
Latin American Applied Research 37:65-69 (2007)

65

FUNCTIONAL VERIFICATION: APPROACHES AND CHALLENGES

A. MOLINA† and O. CADENAS‡

† Computer Architecture Department, Universitat Politècnica de Catalunya, Barcelona, Spain
amolina@ac.upc.edu

‡ School of System Engineering, University of Reading, Reading RG6 6AY, UK
o.cadenas@reading.ac.uk

Abstract−− It’s a fact that functional verification

(FV) is paramount within the hardware’s design cy-
cle. With so many new techniques available today to
help with FV, which techniques should we really
use? The answer is not straightforward and is often
confusing and costly. The tools and techniques to be
used in a project have to be decided upon early in
the design cycle to get the best value for these new
verification methods. This paper gives a quick sur-
vey in the form of an overview on FV, establishes the
difference between verification and validation, des-
cribes the bottlenecks that appear in the verification
process, examines the challenges in FV and exposes
the current FV technologies and trends.
Keywords−− Functional verification, Simulation-

based verification.

I. INTRODUCTION
Functional verification (FV) is a necessary step in the
development of today’s complex digital designs. Hard-
ware complexity growth continues to follow Moore’s
Law (Moore, 1965), but verification comple-xity is even
more challenging. In fact, it theoretically rises exponen-
tially with hardware complexity doubling exponentially
with time (Dempster and Stuart, 2001). FV is widely
acknowledged as a major bottleneck in design metho-
dology: up to 70% of the design development time and
resources are spent on FV (Fine and Ziv, 2003). Recent
study highlights the challenges of FV (Mishra and Dutt,
2005): Figure 1 shows the statistics of the SOC designs
in terms of design complexity (logic gates), design time
(engineer years), and verification complexity (simula-
tion vectors) (Spirakis, 2004). Recently all major EDA
companies in the electronic sector are aggressively tar-
geting the verification process with new and better EDA
tools and a substantial number of seminars and work-
shops. This paper offers a quick review on what is being
agreed is this rapid evolving area by examining recent
references generated both by industry and the academia.
The paper is organized as follows. Section 2 establishes
the difference between verification and validation. Sec-
tion 3 describes the bottlenecks that appear in the verifi-
cation process. Section 4 examines the challenges in FV
followed by current FV technologies and trends in Sec-
tion 5. Finally, Section 6 gives some remarks as conclu-
sions.

II. VERIFICATION VERSUS VALIDATION
Kropf (1997) defines “validation” as the “process of

gaining confidence in the specification by examining
the behavior of the implementation.” Recently there was
discussion on the subject of “verification versus valida-
tion”. Many views were presented regarding the diffe-
rence. One view was that “validation ensures it’s the
right design; while verification ensures that the design is
right” (Verification Guild Website, 2006). Another
view was “verification means pre-silicon testing (Veri-
log/VHDL simulations) while validation is post-silicon
testing (testing silicon on boards in the laboratory)”.

Whether it is validation or verification, two things
need to happen to ensure that the silicon meets the
specification: (1) The chip specification is interpreted
correctly (typically through documentation and some-
times mo-deling). (2) The interpretation is captured and
implemented correctly (typically through HDL) and
synthesized into silicon and packaged as a chip. For the
purposes of this article we will consider the second step
as verification, and the first step as validation.

III. BOTTLENECKS

A. Design bottleneck
Design time is a function of silicon complexity. This
gives rise to system complexity, which affects time to
market, as show in Fig. 2.

Fig. 1. The study highlights the tremendous comple-xity faced
by simulation-based validation of complex SOCs: it estimates
that by 2007, a complex SOC will need 2000 engineer years to
write 25 million lines of register-transfer level (RTL) code and

one trillion simulation vectors for functional verification.

Latin American Applied Research 37:65-69 (2007)

66

Figure 2. Technology cycle. Historically, “product time” (the time it takes for a concept to become a production part) has been
mainly a function of design time. Whenever new technology or process is introduced, design time was and continues to be the

primary bottleneck.

Following an exponential increase in the number of

transistors in designs, a linear increase in compute time
or number of engineers was not adequate to reduce de-
sign time. To solve this problem, the electronic design
automation (EDA) industry stepped in to introduce the
concept of design abstraction through automation. Lan-
guage-based solutions such as Verilog and VHDL were
introduced. The IEEE has defined standards for both
(IEEE Standards, 1076-2002 and 1364-2001), and all
major EDA vendors support both languages equally
well (Taylor et al., 1998; Acellera Website, 2006). The
latest languages being widely accepted and supported
by EDA world are SystemC and SystemVerilog. For the
current technology processes, design complexity is well
understood. Design bottleneck has been overcome to
some extent thanks to the productivity gains through the
use of EDA tools. Having solved the first round of
problems, the focus now is on solving the effects of the
first order problems such as the verification bottleneck.

B. Verification bottleneck
The verification bottleneck is an effect of raising the
design abstraction level for the following reasons (See
Figure 3). Designing at a higher abstraction level allows
us to build highly complex functions with ease. This
increase in design complexity results in almost doubling
the verification effort. Functional complexity has been
doubled and hence its verification scope.

Using a higher level of abstraction for design, trans-
formation, and eventual mapping to the end product is
not performed without information loss and misinterpre-
tation. For instance, synthesis takes an HDL-level de-
sign and transforms it to the gate level. Verification is
needed at this level to ensure that the transformation
was indeed correct, and that design intent was not lost.
Raising the level of abstraction also brings about the
question of interpretation of the code that is used to de-
scribe the design during simulation. Other factors that
affect the verification problem are:

Figure 3. Design and Verification Gaps. Design productivity
growth continues to remain lower than complexity growth —
but this time around, it is verification time, not design time,
that poses the challenge. A recent statistic showed that 60-
70% of the entire product cycle for a complex logic chip is

dedicated to verification tasks (Warren, 2002).

Increase in functional complexity because of the
heterogeneous nature of designs today; for example, co-
existence of hardware and software, analog and digital.
The requirement for higher system reliability forces
verification tasks to ensure that a chip level function
will perform satisfactorily in a system environment,
especially when a chip level defect has a multiplicative
effect. To increase verification productivity, the EDA
industry came up with a solution similar to what was
used to solve the design bottleneck — the concept of
abstraction. High-level language constructs were em-
bedded into Verilog and VHDL to help in verification;
these included constructs such as tasks, threading (fork,
join) and control structures. This provided more control
to fully exercise the design on all functional corners.
However, these constructs were not synthesizable and
hence not used by designers as part of actual design
code. As complexity continued to grow, new verifica-
tion languages were created and introduced that could

A. MOLINA, O. CADENAS

67

verify complex designs at various levels of abstraction.
Along with new verification languages came technolo-
gies and tools that supported them.

IV. THE VERIFICATION CHALLENGES
The verification engineer faces four major challenges:
dealing with enormous state space size, detecting inco-
rrect behavior, lack of a golden reference model and
lack of a comprehensive functional coverage metric.
The scale of the state space is the first verification cha-
llenge. To verify exhaustively that a chip is functionally
correct, the verification engineer needs to check that
each possible current state and each possible input com-
bination yields the correct next state. To combat state
space explosion, verification engineers break the pro-
blem down into smaller pieces. Rather than verifying
the entire chip at once, the verification team will tackle
subcomponents of the design and verify these pieces
separately. Once the smaller, more manageable pieces
are verified, the team stitches the chip subcomponents
back together and ensures that they work. The second
verification challenge is detecting when the design vio-
lates the expected behavior or specification. With all of
the possible transitions from one state to the next, the
verification engineer must be able to identify whether or
not the design acted correctly based on the current state
and input. Rather than focusing on each of the possible
states of the hardware, verification engineers validate
the logic at a higher level of abstraction: inputs are
grouped into valid command and data sets, and the veri-
fication engineer concentrates on the behavior of the
design based on the functional input stimulus.

Figure 4 summarizes a study of the pre-silicon logic
bugs found in the Intel IA32 family of microarchitec-
tures. This trend again shows an exponential increase in
the number of logic bugs: a growth rate of 300-400%
from one generation to the next. The bug rate is linearly
proportional to the number of lines of structural RTL
code in each design, indicating a roughly constant den-
sity (Fine and Ziv, 2003).

The next obvious question is – where do all these
bugs come from? An Intel report summarized the results
of a statistical study of the 7855 bugs found in the Pen-
tium 4 processor design prior to initial tape out (Fine
and Ziv, 2003) (see Fig. 5).

Typically, there are two fundamental reasons for so
many logic bugs: lack of a golden reference model and
lack for a comprehensive functional coverage metric.
First, there are multiple specification models above the
RTL level (functional model, timing model, verification
model, etc.). The consistency of these models is a major
concern due to lack of a golden reference model. Se-
cond, the design verification problem is further aggra-
vated due to lack of a functional coverage metric that
can be used to determine the coverage of the microar-
chitectural features, as well as the quality of functional
validation. Several coverage measures do not have any
direct relationship to the functionality of the design. For
example in the case of a pipelined processor, none of

these measures determine if all possible interactions of
hazards, stalls and exceptions are verified. In simplest
terms, then, the verification challenge comes down to
two fundamentals: (1) Drive the state transitions and
input scenarios. (2) Flag any incorrect behavior exhibi-
ted by the design.

V. CURRENT VERIFICATION TECHNOLOGIES
Figure 6 shows a snapshot of the various methods and
technologies that are available to companies today.

Figure 4. Pre-silicon logic bugs per generation. Simple ex-
trapolation indicates that unless a radically new approach is

employed, we can expect to see 20-30K bugs designed into the
next generation and 100K in the subsequent generation.
Clearly – in the face of shrinking time-to-markets – the

amount of validation effort rapid-ly becomes intractable, and
will significantly impact product schedules, with the addi-

tional risk of shipping products with undetected bugs.

Figure 5. Although “complexity” is ranked eighth on the list of
bug causes, it is clear that it contributes to many of the catego-
ries listed above. More complex architectures need more ex-
tensive documentation to describe them; they require larger

design teams to implement them, increasing the likelihood of
miscommunication between team members; and they intro-

duce more corner cases, resulting in undiscovered bugs.
Hence, microarchitectural complexity is the major contributor

of the logic bugs.

Latin American Applied Research 37:65-69 (2007)

68

When the logic gets more complex, the verification
space increases. This brings about random dynamic
simulation, which provides random stimulus to the de-
sign in an effort to maximize the functional space that
can be covered. The problem with random testing is that
for very large and complex designs, it can be an un-
bounded problem. To solve this problem, the EDA in-
dustry introduced higher-level verification languages
such as Open Vera (Open Vera Website, 2006; Hol-
lander et al., 2001), and SVL (SystemC Verification
Library) (SystemC Website, 2006). These introduced
concepts such as constrained-random stimulus, random
stimulus distribution and reactive test benches. In addi-
tion to the introduction of randomization features, new
verification languages and tools increased productivity
by decreasing the amount of time engineers spent on
building various test case scenarios for stimulus genera-
tion. For example, the test scenarios can be written at
the highest level of abstraction and can be extended to
any lower level of abstraction by using powerful object-
oriented constructs.

Designers use assertions as placeholders to describe
assumptions and behavior (including temporal) associ-
ated with a design. Assertions get triggered during a
dynamic simulation if the design meets or fails the
specification or assumption. Assertions can also be used
in a formal/static functional verification environment.

In order to make sure that the gate level representa-
tion is the same as the HDL implementation, an
“equivalence check” is performed by using matching
points and comparing the logic between these points. A
data structure is generated and compared for output
value patterns for the same input pattern. If they are
different, then the representations (in this case gate and
RTL) are not equivalent. Equivalence checking is some-
times performed between two netlists (gate level) or two

RTL implementations when one of the representations
has gone through some type of transformation.

VI. CONCLUSIONS
Functional design verification is an art, an art of com-
bining hardware and software and communication skills
with creative strategies to understand a design and its
usage context to ensure that the design’s quality and
delivery schedule are successful. Communication and
monitoring are critical not only in understanding the
design and where its bugs lurk, but also are optimally
balancing how to apply one’s energies to cover testing
of the design thoroughly.

Many of the problems associated with the functional
verification methodologies of today are based on the
absence of an effective automation to combat the dis-
couraging growth in the size and complexity of the
design. This has forced to rely on manual effort in the
development of environments for tests. The examination
and the treatment of the results of the test is also a ma-
nual procedure. Perhaps the most notorious problem
facing the engineers of design and verification is the
lack of effective metric to measure the progress of the
verification. Code coverage for example, indicate lines
of verification code that was visited in a simulation, but
it does not offer any indication of which functionality it
was verified. As result, the engineer never is sure if a
sufficient quantity of verification has been realized.

The biggest of all the efforts in the verification is to
determine a comprehensive methodology of the verifi-
cation capable of verifying arbitrary designs. For now,
the majority of the efforts are contained in developing
and improving specific skills, each of which is excellent
in some area of the verification. A common theme of
verification effort is to find a methodology comprehen-
sive of verification.

Figure 6. Verification Methodologies. The most widespread method of functional verification is dynamic in nature. The reason it
is called “dynamic” is because input patterns/stimulus are generated and applied over a number of clock cycles to the design, and

the corresponding result is collected and compared against a reference/golden model for conformance with the specification.

A. MOLINA, O. CADENAS

69

REFERENCES
Accelera Website, http://www.acelera.org, (2006).
Dempster, D.J. and M.G. Stuart, Verification Metho-

dology Manual: Techniques for Verifying HDL
Designs, second edition. Teamwork Int. (2001).

Fine, S. and A. Ziv, “Coverage directed test generation
for functional verification using bayesian net-
works,” Proc. 40th Design Automation Conf.
(DAC), Anaheim, CA, USA, 286-291 (2003).

Hollander, Y., M. Morley and A. Noy, “The e Lan-
guage: a fresh separation of concerns,” Proc. 38th
Technology of Objetc-Oriented Languages and
Systems Conf. (TOOLS), Zurich, Switzerland, 41-
50 (2001).

IEEE Standards, VHDL Language Reference Manual
(IEEE Std. 1076-2002). Verilog Hardware Des-
cription Language (IEEE Std. 1364-2001).

Kropf, T., Formal Hardware Verification: Methods and
Systems in Comparison, Springer-Verlag, London
(1997).

Mishra, P. and N. D. Dutt, Functional Verification of
Programmable Embedded Architectures. A top-
Down Approach, Springer, USA (2005).

Moore, G., “Cramming More Components onto Inte-
grated Circuits,” Electronics Magazine, 38, 114-
117 (1965).

Open Vera Website, http://www.openvera.org, (2006).
Spirakis, G.S., “Opportunities and Challenges in Build-

ing Silicon Products In 65nm and Beyond,” Proc.
Design Automation and Test in Europe Conf. and
Exhibition (DATE’04), Paris, France, 2-3 (2004).

SystemC Website, http://www.systemc.org, (2006).
Taylor, S., M. Quinn., D. Brown., N. Dohm., S.

Hildebrandt., J. Huggins and C. Ramey, “Func-
tional verification of a multiple-issue, out-order,
superscalar Alpha processor: The DEC Alpha
21264 microprocessor,” Proc. 35th Design Auto-
mation Conf. (DAC), San Francisco, California,
USA, 638-643 (1998).

Verification Guild Website, http://www.verificationguild.com,
(2006).

Warren, A.H., “Introduction: Special Issue on Micro-
processor Verifications,” J. Formal Methods in
System Design. USA, 20, 135-137 (2002).

Received: April 14, 2006.
Accepted: September 8, 2006.
Recommended by Special Issue Editors Hilda Larrondo,
Gustavo Sutter.

