
Latin American Applied Research 37:3-10 (2007)

Invited Paper

3

CRYPTOGRAPHIC APPLICATIONS IN FPGA

J.-P. DESCHAMPS

Electronic Engineering Department, University Rovira i Virgili, Tarragona, Spain
jeanpierre.deschamps@urv.net

Abstract−− This paper describes circuits for exe-
cuting the most complex operations of public-key
cryptography and gives estimations of their execu-
tion time within field programmable devices. The
following operations are considered: mod n exponen-
tiation, mod p division, mod f(x) multiplication of
polynomials, mod f(x) division of polynomials and
point multiplication over an elliptic curve.

Keywords−− public-key cryptography, finite
fields, arithmetic, programmable devices, FPGA

I. INTRODUCTION
The designer of systems including cryptographic algo-
rithms – ciphering / deciphering, digital signature, au-
thentication - is often faced with the following apparent
contradiction: on the one hand, in many cases crypto-
graphic algorithms are used within real time systems, so
that their response time must be short; on the other
hand, the security is related to the algorithm complexity.
In order to make compatible those apparently contradic-
tory characteristics, a possible solution is the use of spe-
cific hardware, that is, circuits specifically designed for
executing those complex algorithms: they implement
the particular computation primitives of the algorithms
and take profit of their inherent parallelism. Among the
technologies at hand for developing specific circuits are
the field programmable devices, for example the Field
Programmable Gate Arrays (FPGA). They constitute an
attractive option for small production quantities as their
non-recurrent engineering costs are much lower than
those corresponding to Application Specific Integrated
Circuits (ASIC). Furthermore, in order to reduce their
size, and so the unit cost, an interesting possibility is to
reconfigure them at run time so that the same program-
mable device can execute different predefined func-
tions.

This paper describes circuits for executing the most
complex operations of public-key cryptography and
gives estimations of their execution time within field
programmable devices. It is organized in the following
way: section II briefly describes the main public-key
cryptographic algorithms and deduces a list of complex
computation primitives that should be implemented in
hardware. Section III to VII propose generic algorithms1
and circuits for executing the mod n exponentiation, the

1 Most algorithms are described in Ada and complete source
programs are available at
http://www.ii.uam.es/∼gsutter/arithmetic.

mod p division, the mod f(x) multiplication of polyno-
mials, the mod f(x) division of polynomials and the
point multiplication over an elliptic curve, respectively.
The adjective “generic” alludes to the fact that particular
characteristics of the underlying algebraic structure, for
instance special values of n, p or f(x), are not taken into
account (except the case p = 2). Actually, a lot of im-
provements can be obtained if particular values of p and
f(x) are chosen, but their description falls beyond the
scope of this paper.

II. MAIN ARITHMETIC OPERATIONS
The most time-consuming operations correspond to
public-key cryptography, that is, encryption / decryption
schemes using different keys for ciphering (public key)
and deciphering (private key). Among the most used are
the RSA and the Discrete Logarithm systems.

In the first case (RSA, Adleman et al., 1978), two
primes p and q are chosen. The public key is a pair (n,e)
of naturals where n = p.q, e belongs to the interval 0 < e
< (p-1)(q-1) and e is relatively prime with (p-1)(q-1).
The private key is d = e-1 mod (p-1)(q-1). It can be
shown that xe.d ≡ x mod n, for any natural x. The encryp-
tion / decryption algorithm is the following: giving a
message mes represented under the form of a natural
belonging to the interval 0 < mes < n, compute the ci-
phered text c = mese mod n. In order to decrypt c, com-
pute cd mod n. Observe that knowing the public key
(n,e), the computation of the private key amounts to
decompose n under the form n = p.q and then calculate
d = e-1 mod (p-1)(q-1). Nowadays, the factorization
problem is intractable for key sizes greater 1024 bits.

In the second case (Discrete Logarithm), a finite
group (G,*,1) is defined and some element g of G is
chosen. Let n be the order of g. Thus, the set {1, g, g2,...,
gn-1} is a cyclic subgroup of G. The private key is a
natural x belonging to the interval 0 < x < n, and the
public key is the element y of the cyclic subgroup de-
fined by y = gx. The message mes must be represented
under the form of an element of G. The encryption algo-
rithm is the following: randomly choose a natural k be-
longing to 0 < k < n, compute c1 = gk and c2 = mes*yk.
The ciphered text is made up of c1 and c2. In order to
decrypt the message, compute c2*(c1

x)-1. Observe that
knowing the public key y, the computation of the private
key x amounts to calculate loggy, presumably a very
hard problem.

In the basic version of the Discrete Logarithm
scheme (ElGamal, 1985), G is the set of natural {1,2,...,
p-1}, where p is a prime, so that all operations are per-

Latin American Applied Research 37:3-10 (2007)

4

formed modulo p. Nevertheless, other groups can be
used. Consider for example an elliptic curve E, over the
binary extension field GF(2m), defined as being the set
of elements (x,y) of GF(2m)xGF(2m) such that y2 + xy =
x3 + ax + b, where a and b are elements of GF(2m). It
can be demonstrated that the set of points of E, plus the
so-called point at infinity ∝, is a group (E, +, ∝) whose
basic operation (under additive notation, with neutral
element ∝) is defined as follows:

(x , y) + ∝ = ∝ + (x , y) = (x , y); (1)

(x1 , y1) + (x1 , x1+ y1) = ∝;
in particular, (0 , y1) + (0 , y1) = ∝; (2)

if x1 ≠ 0, then (x1 , y1) + (x1 , y1) = (x3 , y3) where
x3 = λ2 + λ + a, y3 = x1

2 + λx3 + y1,
λ = x1 + y1/x1; (3)

if (x2 , y2) ≠ (x1 , y1) and (x2 , y2) ≠ (x1 , x1+ y1), then
(x1 , y1) + (x2 , y2) = (x3 , y3) where
x3 = λ2 + λ + x1 + x2 + a, y3 = λ(x1 + x3) + x3 + y1,
λ = (y1 + y2)/(x1 + x2). (4)

A Discrete Logarithm scheme can be defined by choos-
ing a point P of E whose order is equal to n so that the
set {∝, P, 2P, ... , (n-1)P} is a cyclic subgroup of E. The
private key is a natural d belonging to the interval 0 < d
< n, and the public key is the element Q of the cyclic
subgroup defined by Q = dP. A simple encryption / de-
cryption algorithm would be the following: giving a
message mes represented by a point M of E, randomly
choose a natural number k belonging to 0 < k < n, com-
pute C1 = kP and C2 = M + kQ. The ciphered text is
made up of C1 and C2. In order to decrypt the message,
compute C2 - dC1. Actually, other encryption / decryp-
tion schemes are used, avoiding among others the em-
bedding of mes within E. Nevertheless, the operations to
be performed are similar. Observe that knowing the
public key Q, the computation of the private key
amounts to looking for a natural d such that dP = Q,
presumably a very hard problem. Nowadays, this prob-
lem is intractable for key sizes greater than 160 bits.

As a matter of fact, elliptic curves can be defined
over any field. The group operation definition depends
on the particular field, but they always amount to com-
binations of basic arithmetic operations (add, subtract,
multiply, square and divide) over the chosen field.

Among all the mentioned operations, the most time-
consuming are the following:

z = yx mod n, where x and y are naturals included be-
tween 0 and n (RSA, ElGamal),

z = x.y-1 mod p, where p is prime, and x and y are
naturals included between 0 and p (ElGamal, elliptic
curve over GF(p)),

z(x) = g(x).h(x) mod f(x), where f is a polynomial of
degree m over GF(p), and g and h are polynomials of
degree less than m over GF(p) (elliptic curve over
GF(pm)),

z(x) = g(x).h-1(x) mod f(x), where f is an irreducible
polynomial of degree m over GF(p), and g and h are
polynomials of degree less than m over GF(p) (elliptic
curve over GF(pm)).

III. EXPONENTIATION MOD N
Let x be represented in base 2, that is, x = xm-1.2m-1 + xm-

2.2m-2 + ... + x1.2 + x0, with m ≥ log2n. Then z = yx mod n
can be computed according to the following computa-
tion scheme:

,mod.)....)).).1((...((0121 22222 nyyyyz xxxx mm −−=
to which corresponds the following algorithm:

Algorithm 1 – base 2 mod n exponentiation (complete
program available)
e := 1;
for i in 1 .. m loop
 e := (e*e) mod n ;
 if x(m-i) = 1 then e := (e*y) mod n;
end if;
end loop;
z := e;

If n is odd, so that 2 has an inverse mod n, a more effec-
tive algorithm uses the Montgomery reduction concept
(Montgomery, 1985). Consider two naturals a and b
belonging to {0, 1, ... , n-1} and define the functions T
and MP (Mongtgomery product) as follows: T(a) = a.2m
mod n, MP(a, b) = a.b.2-m mod n. Obviously, T(a.b) =
MP(T(a), T(b)) and T-1(a) = a.2-m mod n = MP(1, a).
Then, in algorithm 1 substitute 1 by T(1) = 2m mod n, y
by T(y) = y.2m mod n = MP(y, 22.m mod n), the product
by the Montgomery product, and replace the last step by
z = T-1(e) = MP(1, e).

Algorithm 2 – mod m exponentiation, Montgomery
algorithm (complete program available)
--the constants exp_m = 2m mod n and exp_2m = 22.m
mod n are previously computed
e := exp_m;
ty := mp(y, exp_2m);
for i in 1 .. m loop
 e := mp(e, e);
 if x(m-i) = 1 then e := mp(e, ty);
end if;
end loop;
z := mp(e, 1);

The Montgomery product is computed as follows
(Montgomery 1985; chapter 8 of Deschamps et al.,
2006):

Algorithm 3 – base-2 Montgomery product (complete
program available)
product := 0;
for i in 0 .. m-1 loop
 a := product + x(i)*y;
 product := (a + a(0)*n)/2;

J.-P. DESCHAMPS

5

end loop;
if product >= n then z := product-n;
else z := product; end if;

The efficiency of the algorithm comes from the fact
that it does not include any mod n reduction. Observe
that if product is smaller than 2.n, then a < 3.n, and the
new value of product is smaller than 4.n/2 = 2.n. Thus,
as initially product = 0, all along the algorithm execu-
tion product is an (m+1)-bit number and a an (m+2)-bit
number. The part of the data-path corresponding to the
execution of one step of the Montgomery product is
shown in figure 1. It is made up of an (m+1)-bit condi-
tional adder followed by an (m+2)-bit conditional adder,
so that its computation time is equal to m+3 full-adder
delays. The number of iteration steps of algorithm 3 is
m, so that the computation time of one Montgomery
product is equal to m.(m+3) full-adder delays. The num-
ber of iteration steps of algorithm 2 is m and every step
includes at most two Montgomery products. Thus the
total computation time of yx mod n is approximately
equal to 2.m3 full-adder delays being m the size of the
operands.

product

m+1

y

m

conditional
adder

am+2

m+2

m+1

/2

n

m

conditional
adder a0

xi

new_product

Figure 1 Montgomery product: basic step

With nowadays FPGAs including very fast carry-
logic circuitry, delays smaller than 0.2ns per adder-bit
are obtained (chapter 11 of Deschamps et al., 2006), so
that the computation time is smaller than 0.4m3 ns. As
an example, for m = 1024, the computation time is less
than 0.5s.

IV. DIVISION MOD P
There are two main types of division algorithms. The
first type consists of extensions of algorithms for com-
puting the greatest common divider (gcd) of two num-
bers, in particular the extended Euclidean algorithm
(chapter 2 of Hankerson et al., 2004) and the binary

algorithm (Brent and Kung, 1983). The second type
includes those that are based on the Fermat's little theo-
rem and use field multiplication as primitive operation.
The latter ones are conceptually simple: given x in
GF(p), then y.(x.yp-2) mod p = x.yp-1 mod p = x, so that z
= x.yp-2 mod p. The former ones are based on the fact
that the greatest common divider of y and p is equal to
1, so that any algorithm for computing the gcd of two
naturals y and p based on the generation of sequences of
naturals a(0), a(1), a(2), ... , b(0), b(1), b(2), ... , c(0),
c(1), c(2), ... , and d(0), d(1), d(2), ... , such that
gcd(a(i), b(i)) = gcd(y, p), a(i) < a(i-1), a(i).x ≡ c(i).y
mod p and b(i).x ≡ d(i).y mod p, eventually generates
a(n) = 0 and thus b(n) = 1, x ≡ d(n).y mod p, that is, z =
d(n) mod p. An example is the extended Euclidean algo-
rithm. Another is the binary algorithm based on the fol-
lowing obvious properties:

if a is even and b is odd, then gcd(a, b) = gcd(a/2, b),
if a is odd and b is even, then gcd(a, b) = gcd(b/2, a),
if a is odd and b is odd and a ≥ b, then gcd(a, b) =
 gcd(a-b, b),
if a is odd and b is odd and a < b, then gcd(a, b) =
 gcd(b-a, a);

furthermore, if a.x ≡ c.y mod p and b.x ≡ d.y mod p, then

(a/2).x ≡ (c.2-1 mod p).y mod p,
(b/2).x ≡ (d.2-1 mod p).y mod p,
(a-b).x ≡ (c-d).y mod p,
(b-a).x ≡ (d-c).y mod p.

Initially define a(0) = y, b(0) = p, c(0) = x and d(0) =
0, so that a(0).x = c(0).y and b(0).x ≡ d(0).y mod p. In
the next algorithm the function divide_by_2(c,
p) returns c.2-1 mod p, that is, c/2 if c is even and
(c+p)/2 if c is odd.

Algorithm 4 - mod p division, binary algorithm
(complete program available)
a := y; b := p; c := x; d := 0;
while a > 0 loop
 while (a mod 2) = 0 loop
 a := a/2;
 c := divide_by_2(c, p);
 end loop;
 if a >= b then
 a := a-b; c := (c-d) mod p;
 else old_a := a; a := b-a;
 b := old_a; old_c := c;
 c := (d-c) mod p; d := old_c;
 end if;
end loop;
z := d;

A drawback of the preceding algorithm is the necessity
of detecting whether a is smaller than b, or not. The
plus-minus algorithm is a modified version of the binary
algorithm avoiding the time-consuming comparison of a
and b when large numbers are considered. Variables a

Latin American Applied Research 37:3-10 (2007)

6

and b are allowed to be negative integers and, instead of
comparing their actual values, logarithmic bounds are
used, namely α and β, such that

-2α < a < 2α, -2β < b < 2β.

The algorithm is based on the following observation: if
a and b are odds, then both a+b and a-b are even, and
their sum (a+b) + (a-b) = 2.a cannot be a multiple of 4
(a is odd), so that either (a+b) mod 4 = 0 and (a-b) mod
4 = 2, or (a-b) mod 4 = 0 and (a+b) mod 4 = 2. Thus,
either a+b or a-b is divisible by 4. The following obvi-
ous properties are used:

if a is divisible by 4 and b is odd, then gcd(a, b) =
 gcd(a/4, b),
if a is even and b is odd, then gcd(a, b) = gcd(a/2, b),
if a is odd, b is odd and a+b is divisible by 4, then
 gcd(a, b) = gcd((a+b)/4, b) = gcd((a+b)/4, a),
if a is odd, b is odd and a-b is divisible by 4, then
 gcd(a, b) = gcd((a-b)/4, b) = gcd((a-b)/4, a).

When a is odd, the new value of b (could be a or b) is
chosen in function of α and β: if α ≥ β choose b, and if
α < β, choose a. As regards c and d, they are updated
accordingly: the new value of c is c.4-1 mod p, c.2-1 mod
p, (c+d).4-1 mod p or (c-d).4-1 mod p, and the new value
of d is d or c. Actually, all decisions can be taken in
function of the difference dif = α - β. In order to update
the values of α and β, the value of min = minimum(α,
β) must be known. In the following algorithm the func-
tions divide_by_2(c, p) and di-
vide_by_4(c, p) return integers equivalent to c.2-1
mod p and c.4-1 mod p, respectively: c/2 or (c+p)/2 in
the first case; c/4, (c+p)/4, (c+2.p)/4 or (c-p)/4, in the
second case (in function of c mod 4 and p mod 4). Dur-
ing the execution of the algorithm the values of a, b, c
and d remain included between –p and p. Thus, if p is a
k-bit number, a, b, c and d can be represented as (k+1)-
bit 2’s complement integers. More details can be found
in Deschamps and Sutter (2006).

Algorithm 5 - mod p division, plus-minus algorithm
(complete program available)
a := y; b := p; c := x; d := 0;
dif := 0; min := logp;
while min > 0 loop
 if a mod 4 = 0 then
 a := a/4;
 c := divide_by_4(c, p);
 if dif <= 0 then min := min-2;
 elsif dif = 1 then
 min := min-1;
 end if;
 dif := dif-2;
 elsif a mod 2 = 0 then
 a := a/2;
 c := divide_by_2(c, p);
 if dif <= 0 then
 min := min-1;

 end if;
 dif := dif-1;
 else
 old_a := a; old_c := c;
 if (a+b) mod 4 = 0 then
 a := (a+b)/4;
 c := divide_by_4(c+d, p);
 if dif >= 0 then
 if dif = 0 then
 min := min-1;
 end if;
 dif := dif-1;
 else
 b:= old_a; d := old_c;
 dif := -dif-1;
 end if;
 else
 a := (a-b)/4;
 c := divide_by_4(c-d, p);
 if dif >= 0 then
 if dif = 0 then
 min := min-1;
 end if;
 dif := dif-1;
 else
 b:= old_a; d := old_c;
 dif := -dif-1;
 end if;
 end if;
 end if;
end loop;
if b < 0 and d < 0 then z := -d;
elsif b < 0 and d >= 0 then
 z := p - d;
elsif b > 0 and d < 0 then
 z := p + d;
else z := d;
end if;

At each step of algorithm 5, a is substituted by either
a/4, a/2, (a+b)/4 or (a-b)/4, and c by either c.4-1 mod
p,c.2-1 mod p, (c+d).4-1 mod p or (c-d).4-1 mod p. The
most time-consuming operations are those correspond-
ing to c. They can be executed by the circuit of figure 2.
The control unit defines the operation (add or subtract)
in function of the two less significant bits of a and b
(according to algorithm 5), and the correction term (0, p,
2.p or –p) in function of the two less significant bits of
c and d (according to the definition of functions di-
vide_by_2(c, p) and divide_by_4(c, p)).

The maximum delay corresponds to the computation
time of a (k+2)-bit adder-subtractor followed by a (k+3)-
bit adder, that is, k+4 full-adder delays. An upper bound
of the number of steps is 2.k, so that the total computa-
tion time is approximately equal to 2.k2 full-adder de-
lays, being k the size of p. Thus, if a delay smaller than

J.-P. DESCHAMPS

7

0.2ns per adder-bit is assumed, the total computation
time is smaller than 0.4k2 ns. As an example, for p = 2192
– 264 – 1, so that m = 192, the computation times should
be less than 14.8μs. Actually, a computation time of
11.5μs has been reported (Deschamps and Sutter, 2006).

c

k+1

d

k+1

adder -
subtractor

c+d or c-dk+2

0 p 2.p -p

adder

k+2

k+3

k+1

/4

adder

k+3

k+1

/4

0 1 2 3

k+1

/2

k+2 k+3

c.2-1 mod p c.4-1 mod p

(c+d).4-1 or (c-d).4-1 mod p

Figure 2 Plus-minus algorithm

V. MULTIPLICATION MODULO F(x)
Let f(x) be a polynomial of degree m over GF(p), and
a(x) and b(x) polynomials of degree smaller than m over
the same field. The multiplication of a(x) by b(x) can be
performed according to the following computation
scheme:

a(x).b(x) mod f(x) = ((... (((0.x + a(x).bm-1).x +
a(x).bm-2).x) + ...+ a(x).b1).x + a(x).b0) mod f(x).

In the following algorithm, the functions multi-
ply_by_x(a,f), add(a,b) and prod-
uct(a,coeff) return a(x).x mod f(x), a(x) + b(x) and
a(x).coeff, respectively.

Algorithm 6 – mod f(x) multiplication (complete
program available)
z := 0;
for i in 1 .. m loop
 z := add(multiply_by_x(z,f),
 product(a,b(m-i)));
end loop;

Assuming that f is a monic polynomial (fm= 1), the com-
putation of a(x).x mod f(x) can be performed as follows:

a(x).x mod f(x) = a(x).x – am-1.f(x) = am-2.xm-1 + am-3.xm-2
+ ... + a0.x – am-1.(fm-1.xm-1 + fm-2.xm-2 + ... + f0).

The corresponding circuit is shown in Fig. 3. The circuit
corresponding to the iteration step of algorithm 6 is
shown in figure 4.

m.k

m.k
a(x).x

mod p
multipliers

am-1

k

f(x)

m.k

mod p subtractors

m.k
a(x).x mod f(x)

a(x)

m.k

*x

Figure 3 Computation of a(x).x mod f(x)

m.k z(x).x mod f(x)

(z(x).x + b m-i .a(x)) mod f(x)

z(x)

mod p adders

mod p
multipliers

a(x)

m.kk

b m-i

m.k

b m-i.a(x)

m.k

m.k

figure 3

a(x)

a(x).x mod f(x)

Figure 4 Multiplication mod f(x)

The delay of the circuit of figure 3 is the sum of the
computation times of a mod p multiplier and a mod p
subtractor, so that the delay of the circuit of figure 4 is
the sum tmult(p)+tsub(p)+tadd(p) of the computation times
of a mod p multiplier, a mod p subtractor, and a mod p
adder, respectively, and the total execution time of algo-
rithm 6 is equal to m.(tmult(p)+tsub(p)+tadd(p)). In the bi-
nary case (p = 2), the multiplication is an AND function,
and both the subtraction and the addition are XOR func-
tions. Thus, the total delay of the circuit of figure 4 is
equal to one AND-gate delay plus two XOR-gate de-
lays. Assuming that every two-input Boolean function is
implemented within an FPGA’s look-up table (LUT), an
approximation of the total computation time is 3.m
LUT-delays. With nowadays FPGAs, LUT-delays
smaller than 2ns are obtained, so that the computation
time is smaller than 6.m ns. As an example, for f(x) =
x163 + x7 + x6 + x3 + 1, so that m = 163, the computation
times should be less than 1 μs.

Latin American Applied Research 37:3-10 (2007)

8

VI. DIVISION MODULO F(x)
As in the case of the mod p division, there are two main
types of algorithms: reduction to products of polynomi-
als and inversion over GF(p), and extensions of algo-
rithms for computing the gcd of two polynomials. The
algorithms of the first type are based on the fact that,
given a polynomial h(x), then hr(x), where r = (pm-1)/(p-
1), is a polynomial of degree zero (Koblitz, 1994), that
is, an element of GF(p), so that the computation of z(x)
= g(x).h-1(x) mod f(x) = g(x).(hr(x))-1.hr-1(x) mod f(x)
amounts to an inversion over GF(p) and products of
polynomials. The second type includes the extended
Euclidean algorithm for polynomials (chapter 2 of
Hankerson et al., 2004) and the binary algorithm for
polynomials (Deschamps and Sutter, 2005). The latter is
similar to the binary and plus-minus algorithms over
GF(p): the concept of an integer being divisible by 2
(i.e. least significant bit equal to 0) is now replaced by
the concept of a polynomial being divisible by x (i.e.
degree-zero coefficient equal to 0). Four sequences of
polynomials are generated: a(0), a(1), a(2), ... , b(0),
b(1), b(2), ... , c(0), c(1), c(2), ... , and d(0), d(1), d(2), ...
, such that gcd(a(i), b(i)) = gcd(h, f), degree(a(i)) <
degree(a(i-1)), a(i).g ≡ c(i).h mod f and b(i).g ≡ d(i).h
mod f. After a finite number of steps, say n, de-
gree(a(n)) = 0. If a(n) = 0, then degree(b(n)) = 0 and z
= d(n).b0(n)-1 mod f, and if a(n) ≠ 0, then z = c(n).a0(n)-1
mod f. The following properties are used:

if a is divisible by x, then gcd(a, b) = gcd(a/x, b),
if a is not divisible by x, then gcd(a, b) = gcd((a –
b.a0.b0

-1)/x, b) = gcd((a – b.a0.b0
-1)/x, a);

furthermore, if a.g ≡ c.h mod f and b.g ≡ d.h mod f, then

(a/x).g ≡ c.x-1.h mod f,
((a – b.a0.b0

-1)/x).g ≡ (c – d.a0.b0
-1). x-1.h mod f.

At each step, upper bounds α and β of the degree of a
and b are calculated:

degree(a) ≤ α and degree(b) ≤ β.

Initially define a = h(x), b = f(x), c = g(x) and d = 0. In
the next algorithm, the function shift_one(a) re-
turns a/x, the function divide_by_x(c, f) returns
c.x-1 mod f = (c – f.c0.f0

-1)/x, the function sub-
tract(a,b) returns a-b, the function in-
vert(coeff) returns coeff-1 mod p, and the function
product(a,coeff) returns a.coeff. As in the case
of the binary algorithm, all decisions can be taken in
function of the difference dif = α - β, and the value of
min = minimum(α, β) must be known.

Algorithm 7 – mod f(x) division, binary algorithm
(complete program available)
a := h; b := f; c := g;
dif := -1; min := m-1;
for i in 0 .. m loop d(i) := 0;
end loop;
while min > 0 loop

 if a(0) = 0 then
 a := shift_one(a);
 c := divide_by_x(c, f);
 if dif <= 0 then min := min - 1;
 end if;
 dif := dif - 1;
 else
 old_a := a; old_c := c;
 a := shift_one(subtract(a,
 product(b, ((a(0)*invert(b(0)))
 mod p))));
 c := divide_by_x(subtract(c,
 product(d, ((old_a(0)*invert(b(0)))
 mod p))),f);
 if dif >= 0 then
 if dif = 0 then min := min-1;
 end if;
 dif := dif - 1;
 else
 dif := -dif - 1;
 b := old_a; d := old_c;
 end if;
 end if;
end loop;
if a(0) = 0 then
z := product(d, invert(b(0)));
else z := product(c, invert(a(0)));
end if;

At each step of algorithm 7, a(x) is substituted by either
a(x)/x or (a(x)–a0.b0

-1.b(x))/x, and c(x) by either c(x).x-1
mod f(x) or (c(x)–a0.b0

-1.d(x)).x-1 mod f(x). The most
time-consuming operations are those corresponding to
c(x). A circuit for multiplying a polynomial a(x) by x-1
mod f(x), that is, for computing (a – f.a0.f0

-1)/x, is shown
in Fig. 5, and the complete circuit for computing the
new value of c(x) in Fig. 6.

The computation times of all blocks, but the mod p
inverter, are proportional to k, while the computation
time of the mod p inverter is approximately equal to 2.k2
full-adder delays (section IV). The number of execu-
tions of the main loop (while min > 0 loop) is
smaller than two times the degree m of f. Thus, for great
values of k, the computation time is approximately
equal to 4.m.k2 full-adder delays, being k the size of p
and m the degree of f. For small values of k, the conclu-
sion is different. In particular, in the binary case (p = 2),
the algorithm can be simplified: the computation of
a(x).x-1 mod f(x) amounts to substituting every coeffi-
cient ai of a(x) by (ai+1 + a0. fi+1) mod 2, for i = 0, 1, ... ,
m-2, by (ai+1 + a0. fi+1) mod 2, for i = 0, 1, ... , m-2, and
am-1 by a0. fm; the corresponding delay is the sum of an
AND-gate delay and an XOR-gate delay; the mod p
inversion is trivial (b0

-1 = b0); the mod p multiplication
is an AND function and the mod p subtraction an XOR
function. Thus, the total delay of the circuit of figure 6
is equal to three AND-gate delays plus two XOR-gate

J.-P. DESCHAMPS

9

mod p
multipliers

m.k

k

m.k
f0

-1.f(x)a0

mod p subtractors

m.k

m.k

m.k

/x

m.k

a(x)

a(x).x-1 mod f(x)

Figure 5 Computation of a(x).x-1 mod f(x)
a0 b0

k

mod p
inverter

k

k

mod p
multiplier

k

b0
-1

a0.b0
-1

d(x)

m.k

mod p
multipliers

m.k
a0.b0

-1.d(x)

mod p subtractors

c(x)

m.k

(c(x) - a0.b0
-1.d(x)).x-1 mod f(x)

c(x) - a0.b0
-1.d(x)

m.k

figure 5

m.k m.k

c(x).x-1 mod f(x)

a(x).x-1 mod f(x)

a(x)
figure 5

a(x).x-1 mod f(x)

a(x)

Figure 6 Binary algorithm

delays. Assuming that every two-input Boolean function
is implemented within an FPGA’s look-up table (LUT),
an approximation of the total computation time is 10.m

LUT-delays. If LUT-delays smaller than 2ns are as-
sumed, the computation time is smaller than 20.m ns. As
an example, for m = 163, the computation times should
be less than 3260 ns. Actually, a computation time of
2445 ns has been reported (Deschamps and Sutter,
2006).

VII. POINT MULTIPLICATION
Point multiplication is the basic operation of Elliptic
Curve Cryptography (section II): given a point R of an
elliptic curve E and a natural s belonging to 0 < s < n, it
computes sR = R+ R+ ... + R. Generally n has the same
order of magnitude as the number of field elements, that
is pm. In particular, if a curve E over GF(2m) is consid-
ered, then s is an m-bit number s0 + s1.2 + ... + sm-1.2m-1,
and the point multiplication can be executed according
to the following computation scheme:

sR = 2(... (2(2∝ + sm-1R) + sm-2R) ...) + s0R.

In the following algorithm the function addi-
tion(U,V) returns the sum of points U and V of E
(relations (1) to (4)).

Algorithm 8 – Point multiplication
A := infinity_point;
for i in 1 .. m loop

A := addition(A,A);
if s(m-i) = 1 then A := addi-
tion(A,R);

end loop;

Every execution of the iteration step includes at most
one point doubling (A+A, relation (3)) and one addition
(A+R, relation (4)), that is, at most two field divisions
and five field multiplications. Thus (sections V and VI)
the iteration step execution time is less than 2x10m +
5x3m = 35m LUT-delays, and the total execution time
less than 35m2 LUT-delays. If 2ns LUT-delays are as-
sumed, the point multiplication execution time is less
than 70m2 ns. As an example, for m = 163, the total
computation time should be less than 2 ms.

VIII. CONCLUSIONS
Among all the considered operations, the most time-
consuming is the exponentiation modulo n, with an or-
der of magnitude of the delay proportional to m3, being
m the size of n, and a proportionality constant approxi-
mately equal to two per-bit-adder-delays. The second
more time-consuming operation is the division modulo
p, with an order of magnitude of the delay proportional
to k2, being k the size of p, and a proportionality con-
stant approximately equal to two per-bit-adder-delays.
As regards the operations modulo f(x) over a binary
field, their time complexities are proportional to m, be-
ing m the degree of f, that is the size of the field ele-
ments, and proportionality constants approximately
equal to three LUT-delays (multiplication) and ten
LUT-delays (division), respectively. As a matter of fact,
the delays could be reduced if some of the FPGA’s

Latin American Applied Research 37:3-10 (2007)

10

dedicated AND and XOR gates were used, instead of
general purpose LUTs.

Regarding the other (not considered here above) op-
erations, notice that the addition and subtraction modulo
n amount to two successive integer additions, so that
their computation time is proportional to the size m of n.
The multiplication modulo n can be realized with an m-
by-m-bit parallel multiplier (a basic block of many
FPGAs), whose computation time is proportional to m,
followed by some modulo n reduction circuit, for exam-
ple a circuit based on the Barrett algorithm (Blake,
2002; Hankerson, 2004) whose computation time is also
proportional to m. The addition and subtraction modulo
f(x) are carry-free operations, so that their computation
time is practically independent of the operand size.

To summarize, if specific circuits are used, all field
operations have (at most) linear computation times, but
the exponentiation modulo n (proportional to (log n)3),
the division modulo p (proportional to (log p)2), and the
point multiplication (proportional to m2 = (log q)2,
where q = 2m is the number of field elements).

REFERENCES
Adleman, L.M., R.L.Rivest, and A.Shamir, “A method for

obtaining digital signatures and public-key cryptosys-
tems”, Communications of the ACM, 21-2, 120-126
(1978).

Blake, I.V., G.Seroussi, and N.Smart, Elliptic Curves in Cryp-
tography, Cambridge University Press (2002).

Brent, R.P., and H.T.Kung, “Systolic arrays for linear time
GCD computation”, Proceedings of VLSI’83, 145-154
(1983).

Deschamps, J-P., and G. Sutter, “Finite Field Division Imple-
mentation”, Proceedings of FPL 2005, 670 - 675 (2005).

Deschamps, J-P., G.J.A. Bioul, and G. Sutter, Synthesis of
Arithmetic Circuits, Wiley (2006).

Deschamps, J-P., and G. Sutter, “Hardware implementation of
finite-field division”, Acta Applicandae Mathematicae,
Special Issue on “Finite Fields: Applications and Im-
plementations”, Springer-Verlag (2006).

ElGamal, T.,“A public key cryptosystem and a signature
scheme based on discrete logarithms”, IEEE Transac-
tions n Information Theory, IT-31, 469-472 (1985).

Hankerson, D., A.J.Menezes, and S.Vanstone, Guide to Ellip-
tic Curve Cryptography, Springer-Verlag (2004).

Koblitz, N., A Course in Number Theory and Cryptography,
Springer-Verlag (1994).

Montgomery, P., “Modular Multiplication without Trial Divi-
sion”, Mathematics of Computation, 44, 519-521 (1985).

Received: April 14, 2006.
Accepted: September 8, 2006.
Recommended by Special Issue Editors Hilda Larrondo,
Gustavo Sutter.

