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Abstract−− It’s a fact that functional verification 

(FV) is paramount within the hardware’s design cy-
cle. With so many new techniques available today to 
help with FV, which techniques should we really 
use?  The answer is not straightforward and is often 
confusing and costly. The tools and techniques to be 
used in a project have to be decided upon early in 
the design cycle to get the best value for these new 
verification methods. This paper gives a quick sur-
vey in the form of an overview on FV, establishes the 
difference between verification and validation, des-
cribes the bottlenecks that appear in the verification 
process, examines the challenges in FV and exposes 
the current FV technologies and trends. 
Keywords−− Functional verification, Simulation- 

based verification. 

I. INTRODUCTION 
Functional verification (FV) is a necessary step in the 
development of today’s complex digital designs. Hard-
ware complexity growth continues to follow Moore’s 
Law (Moore, 1965), but verification comple-xity is even 
more challenging. In fact, it theoretically rises exponen-
tially with hardware complexity doubling exponentially 
with time (Dempster and Stuart, 2001). FV is widely 
acknowledged as a major bottleneck in design metho-
dology: up to 70% of the design development time and 
resources are spent on FV (Fine and Ziv, 2003). Recent 
study highlights the challenges of FV (Mishra and Dutt, 
2005): Figure 1 shows the statistics of the SOC designs 
in terms of design complexity (logic gates), design time 
(engineer years), and verification complexity (simula-
tion vectors) (Spirakis, 2004). Recently all major EDA 
companies in the electronic sector are aggressively tar-
geting the verification process with new and better EDA 
tools and a substantial number of seminars and work-
shops. This paper offers a quick review on what is being 
agreed is this rapid evolving area by examining recent 
references generated both by industry and the academia. 
The paper is organized as follows. Section 2 establishes 
the difference between verification and validation. Sec-
tion 3 describes the bottlenecks that appear in the verifi-
cation process. Section 4 examines the challenges in FV 
followed by current FV technologies and trends in Sec-
tion 5. Finally, Section 6 gives some remarks as conclu-
sions. 

II. VERIFICATION VERSUS VALIDATION 
Kropf (1997) defines “validation” as the “process of 

gaining confidence in the specification by examining 
the behavior of the implementation.” Recently there was 
discussion on the subject of “verification versus valida-
tion”. Many views were presented regarding the diffe-
rence. One view was that “validation ensures it’s the 
right design; while verification ensures that the design is 
right” (Verification Guild Website, 2006).  Another 
view was “verification means pre-silicon testing (Veri-
log/VHDL simulations) while validation is post-silicon 
testing (testing silicon on boards in the laboratory)”. 

Whether it is validation or verification, two things 
need to happen to ensure that the silicon meets the 
specification: (1) The chip specification is interpreted 
correctly (typically through documentation and some-
times mo-deling). (2) The interpretation is captured and 
implemented correctly (typically through HDL) and 
synthesized into silicon and packaged as a chip.  For the 
purposes of this article we will consider the second step 
as verification, and the first step as validation.  

III. BOTTLENECKS 

A. Design bottleneck 
Design time is a function of silicon complexity. This 
gives rise to system complexity, which affects time to 
market, as show in Fig. 2. 
 

 

Fig. 1. The study highlights the tremendous comple-xity faced 
by simulation-based validation of complex SOCs: it estimates 
that by 2007, a complex SOC will need 2000 engineer years to 
write 25 million lines of register-transfer level (RTL) code and 

one trillion simulation vectors for functional verification. 
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Figure 2. Technology cycle. Historically, “product time” (the time it takes for a concept to become a production part) has been 
mainly a function of design time. Whenever new technology or process is introduced, design time was and continues to be the 

primary bottleneck. 

 
Following an exponential increase in the number of 

transistors in designs, a linear increase in compute time 
or number of engineers was not adequate to reduce de-
sign time. To solve this problem, the electronic design 
automation (EDA) industry stepped in to introduce the 
concept of design abstraction through automation. Lan-
guage-based solutions such as Verilog and VHDL were 
introduced. The IEEE has defined standards for both 
(IEEE Standards, 1076-2002 and 1364-2001), and all 
major EDA vendors support both languages equally 
well (Taylor et al., 1998; Acellera Website, 2006). The 
latest languages being widely accepted and supported 
by EDA world are SystemC and SystemVerilog. For the 
current technology processes, design complexity is well 
understood. Design bottleneck has been overcome to 
some extent thanks to the productivity gains through the 
use of EDA tools.  Having solved the first round of 
problems, the focus now is on solving the effects of the 
first order problems such as the verification bottleneck. 

B. Verification bottleneck 
The verification bottleneck is an effect of raising the 
design abstraction level for the following reasons (See 
Figure 3). Designing at a higher abstraction level allows 
us to  build highly complex functions with ease. This 
increase in design complexity results in almost doubling 
the verification effort. Functional complexity has been 
doubled and hence its verification scope. 

Using a higher level of abstraction for design, trans-
formation, and eventual mapping to the end product is 
not performed without information loss and misinterpre-
tation. For instance, synthesis takes an HDL-level de-
sign and transforms it to the gate level. Verification is 
needed at this level to ensure that the transformation 
was indeed correct, and that design intent was not lost. 
Raising the level of abstraction also brings about the 
question of interpretation of the code that is used to de-
scribe the design during simulation. Other factors that 
affect the verification problem are:  

 

Figure 3. Design and Verification Gaps. Design productivity 
growth continues to remain lower than complexity growth — 
but this time around, it is verification time, not design time, 
that poses the challenge. A recent statistic showed that 60-
70% of the entire product cycle for a complex logic chip is 

dedicated to verification tasks (Warren, 2002). 

Increase in functional complexity because of the 
heterogeneous nature of designs today; for example, co-
existence of hardware and software, analog and digital. 
The requirement for higher system reliability forces 
verification tasks to ensure that a chip level function 
will perform satisfactorily in a system environment, 
especially when a chip level defect has a multiplicative 
effect. To increase verification productivity, the EDA 
industry came up with a solution similar to what was 
used to solve the design bottleneck — the concept of 
abstraction. High-level language constructs were em-
bedded into Verilog and VHDL to help in verification; 
these included constructs such as tasks, threading (fork, 
join) and control structures. This provided more control 
to fully exercise the design on all functional corners. 
However, these constructs were not synthesizable and 
hence not used by designers as part of actual design 
code.  As complexity continued to grow, new verifica-
tion languages were created and introduced that could 
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verify complex designs at various levels of abstraction. 
Along with new verification languages came technolo-
gies and tools that supported them. 

IV. THE VERIFICATION CHALLENGES 
The verification engineer faces four major challenges: 
dealing with enormous state space size, detecting inco-
rrect behavior, lack of a golden reference model and 
lack of a comprehensive functional coverage metric. 
The scale of the state space is the first verification cha-
llenge. To verify exhaustively that a chip is functionally 
correct, the verification engineer needs to check that 
each possible current state and each possible input com-
bination yields the correct next state. To combat state 
space explosion, verification engineers break the pro-
blem down into smaller pieces. Rather than verifying 
the entire chip at once, the verification team will tackle 
subcomponents of the design and verify these pieces 
separately. Once the smaller, more manageable pieces 
are verified, the team stitches the chip subcomponents 
back together and ensures that they work. The second 
verification challenge is detecting when the design vio-
lates the expected behavior or specification. With all of 
the possible transitions from one state to the next, the 
verification engineer must be able to identify whether or 
not the design acted correctly based on the current state 
and input. Rather than focusing on each of the possible 
states of the hardware, verification engineers validate 
the logic at a higher level of abstraction: inputs are 
grouped into valid command and data sets, and the veri-
fication engineer concentrates on the behavior of the 
design based on the functional input stimulus. 

Figure 4 summarizes a study of the pre-silicon logic 
bugs found in the Intel IA32 family of microarchitec-
tures. This trend again shows an exponential increase in 
the number of logic bugs: a growth rate of 300-400% 
from one generation to the next. The bug rate is linearly 
proportional to the number of lines of structural RTL 
code in each design, indicating a roughly constant den-
sity (Fine and Ziv, 2003). 

The next obvious question is – where do all these 
bugs come from? An Intel report summarized the results 
of a statistical study of the 7855 bugs found in the Pen-
tium 4 processor design prior to initial tape out (Fine 
and Ziv, 2003) (see Fig. 5). 

Typically, there are two fundamental reasons for so 
many logic bugs: lack of a golden reference model and 
lack for a comprehensive functional coverage metric.  
First, there are multiple specification models above the 
RTL level (functional model, timing model, verification 
model, etc.). The consistency of these models is a major 
concern due to lack of a golden reference model. Se-
cond, the design verification problem is further aggra-
vated due to lack of a functional coverage metric that 
can be used to determine the coverage of the microar-
chitectural features, as well as the quality of functional 
validation. Several coverage measures do not have any 
direct relationship to the functionality of the design. For 
example in the case of a pipelined processor, none of 

these measures determine if all possible interactions of 
hazards, stalls and exceptions are verified. In simplest 
terms, then, the verification challenge comes down to 
two fundamentals: (1) Drive the state transitions and 
input scenarios. (2) Flag any incorrect behavior exhibi-
ted by the design. 

V. CURRENT VERIFICATION TECHNOLOGIES 
Figure 6 shows a snapshot of the various methods and 
technologies that are available to companies today. 
 

 
Figure 4. Pre-silicon logic bugs per generation. Simple ex-
trapolation indicates that unless a radically new approach is 

employed, we can expect to see 20-30K bugs designed into the 
next generation and 100K in the subsequent generation. 
Clearly – in the face of shrinking time-to-markets – the 

amount of validation effort rapid-ly becomes intractable, and 
will significantly impact product schedules, with the addi-

tional risk of shipping products with undetected bugs. 

 
Figure 5. Although “complexity” is ranked eighth on the list of 
bug causes, it is clear that it contributes to many of the catego-
ries listed above. More complex architectures need more ex-
tensive documentation to describe them; they require larger 

design teams to implement them, increasing the likelihood of 
miscommunication between team members; and they intro-

duce more corner cases, resulting in undiscovered bugs. 
Hence, microarchitectural complexity is the major contributor 

of the logic bugs. 
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When the logic gets more complex, the verification 
space increases. This brings about random dynamic 
simulation, which provides random stimulus to the de-
sign in an effort to maximize the functional space that 
can be covered. The problem with random testing is that 
for very large and complex designs, it can be an un-
bounded problem. To solve this problem, the EDA in-
dustry introduced higher-level verification languages 
such as Open Vera (Open Vera Website, 2006; Hol-
lander et al., 2001), and SVL (SystemC Verification 
Library) (SystemC Website, 2006). These introduced 
concepts such as constrained-random stimulus, random 
stimulus distribution and reactive test benches. In addi-
tion to the introduction of randomization features, new 
verification languages and tools increased productivity 
by decreasing the amount of time engineers spent on 
building various test case scenarios for stimulus genera-
tion. For example, the test scenarios can be written at 
the highest level of abstraction and can be extended to 
any lower level of abstraction by using powerful object-
oriented constructs. 

Designers use assertions as placeholders to describe 
assumptions and behavior (including temporal) associ-
ated with a design. Assertions get triggered during a 
dynamic simulation if the design meets or fails the 
specification or assumption. Assertions can also be used 
in a formal/static functional verification environment. 

In order to make sure that the gate level representa-
tion is the same as the HDL implementation, an 
“equivalence check” is performed by using matching 
points and comparing the logic between these points. A 
data structure is generated and compared for output 
value patterns for the same input pattern. If they are 
different, then the representations (in this case gate and 
RTL) are not equivalent. Equivalence checking is some-
times performed between two netlists (gate level) or two 

RTL implementations when one of the representations 
has gone through some type of transformation. 

VI. CONCLUSIONS 
Functional design verification is an art, an art of com-
bining hardware and software and communication skills 
with creative strategies to understand a design and its 
usage context to ensure that the design’s quality and 
delivery schedule are successful. Communication and 
monitoring are critical not only in understanding the 
design and where its bugs lurk, but also are optimally 
balancing how to apply one’s energies to cover testing 
of the design thoroughly.  

Many of the problems associated with the functional 
verification methodologies of today are based on the 
absence of an effective automation to combat the dis-
couraging growth in the size and complexity of the    
design. This has forced to rely on manual effort in the 
development of environments for tests. The examination 
and the treatment of the results of the test is also a ma-
nual procedure. Perhaps the most notorious problem 
facing the engineers of design and verification is the 
lack of effective metric to measure the progress of the 
verification. Code coverage for example, indicate lines 
of verification code that was visited in a simulation, but 
it does not offer any indication of which functionality it 
was verified. As result, the engineer never is sure if a 
sufficient quantity of verification has been realized. 

The biggest of all the efforts in the verification is to 
determine a comprehensive methodology of the verifi-
cation capable of verifying arbitrary designs. For now, 
the majority of the efforts are contained in developing 
and improving specific skills, each of which is excellent 
in some area of the verification. A common theme of 
verification effort is to find a methodology comprehen-
sive of verification. 

 

 
Figure 6. Verification Methodologies. The most widespread method of functional verification is dynamic in nature. The reason it 
is called “dynamic” is because input patterns/stimulus are generated and applied over a number of clock cycles to the design, and 

the corresponding result is collected and compared against a reference/golden model for conformance with the specification. 
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