) division of polynomials and the 
point multiplication over an elliptic curve, respectively. 
The adjective “generic” alludes to the fact that particular 
characteristics of the underlying algebraic structure, for 
instance special values of n, p or f(x), are not taken into 
account (except the case p = 2). Actually, a lot of im-
provements can be obtained if particular values of p and 
f(x) are chosen, but their description falls beyond the 
scope of this paper. 

II. MAIN ARITHMETIC OPERATIONS 
The most time-consuming operations correspond to 
public-key cryptography, that is, encryption / decryption  
schemes using different keys for ciphering (public key) 
and deciphering (private key). Among the most used are 
the RSA and the Discrete Logarithm systems.  

In the first case (RSA, Adleman et al., 1978), two 
primes p and q are chosen. The public key is a pair (n,e) 
of naturals where n = p.q, e belongs to the interval 0 < e 
< (p-1)(q-1) and e is relatively prime with (p-1)(q-1). 
The private key is d = e-1 mod (p-1)(q-1). It can be 
shown that xe.d ≡ x mod n, for any natural x. The encryp-
tion / decryption algorithm is the following: giving a 
message mes represented under the form of a natural 
belonging to the interval 0 < mes < n, compute the ci-
phered text c = mese mod n. In order to decrypt c, com-
pute cd mod n. Observe that knowing the public key 
(n,e), the computation of the private key amounts to 
decompose n under the form n = p.q and then calculate 
d = e-1 mod (p-1)(q-1). Nowadays, the factorization 
problem is intractable for key sizes greater 1024 bits. 

In the second case (Discrete Logarithm), a finite 
group (G,*,1) is defined and some element g of G is 
chosen. Let n be the order of g. Thus, the set {1, g, g2,..., 
gn-1} is a cyclic subgroup of G. The private key is a 
natural x belonging to the interval 0 < x < n, and the 
public key is the element y of the cyclic subgroup de-
fined by y = gx. The message mes must be represented 
under the form of an element of G. The encryption algo-
rithm is the following: randomly choose a natural k be-
longing to 0 < k < n, compute c1 = gk and c2 = mes*yk. 
The ciphered text is made up of c1 and c2. In order to 
decrypt the message, compute c2*(c1

x)-1. Observe that 
knowing the public key y, the computation of the private 
key x amounts to calculate loggy, presumably a very 
hard problem.  

In the basic version of the Discrete Logarithm 
scheme (ElGamal, 1985), G is the set of natural {1,2,..., 
p-1}, where p is a prime, so that all operations are per-
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formed modulo p. Nevertheless, other groups can be 
used. Consider for example an elliptic curve E, over the 
binary extension field GF(2m), defined as being the set 
of elements (x,y) of GF(2m)xGF(2m) such that y2 + xy = 
x3 + ax + b, where a and b are elements of GF(2m). It 
can be demonstrated that the set of points of E, plus the 
so-called point at infinity ∝, is a group (E, +, ∝) whose 
basic operation (under additive notation, with neutral 
element ∝) is defined as follows: 

(x , y) + ∝ = ∝ + (x , y) = (x , y);      (1) 

(x1 , y1) + (x1 , x1+ y1) = ∝; 
in particular, (0 , y1) + (0 , y1) = ∝;     (2) 

if x1 ≠ 0, then (x1 , y1) + (x1 , y1) = (x3 , y3) where 
x3 = λ2 + λ + a,  y3 = x1

2 + λx3 + y1, 
λ = x1 + y1/x1;           (3) 

if (x2 , y2) ≠ (x1 , y1) and (x2 , y2) ≠ (x1 , x1+ y1), then 
(x1 , y1) + (x2 , y2) = (x3 , y3) where 
x3 = λ2 + λ + x1 + x2 + a,  y3 = λ(x1 + x3) + x3 + y1, 
λ = (y1 + y2)/(x1 + x2).        (4) 

A Discrete Logarithm scheme can be defined by choos-
ing a point P of E whose order is equal to n so that the 
set {∝, P, 2P, ... , (n-1)P} is a cyclic subgroup of E. The 
private key is a natural d belonging to the interval 0 < d 
< n, and the public key is the element Q of the cyclic 
subgroup defined by Q = dP. A simple encryption / de-
cryption algorithm would be the following: giving a 
message mes represented by a point M of E, randomly 
choose a natural number k belonging to 0 < k < n, com-
pute C1 = kP and C2 = M + kQ. The ciphered text is 
made up of C1 and C2. In order to decrypt the message, 
compute C2 - dC1. Actually, other encryption / decryp-
tion schemes are used, avoiding among others the em-
bedding of mes within E. Nevertheless, the operations to 
be performed are similar. Observe that knowing the 
public key Q, the computation of the private key 
amounts to looking for a natural d such that dP = Q, 
presumably a very hard problem. Nowadays, this prob-
lem is intractable  for key sizes greater than 160 bits. 

As a matter of fact, elliptic curves can be defined 
over any field. The group operation definition depends 
on the particular field, but they always amount to com-
binations of basic arithmetic operations (add, subtract, 
multiply, square and divide) over the chosen field.   

Among all the mentioned operations, the most time-
consuming are the following: 

z = yx mod n, where x and y are naturals included be-
tween 0 and n (RSA, ElGamal), 

z = x.y-1 mod p, where p is prime, and x and y are 
naturals included between 0 and p (ElGamal, elliptic 
curve over GF(p)), 

z(x) = g(x).h(x) mod f(x), where f is a polynomial of 
degree m over GF(p), and g and h are polynomials of 
degree less than m over GF(p) (elliptic curve over 
GF(pm)),  

z(x) = g(x).h-1(x) mod f(x), where f is an irreducible 
polynomial of degree m over GF(p), and g and h are 
polynomials of degree less than m over GF(p) (elliptic 
curve over GF(pm)).  

III. EXPONENTIATION MOD N 
Let x be represented in base 2, that is, x = xm-1.2m-1 +  xm-

2.2m-2 + ... + x1.2 + x0, with m ≥ log2n. Then z = yx mod n 
can be computed according to the following computa-
tion scheme: 

,mod.)....)).).1((...(( 0121 22222 nyyyyz xxxx mm −−=  
to which corresponds the following algorithm: 
 
Algorithm 1 – base 2 mod n exponentiation (complete 
program available) 
e := 1; 
for i in 1 .. m loop 
 e := (e*e) mod n ; 
 if x(m-i) = 1 then e := (e*y) mod n; 
end if; 
end loop; 
z := e; 
 
If n is odd, so that 2 has an inverse mod n, a more effec-
tive algorithm uses the Montgomery reduction concept 
(Montgomery, 1985). Consider two naturals a and b 
belonging to {0, 1, ... , n-1} and define the functions T 
and MP (Mongtgomery product) as follows: T(a) = a.2m 
mod n, MP(a, b) = a.b.2-m mod n. Obviously, T(a.b) = 
MP(T(a), T(b)) and T-1(a) = a.2-m mod n = MP(1, a). 
Then, in algorithm 1 substitute 1 by T(1) = 2m mod n, y 
by T(y) = y.2m mod n = MP(y, 22.m mod n ), the product 
by the Montgomery product, and replace the last step by 
z = T-1(e) =  MP(1, e). 
 
Algorithm 2 – mod m exponentiation, Montgomery 
algorithm (complete program available) 
--the constants exp_m = 2m mod n and exp_2m = 22.m 
mod n are previously computed 
e := exp_m; 
ty := mp(y, exp_2m); 
for i in 1 .. m loop 
 e := mp(e, e); 
 if x(m-i) = 1 then e := mp(e, ty); 
end if; 
end loop; 
z := mp(e, 1); 
 
The Montgomery product is computed as follows 
(Montgomery 1985; chapter 8 of Deschamps et al., 
2006): 
 
Algorithm 3 – base-2 Montgomery product (complete 
program available) 
product := 0; 
for i in 0 .. m-1 loop 
 a := product + x(i)*y; 
 product := (a + a(0)*n)/2;          
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end loop; 
if product >= n then z := product-n; 
else z := product; end if; 
 

The efficiency of the algorithm comes from the fact 
that it does not include any mod n reduction. Observe 
that if product is smaller than 2.n, then a < 3.n, and the 
new value of product is smaller than 4.n/2 = 2.n. Thus, 
as initially product = 0, all along the algorithm execu-
tion product is an (m+1)-bit number and a an (m+2)-bit 
number. The part of the data-path corresponding to the 
execution of one step of the Montgomery product is 
shown in figure 1. It is made up of an (m+1)-bit condi-
tional adder followed by an (m+2)-bit conditional adder, 
so that its computation time is equal to m+3 full-adder 
delays. The number of iteration steps of algorithm 3 is 
m, so that the computation time of one Montgomery 
product is equal to m.(m+3) full-adder delays. The num-
ber of iteration steps of algorithm 2 is m and every step 
includes at most two Montgomery products. Thus the 
total computation time of yx mod n is approximately 
equal to 2.m3 full-adder delays being m the size of the 
operands.  

product

m+1

y

m

conditional
adder

am+2

m+2

m+1

/2

n

m

conditional
adder a0

xi

new_product
 

Figure 1 Montgomery product: basic step 

With nowadays FPGAs including very fast carry-
logic circuitry, delays smaller than 0.2ns per adder-bit 
are obtained (chapter 11 of Deschamps et al., 2006), so 
that the computation time is smaller than 0.4m3 ns. As 
an example, for m = 1024, the computation time is less 
than 0.5s. 

IV. DIVISION MOD P 
There are two main types of division algorithms. The 
first type consists of extensions of algorithms for com-
puting the greatest common divider (gcd) of two num-
bers, in particular the extended Euclidean algorithm 
(chapter 2 of Hankerson et al., 2004) and the binary 

algorithm (Brent and Kung, 1983). The second type 
includes those that are based on the Fermat's little theo-
rem and use field multiplication as primitive operation. 
The latter ones are conceptually simple: given x in 
GF(p), then y.(x.yp-2) mod p = x.yp-1 mod p = x, so that z 
= x.yp-2 mod p. The former ones are based on the fact 
that the greatest common divider of y and p is equal to 
1, so that any algorithm for computing the gcd of two 
naturals y and p based on the generation of sequences of 
naturals a(0), a(1), a(2), ... , b(0), b(1), b(2), ... , c(0), 
c(1), c(2), ... , and d(0), d(1), d(2), ... ,  such that 
gcd(a(i), b(i)) = gcd(y, p), a(i) < a(i-1), a(i).x ≡ c(i).y 
mod p and b(i).x ≡ d(i).y mod p, eventually generates 
a(n) = 0 and thus b(n) = 1, x ≡ d(n).y mod p, that is, z = 
d(n) mod p. An example is the extended Euclidean algo-
rithm. Another is the binary algorithm based on the fol-
lowing obvious properties: 

if a is even and b is odd, then gcd(a, b) =  gcd(a/2, b), 
if a is odd and b is even, then gcd(a, b) =  gcd(b/2, a), 
if a is odd and b is odd and a ≥ b, then gcd(a, b) =   
 gcd(a-b, b), 
if a is odd and b is odd and a < b, then gcd(a, b) =   
 gcd(b-a, a); 

furthermore, if a.x ≡ c.y mod p and b.x ≡ d.y mod p, then 

(a/2).x ≡ (c.2-1 mod p).y mod p,  
(b/2).x ≡ (d.2-1 mod p).y mod p, 
(a-b).x ≡ (c-d).y mod p, 
(b-a).x ≡ (d-c).y mod p. 

Initially define a(0) = y, b(0) = p, c(0) = x and d(0) = 
0, so that a(0).x = c(0).y  and b(0).x ≡ d(0).y mod p. In 
the next algorithm the function divide_by_2(c, 
p) returns c.2-1 mod p, that is, c/2 if c is even and 
(c+p)/2 if c is odd. 
 
Algorithm 4 - mod p division, binary algorithm 
(complete program available) 
a := y; b := p; c := x; d := 0; 
while a > 0 loop 
   while (a mod 2) = 0 loop  
    a := a/2; 
    c := divide_by_2(c, p);  
   end loop; 
   if a >= b then  
    a := a-b; c := (c-d) mod p;  
   else old_a := a; a := b-a;  
    b := old_a; old_c := c;  
    c := (d-c) mod p; d := old_c;  
   end if; 
end loop; 
z := d; 
 
A drawback of the preceding algorithm is the necessity 
of detecting whether a is smaller than b, or not. The 
plus-minus algorithm is a modified version of the binary 
algorithm avoiding the time-consuming comparison of a 
and b when large numbers are considered. Variables a 
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and b are allowed to be negative integers and, instead of 
comparing their actual values, logarithmic bounds are 
used, namely α and β, such that 

-2α < a  < 2α, -2β < b  < 2β. 

The algorithm is based on the following observation: if 
a and b are odds, then both a+b and a-b are even, and 
their sum (a+b) + (a-b) = 2.a cannot be a multiple of 4 
(a is odd), so that either (a+b) mod 4 = 0 and (a-b) mod 
4 = 2, or (a-b) mod 4 = 0 and (a+b) mod 4 = 2. Thus, 
either a+b or a-b is divisible by 4. The following obvi-
ous properties are used: 

if a is divisible by 4 and b is odd, then gcd(a, b) =   
 gcd(a/4, b), 
if a is even and b is odd, then gcd(a, b) =  gcd(a/2, b), 
if a is odd, b is odd and a+b is divisible by 4, then   
 gcd(a, b) =  gcd((a+b)/4, b) =  gcd((a+b)/4, a), 
if a is odd, b is odd and a-b is divisible by 4, then  
 gcd(a, b) =  gcd((a-b)/4, b) =  gcd((a-b)/4, a). 

When a is odd, the new value of b (could be a or b) is 
chosen in function of α and β: if α ≥ β choose b, and if 
α < β, choose a. As regards c and d, they are updated 
accordingly: the new value of c is c.4-1 mod p, c.2-1 mod 
p, (c+d).4-1 mod p or (c-d).4-1 mod p, and the new value 
of d is d or c. Actually, all decisions can be taken in 
function of the difference dif = α - β. In order to update 
the values of α and β, the value of min = minimum(α, 
β) must be known. In the following algorithm the func-
tions divide_by_2(c, p) and di-
vide_by_4(c, p) return integers equivalent to c.2-1 
mod p and c.4-1 mod p, respectively: c/2 or (c+p)/2 in 
the first case; c/4, (c+p)/4, (c+2.p)/4 or (c-p)/4, in the 
second case (in function of c mod 4 and p mod 4). Dur-
ing the execution of the algorithm the values of a, b, c 
and d remain included between –p and p. Thus, if p is a 
k-bit number, a, b, c and d can be represented as (k+1)-
bit 2’s complement integers. More details can be found 
in Deschamps and Sutter (2006). 
 
Algorithm 5 - mod p division, plus-minus algorithm 
(complete program available) 
a := y; b := p; c := x; d := 0;  
dif := 0; min := logp;   
while min > 0 loop 
   if a mod 4 = 0 then  
      a := a/4;  
      c := divide_by_4(c, p); 
      if dif <= 0 then min := min-2;  
      elsif dif = 1 then  
       min := min-1;  
      end if;  
      dif := dif-2; 
   elsif a mod 2 = 0 then  
      a := a/2;  
      c := divide_by_2(c, p); 
      if dif <= 0 then  
       min := min-1;  

      end if; 
      dif := dif-1; 
   else 
      old_a := a; old_c := c; 
      if (a+b) mod 4 = 0 then  
        a := (a+b)/4;  
        c := divide_by_4(c+d, p); 
        if dif  >= 0 then 
          if dif = 0 then  
           min := min-1;  
          end if; 
          dif := dif-1; 
        else  
          b:= old_a; d := old_c;  
          dif := -dif-1; 
        end if; 
      else  
        a := (a-b)/4;  
        c := divide_by_4(c-d, p); 
        if dif  >= 0 then 
          if dif = 0 then  
            min := min-1;  
          end if; 
          dif := dif-1; 
        else  
          b:= old_a; d := old_c;  
          dif := -dif-1; 
        end if; 
      end if; 
   end if; 
end loop; 
if b < 0 and d < 0 then z := -d; 
elsif b < 0 and d >= 0 then  
   z := p - d; 
elsif b > 0 and d < 0 then  
   z := p + d; 
else z := d; 
end if; 
 
At each step of algorithm 5, a is substituted by either 
a/4, a/2, (a+b)/4 or (a-b)/4, and c by either c.4-1 mod 
p,c.2-1 mod p, (c+d).4-1 mod p or (c-d).4-1 mod p. The 
most time-consuming operations are those correspond-
ing to c. They can be executed by the circuit of figure 2. 
The control unit defines the operation (add or subtract) 
in function of the two less significant bits of a and b 
(according to algorithm 5), and the correction term (0, p, 
2.p or –p) in function of the two less significant bits of  
c and d (according to the definition of  functions di-
vide_by_2(c, p) and divide_by_4(c, p)).  

The maximum delay corresponds to the computation 
time of a (k+2)-bit adder-subtractor followed by a (k+3)-
bit adder, that is, k+4 full-adder delays. An upper bound 
of the number of steps is 2.k, so that the total computa-
tion time is approximately equal to 2.k2 full-adder de-
lays, being k the size of p. Thus, if a delay smaller than 
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0.2ns per adder-bit is assumed, the total computation 
time is smaller than 0.4k2 ns. As an example, for p = 2192 
– 264 – 1, so that m = 192, the computation times should 
be less than 14.8μs. Actually, a computation time of 
11.5μs has been reported (Deschamps and Sutter, 2006). 

c

k+1

d

k+1

adder -
subtractor

c+d or c-dk+2

0 p 2.p -p

adder

k+2

k+3

k+1

/4

adder

k+3

k+1

/4

0 1 2 3

k+1

/2

k+2 k+3

c.2-1 mod p c.4-1 mod p

(c+d).4-1 or (c-d).4-1 mod p

 
Figure 2  Plus-minus algorithm 

V. MULTIPLICATION MODULO F(x) 
Let f(x) be a polynomial of degree m over GF(p), and 
a(x) and b(x) polynomials of degree smaller than m over 
the same field. The multiplication of a(x) by b(x) can be 
performed according to the following computation 
scheme: 

a(x).b(x) mod f(x) =  (( ... (((0.x + a(x).bm-1).x +  
a(x).bm-2).x) + ...+ a(x).b1).x + a(x).b0) mod f(x). 

In the following algorithm, the functions multi-
ply_by_x(a,f), add(a,b) and prod-
uct(a,coeff) return a(x).x mod f(x), a(x) + b(x) and 
a(x).coeff, respectively. 
 
Algorithm 6 – mod f(x) multiplication (complete 
program available) 
z := 0; 
for i in 1 .. m loop 
   z := add(multiply_by_x(z,f),  
   product(a,b(m-i))); 
end loop; 

Assuming that f is a monic polynomial (fm= 1), the com-
putation of a(x).x mod f(x) can be performed as follows: 

a(x).x mod f(x) = a(x).x – am-1.f(x) = am-2.xm-1 + am-3.xm-2 
+ ... + a0.x – am-1.(fm-1.xm-1 + fm-2.xm-2 + ... + f0).  

The corresponding circuit is shown in Fig. 3. The circuit 
corresponding to the iteration step of algorithm 6 is 
shown in figure 4. 

m.k

m.k
a(x).x

mod p
multipliers

am-1

k

f(x)

m.k

mod p subtractors

m.k
a(x).x mod f(x)

a(x)

m.k

*x

 
Figure 3  Computation of a(x).x mod f(x) 

 

m.k z(x).x mod f(x)

(z(x).x + b m-i .a(x))  mod f(x)

z(x)

mod p adders

mod p
multipliers

a(x)

m.kk

b m-i

m.k

b m-i.a(x)

m.k

m.k

figure 3

a(x)

a(x).x mod f(x)

 
Figure 4  Multiplication mod f(x) 

The delay of the circuit of figure 3 is the sum of the 
computation times of a mod p multiplier and a mod p 
subtractor, so that the delay of the circuit of figure 4 is 
the sum tmult(p)+tsub(p)+tadd(p) of the computation times 
of a mod p multiplier, a mod p subtractor, and a mod p 
adder, respectively, and the total execution time of algo-
rithm 6 is equal to m.(tmult(p)+tsub(p)+tadd(p)). In the bi-
nary case (p = 2), the multiplication is an AND function, 
and both the subtraction and the addition are XOR func-
tions. Thus, the total delay of the circuit of figure 4 is 
equal to one AND-gate delay plus two XOR-gate de-
lays. Assuming that every two-input Boolean function is 
implemented within an FPGA’s look-up table (LUT), an 
approximation of the total computation time is 3.m 
LUT-delays. With nowadays FPGAs, LUT-delays 
smaller than 2ns are obtained, so that the computation 
time is smaller than 6.m ns. As an example, for f(x) = 
x163 + x7 + x6 + x3 + 1, so that m = 163, the computation 
times should be less than 1 μs. 
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VI. DIVISION MODULO F(x) 
As in the case of the mod p division, there are two main 
types of algorithms: reduction to products of polynomi-
als and inversion over GF(p), and extensions of algo-
rithms for computing the gcd of two polynomials. The 
algorithms of the first type are based on the fact that, 
given a polynomial h(x), then hr(x), where r = (pm-1)/(p-
1), is a polynomial of degree zero (Koblitz, 1994), that 
is, an element of GF(p), so that the computation of  z(x) 
= g(x).h-1(x) mod f(x) = g(x).(hr(x))-1.hr-1(x) mod f(x) 
amounts to an inversion over GF(p) and products of 
polynomials. The second type includes the extended 
Euclidean algorithm for polynomials (chapter 2 of 
Hankerson et al., 2004) and the binary algorithm for 
polynomials (Deschamps and Sutter, 2005). The latter is 
similar to the binary and plus-minus algorithms over 
GF(p): the concept of an integer being divisible by 2 
(i.e. least significant bit equal to 0) is now replaced by 
the concept of a polynomial being divisible by x (i.e. 
degree-zero coefficient equal to 0). Four sequences of 
polynomials are generated: a(0), a(1), a(2), ... , b(0), 
b(1), b(2), ... , c(0), c(1), c(2), ... , and d(0), d(1), d(2), ... 
,  such that gcd(a(i), b(i)) = gcd(h, f), degree(a(i)) < 
degree(a(i-1)), a(i).g ≡ c(i).h mod f and b(i).g ≡ d(i).h 
mod f. After a finite number of steps, say n, de-
gree(a(n)) = 0. If a(n) = 0, then  degree(b(n)) = 0 and z 
= d(n).b0(n)-1 mod f, and if a(n) ≠ 0, then z = c(n).a0(n)-1 
mod f. The following properties are used: 

if a is divisible by x, then gcd(a, b) = gcd(a/x, b), 
if a is not divisible by x, then gcd(a, b) = gcd((a – 
b.a0.b0

-1)/x, b) =  gcd((a – b.a0.b0
-1)/x, a); 

furthermore, if a.g ≡ c.h mod f and b.g ≡ d.h mod f, then  

(a/x).g ≡ c.x-1.h mod f, 
((a – b.a0.b0

-1)/x).g ≡ (c  – d.a0.b0
-1). x-1.h mod f. 

At each step, upper bounds α and β of the degree of a 
and b are calculated: 

degree(a) ≤ α and degree(b) ≤ β. 

Initially define a = h(x), b = f(x), c = g(x) and d = 0. In 
the next algorithm, the function shift_one(a) re-
turns a/x, the function divide_by_x(c, f) returns 
c.x-1 mod f = (c – f.c0.f0

-1)/x, the function sub-
tract(a,b) returns a-b, the function in-
vert(coeff) returns coeff-1 mod p, and the function 
product(a,coeff) returns a.coeff. As in the case 
of the binary algorithm, all decisions can be taken in 
function of the difference dif = α - β, and the value of 
min = minimum(α, β) must be known.  

Algorithm 7 – mod f(x) division, binary algorithm 
(complete program available) 
a := h; b := f; c := g;  
dif := -1; min := m-1; 
for i in 0 .. m loop d(i) := 0;  
end loop; 
while min > 0 loop 

 if a(0) = 0 then  
  a := shift_one(a);  
  c := divide_by_x(c, f);  
  if dif <= 0 then min := min - 1; 
  end if; 
  dif := dif - 1; 
 else  
  old_a := a; old_c := c; 
  a := shift_one(subtract(a, 
  product(b, ((a(0)*invert(b(0)))  
  mod p)))); 
  c := divide_by_x(subtract(c,  
  product(d, ((old_a(0)*invert(b(0)))  
  mod p))),f); 
  if dif >= 0 then  
   if dif = 0 then min := min-1;  
   end if;  
   dif := dif - 1; 
  else  
   dif := -dif - 1; 
   b := old_a; d := old_c; 
  end if; 
 end if;       
end loop; 
if a(0) = 0 then  
z := product(d, invert(b(0)));  
else z := product(c, invert(a(0))); 
end if; 

At each step of algorithm 7, a(x) is substituted by either 
a(x)/x or (a(x)–a0.b0

-1.b(x))/x, and c(x) by either c(x).x-1 
mod f(x) or (c(x)–a0.b0

-1.d(x)).x-1 mod f(x). The most 
time-consuming operations are those corresponding to 
c(x). A circuit for multiplying a polynomial a(x) by x-1 
mod f(x), that is, for computing (a – f.a0.f0

-1)/x, is shown 
in Fig. 5, and the complete circuit for computing the 
new value of c(x) in Fig. 6. 

The computation times of all blocks, but the mod p 
inverter, are proportional to k, while the computation 
time of the mod p inverter is approximately equal to 2.k2 
full-adder delays (section IV). The number of execu-
tions of the main loop (while min > 0 loop) is 
smaller than two times the degree m of f. Thus, for great 
values of k, the computation time is approximately 
equal to 4.m.k2 full-adder delays, being k the size of p 
and m the degree of f. For small values of k, the conclu-
sion is different. In particular, in the binary case (p = 2), 
the algorithm can be simplified: the computation of 
a(x).x-1 mod f(x) amounts to substituting every coeffi-
cient ai of a(x) by (ai+1 + a0. fi+1) mod 2, for i = 0, 1, ... , 
m-2, by (ai+1 + a0. fi+1) mod 2, for i = 0, 1, ... , m-2, and 
am-1 by a0. fm; the corresponding delay is the sum of an 
AND-gate delay and an XOR-gate delay; the mod p 
inversion is trivial (b0

-1 = b0); the mod p multiplication 
is an AND function and the mod p subtraction an XOR 
function. Thus, the total delay of the circuit of figure 6 
is equal to three AND-gate delays plus two XOR-gate  
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Figure 5 Computation of a(x).x-1 mod f(x) 
a0 b0

k

mod p
inverter

k

k

mod p
multiplier

k

b0
-1

a0.b0
-1

d(x)

m.k

mod p
multipliers

m.k
a0.b0

-1.d(x)

mod p subtractors

c(x)

m.k

(c(x) - a0.b0
-1.d(x)).x-1 mod f(x)

c(x) - a0.b0
-1.d(x)

m.k

figure 5

m.k m.k

c(x).x-1 mod f(x)

a(x).x-1 mod f(x)

a(x)
figure 5

a(x).x-1 mod f(x)

a(x)

 
Figure 6 Binary algorithm 

 
delays. Assuming that every two-input Boolean function 
is implemented within an FPGA’s look-up table (LUT), 
an approximation of the total computation time is 10.m 

LUT-delays. If LUT-delays smaller than 2ns are as-
sumed, the computation time is smaller than 20.m ns. As 
an example, for m = 163, the computation times should 
be less than 3260 ns. Actually, a computation time of 
2445 ns has been reported (Deschamps and Sutter, 
2006). 

VII. POINT MULTIPLICATION 
Point multiplication is the basic operation of Elliptic 
Curve Cryptography (section II): given a point R of an 
elliptic curve E and a natural s belonging to 0 < s < n, it 
computes sR = R+ R+ ... + R. Generally n has the same 
order of magnitude as the number of field elements, that 
is pm. In particular, if a curve E over GF(2m) is consid-
ered, then s is an m-bit number s0 + s1.2 + ... + sm-1.2m-1, 
and the point multiplication can be executed according 
to the following computation scheme: 

sR = 2( ... (2(2∝ + sm-1R) + sm-2R) ... ) + s0R. 

In the following algorithm the function addi-
tion(U,V) returns the sum of points U and V of E 
(relations (1) to (4)). 
 
Algorithm 8 – Point multiplication 
A := infinity_point; 
for i in 1 .. m loop 

A := addition(A,A); 
if s(m-i) = 1 then A := addi-
tion(A,R); 

end loop; 
 
Every execution of the iteration step includes at most 
one point doubling (A+A, relation (3)) and one addition 
(A+R, relation (4)), that is, at most two field divisions 
and five field multiplications. Thus (sections V and VI) 
the iteration step execution time is less than 2x10m + 
5x3m = 35m LUT-delays, and the total execution time 
less than 35m2 LUT-delays. If 2ns LUT-delays are as-
sumed, the point multiplication execution time is less 
than 70m2 ns. As an example, for m = 163, the total 
computation time should be less than 2 ms. 

VIII. CONCLUSIONS 
Among all the considered operations, the most time-
consuming is the exponentiation modulo n, with an or-
der of magnitude of the delay proportional to m3, being 
m the size of n, and a proportionality constant approxi-
mately equal to two per-bit-adder-delays. The second 
more time-consuming operation is the division modulo 
p, with an order of magnitude of the delay proportional 
to k2, being k the size of p, and a proportionality con-
stant approximately equal to two per-bit-adder-delays. 
As regards the operations modulo f(x) over a binary 
field, their time complexities are proportional to m, be-
ing m the degree of f, that is the size of the field ele-
ments, and proportionality constants approximately 
equal to three LUT-delays (multiplication) and ten 
LUT-delays (division), respectively. As a matter of fact, 
the delays could be reduced if some of the FPGA’s 
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dedicated AND and XOR gates were used, instead of 
general purpose LUTs. 

Regarding the other (not considered here above) op-
erations, notice that the addition and subtraction modulo 
n amount to two successive integer additions, so that 
their computation time is proportional to the size m of n. 
The multiplication modulo n can be realized with an m-
by-m-bit parallel multiplier (a basic block of many 
FPGAs), whose computation time is proportional  to m, 
followed by some modulo n reduction circuit, for exam-
ple a circuit based on the Barrett algorithm (Blake, 
2002; Hankerson, 2004) whose computation time is also 
proportional to m. The addition and subtraction modulo 
f(x) are carry-free operations, so that their computation 
time is practically independent of the operand size.  

To summarize, if specific circuits are used, all field 
operations have (at most) linear computation times, but 
the exponentiation modulo n (proportional to (log n)3), 
the division modulo p (proportional to (log p)2), and the 
point multiplication (proportional to m2 = (log q)2, 
where q = 2m is the number of field elements). 
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