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Abstract−− The Rijndael cipher, designed by Joan 

Daemen and Vincent Rijmen and recently selected as 
the official Advanced Encryption Standard (AES) is 
well suited for hardware use. This implementation 
can be carried out through several trade-offs be-
tween area and speed. This paper presents an 8-bit 
FPGA implementation of the 128-bit block and 128 
bit-key AES cipher. Selected FPGA Family is Altera 
Flex 10K. The cipher operates at 25 MHz and con-
sumes 286 clock cycles for algorithm encryption or 
decryption, resulting in a throughput of 11 Mbps. 
Synthesis results in the use of 957 logic cells and 6528 
memory bits. The design target was optimization of 
area and cost. 
Keywords−− FPGA, cryptography, AES, cipher, 

VHDL. 

I. INTRODUCTION 
The Rijndael Algorithm, developed by Joan Daemen 
and Vincent Rijmen, has been approved by the U. S. 
National Institute of Standards and Technology (NIST) 
as the new Advanced Encryption Standard (AES). It 
became official in October 2000, replacing DES (FIPS 
197, 2001). As this block cipher is expected to be 
widely used in an extensive variety of products, its effi-
cient implementation becomes a significant priority.  
Hardware implementation is, by nature, more physically 
secure than software implementation.  

The three major design targets with respect to hard-
ware realization are: optimization for area or cost,  low 
latency that minimizes time to encrypt a single block 
and high throughput to encrypt multiple blocks in paral-
lel. All these design criteria involve a trade off between 
area and speed. There are a wide range of equipment 
where encryption is needed for authentication and secu-
rity but throughput is not the principal concern. A low 
cost, small area design could be used in smart card ap-
plications as well as in other storage devices and low 
speed communication channels.   

This paper presents an architecture for the 10 rounds 
AES Algorithm implemented on an Altera FPGA de-
vice. The goal of this design is to produce, in a low cost 
FPGA, a minimum area core cipher that exploits the 
symmetry between encryption and decryption opera-
tions. 

The final architecture is based on previous work on 
the cipher design. In this work a decryption core is 

added, the number of clock cycles required to encrypt a 
single block has been reduced and the amount of hard-
ware resources has been optimized with respect to the 
original design (Liberatori and Bonadero, 2005). A hi-
erarchical design was adopted so that a collection of 
components were identified. Specified functions related 
with AES internal transformations were developed in-
dependently and composed to create the core cipher. 
The resulting design requires 957 LE´s, 6528 memory 
bits, operates at 11 Mbps and is compared with other 
known implementations. 

 II. THE AES ALGORITHM 
AES is an iterative private-key symmetric block cipher 
(Stalling, 1999), operating on a block size of 128 bits. It 
comprises 10, 12 or 14 rounds when the key size is 128, 
192 or 256 bits respectively. In an iterative block cipher, 
the block of information (plaintext) is transformed into 
another block of the same length (ciphertext) by re-
peated application of a round function. The intermediate 
cipher result is called the state in the AES proposal 
(Daemen and Rijmen, 1999). Each round involves an 
addition or bitwise EXOR of the plaintext and the key, 
so the original key must be expanded into a number of 
Round Keys and this transformation is known as the Key 
Schedule. A Round Key consists of a Nc word sub-array 
from the Key Schedule (Bonadero et al, 2005). In gen-
eral the length of the cipher input, the cipher output and 
the cipher state is also Nc, and is measured in multiples 
of 32 bits. Rijndael Algorithm allows Nc to take values 
4, 6 or 8 but the AES standard only allows a length of 4. 
The length of the cipher key, Nk, again measured in mul-
tiples of 32 bits, is also 4, 6 or 8, all of which are al-
lowed by both Rijndael and the AES standard.  

Each encryption round is composed of four opera-
tions: SubBytes(), ShiftRows(), MixColumns() and    
AddRoundKey(). The last round is slightly different be-
cause MixColumns() is not present.  

SubBytes() transformation is a non-linear byte sub-
stitution as depicted in Fig. 1. Each byte of the state is 
inverted over GF(28) followed by an affine transforma-
tion (Murphy and Robshaw, 2001). The overall opera-
tion is known as the S-Box (Rijmen, 2003) and can be 
performed by using a look up table.  

ShiftRows() transformation operates on a whole state 
(128 bits).  Rows of the state are cyclically shifted to the 
left as shown in Fig. 2. 
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Figure 1 – SubBytes() Transformation 
 
 
 
 

Figure 2 – ShiftRows() Transformation  

MixColumns() transformation acts independently on 
every column of the state and treats each column as a 
four-term polynomial (Kerins et al., 2002). The columns 
of the state are considered as polynomials over GF(28) 
(Rijmen, 2003) and multiplied modulo 4( 1)x +  with a 
fixed polynomial c(x), coprime to 4( 1)x +  and therefore 
invertible (Murphy and Robshaw, 2001). This operation 
can be written as a matrix multiplication. 

 
 
 
 
 
 
 
 

Figure 3 – MixColumns() Transformation 
The cipher transformations can be inverted and then 

implemented in reverse order to produce an Inverse  
Cipher for the AES Algorithm. The individual trans-
formations used in the Inverse Cipher are InvShif-
tRows(),   InvSubBytes(), AddRoundKey() and InvMix-
Columns(). The last round is slightly different because                
InvMixColumns() is not present.  

In the Inverse Cipher the sequence of transforma-
tions differs from that of the Cipher while the form of 
the Key Schedule for encryption and decryption remains 
the same.  

However, several properties of the AES Algorithm 
allow for an Equivalent Inverse Cipher (Daemen and 
Rijmen, 1999) that has the same sequence of transfor-
mations as the cipher. This is accomplished with a 
change in the Key Schedule. There are two properties 
that allow for this Equivalent Inverse Cipher. On one 
hand, SubBytes() and ShiftRows() transformations com-
mute and the same is true for their inverses. On the 
other hand, the column mixing operation and its inverse 
are linear with respect to the column input. Then the 
order of AddRoundKey() and InvMixColumns() trans-
formations can be reversed, provided that the columns 
of the decryption Key Schedule are modified using the 
InvMixColumns() transformation: 

)()(
)(

RoundkeymnsInvMixColustatemnsInvMixColu
RoundkeystatemnsInvMixColu

⊕
=⊕ (1) 

Given these changes, the resultant EquivalentInverse 
Cipher offers a more efficient structure than the Inverse 
Cipher. In this way the amount of extra resources that 
must be added to the original cipher perform both op-
erations, encryption and decryption, is  reduced. (Lib-
eratori and Bonadero, 2005). 

III.  ARCHITECTURE OPTIONS  
Rijndael is a block cipher with a basic looping architec-
ture whereby data is iteratively passed through a round 
function. There are several architectural options to yield 
optimized implementations (Biham, 1999; Elbirt et al, 
2001).  
Basic Achitecture: When examining AES principal as-
pects, it is obvious that an implementation of the fully 
128 data path stream could encrypt 128 bits per cycle 
(Gaj and Chodowiec, 2001) as shown in Fig. 4. One 
round of the cipher is implemented using combinational 
logic, one register and an input multiplexer. Such an 
implementation will encrypt 128 bits per clock cycle 
and consume many resources in terms of area. It will 
require a large amount of I/O pins and will not fit on 
low target FPGA.  
 
 
 
 
 
 
 
 
 
 
 

Figure 4 – Basic Architecture 
Inner pipelining: In this architecture extra registers are 
added in the middle of the combinational logic, so that 
several blocks of data can be processed by the cipher  at 
the same time, as depicted in Fig. 5. Circuit throughput 
is improved and area is increased. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 – Inner pipelining.  
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Loop Unrolling (LU-k): In this case the combinational 
part of the basic architecture implements k rounds of the 
cipher instead of a single round. An increase in speed is 
obtained at the cost of circuit area.  
Proposed Architecture: In a minimum configuration 
(Fischer, 2000), the cipher should use as few memory 
blocks as possible and a basic interface with a host sys-
tem as to allow its adaptation to a wide range of propos-
als. The provided embedded RAM is used to replace the 
round key and S-Box hardware. As a result, there is no 
key scheduling unit; instead a memory for storing the 
internal keys and the circuitry necessary to distribute 
these keys is included in the encryption/decryption unit. 
As the circuit uses one Embedded Array Block (EAB) for 
key and sub-keys storage, only 5 EAB´s are free inside 
the selected FPGA. If we choose an internal bus of 16 
bits we will need 4 EAB´s to implement S-boxes. Since 
one byte is the basic data unit for the Rijndael operations, 
the architecture selected to implement the cipher is an 8 
bit basic one (Liberatori and Bonadero, 2005). In this 
way, only 2 EAB´s are used to implement SubBytes() 
operation.   

On the other hand, MixColumns() operation is imple-
mented over 4 bytes at a time. In this case we have to 
leave the 8 bit internal bus and introduce extra internal 
registers such that 4 blocks of the original internal data 
unit can be processed together. This is internal pipelining.    

A first analysis of the algorithm identifies primary 
operations, which leads to the development of the func-
tional units needed. This design strategy is a hierarchical 
one, where the basic blocks are implemented and then 
composed to obtain the cipher (Pardo and Boluda, 1999).   

In the encryption/decryption core, only one round is 
implemented and the cipher must iterate ten rounds to 
perform an encryption/decryption. Iterative looping (LU-
1) is a subset of loop unrolling (LU-k) where only one 
round is unrolled (Gaj and Chodowiec, 2001). This ap-
proach usually minimizes the hardware required for the 
implementation and an effort is made to maximize the 
speed. Thus, one round is implemented with combinato-
rial logic supplemented with registers, memories and 
multiplexers. First, input block of data is fed to the circuit 
via the 8-bit input interface and the initial round is exe-
cuted. In this round the input data is XORed with the 
Cipher Key. Then the encryption/decryption unit evalu-
ates ten rounds of the algorithm and the result is tempo-
rarily stored in the RAM. A control unit generates control 
signals for the other units, solving the problem of the 
separation between control and data path logic. 

The basic architecture in conjunction with the non-
feedback mode of operation (Stalling, 1999) is easy to 
implement and will likely result in smaller circuit area 
(Gaj and Chodowiec, 2001). The cipher was designed 
keeping in mind the amount of resources shared between 
encryption and decryption. 

IV.  FPGA IMPLENTATION 
The FPGA family selected for the present implementa-
tion is Altera Flex 10K, in particular EPF10K20. It is a 

low volume device which has only 1152 logic elements 
(LEs) and 6 embedded array blocks (EABs). In this de-
sign, the device is part of the UP1 Educational Board of 
the University Program Design Laboratory Package 
from Altera. MAX+PLUS II (1996) Version 7.21 Stu-
dent Edition is the software used to synthesize a VHDL 
(Terés et al., 1997) implementation of the AES algo-
rithm. This tool is also used to perform behavioral and 
timing simulations. Although it is tempting to generate 
cipher blocks with this automated tool, it has limita-
tions. The high modular language that is integrated into 
the MAX+PLUS II System is AHDL. However, the 
cipher design is described in VHDL to ensure portabil-
ity. On the other hand, our experience suggests that the 
best implementation results are achieved when hand 
mapping is used. And this is particularly true in the case 
of block cipher circuits that are used to implement algo-
rithms. For this reason we have identified basic ele-
ments and followed a hierarchical design strategy where 
basic blocks are combined to create the desired cipher.  
 The round transformation data path is shown in Fig. 
6.  

It consists of one 16x8 RAM (U1), two 256x8 ROM 
(U2 and U3), one set of blocks to perform MixCol-
umns()/InvMixColumns() operations with interfaces for 
the 8 bit data bus (reg32mix8x8/invreg32mix8x8), an-
other two components to perform the ShiftRows()/Inv 
ShiftRows() operations (shift/invshift), one 8-bit EXOR 
and six multiplexers. Round Keys for encryp-
tion/decryption are stored in the 256x8 RAM (ramkey). 
All keys are loaded before the process begins. The con-
trol unit is a finite state machine with only three states 
to manage one initial round, nine similar intermediate 
rounds and a final round. It provides multiplexers select 
signals and generates control signals for the previously 
mentioned round components. The operation mode (en-
cryption/decryption) is indicated to the control unit via 
an external signal: encrypt/ decrypt. 

In either mode of operation, the input multiplexer, 
mux4x8 U0, sequentially receives the 128-bit input data 
block, through an 8 bit bus (datain). The circuit proc-
esses this block through the successive rounds and the 
final result (plaintext or ciphertext) is stored in the 
RAM U1. 

In the first round, the AddRoundKey() function is 
common to both modes of operation and the original 
key (encrypt mode) or the last sub-key (decrypt mode) 
is EXORed byte to byte with the input data. 

Within each intermediate round, each byte is passed 
through the S-Box U2(encrypt) or InvS-Box U3 de-
crypt). These ROMs perform byte substitution, storing 
the overall transformation needed in 8 x 256 bits. They 
are implemented using two EAB blocks. An 8-bit ad-
dress is the data input and an 8-bit data value is the out-
put. The control unit selects the appropriate bus of the 
multiplexer U4.  

The results from the SubBytes()/InvSubBytes() op-
eration are temporarily stored in RAM U5 when the 
round number is even or in RAM U15 when the round 
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number is odd.  These memories are written so that 
SubBytes() / InvSubBytes() and ShiftRows() 
/InvShiftRows() operations are combined. The compo-
nents U13 and Z13 present the appropriate address 

value on the RAM memories address bus.  Components 
U5 and U15 are read or written in this way. 

In the case of encryption, the execution of these 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 - Round Transformation Data Path for Encryption/Decryption 
 
transformations modifies the address coming from the 
control unit via the shift component as it is depicted in 
Fig. 7. In the case of decryption, the writing order is 
imposed by the invshift component, shown in Fig. 8.  

The shift or the invshift component generates the    
addresses in either RAM so that it can be written in the 
order that is presented in Table 1 (Karri and Kim, 1999). 
The control unit generates the addresses to read the 
memory. The reading process is a direct one, advancing 
from address 0 to address F. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 –  shift  component. 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 8 –  invshift  component 
 
Table 1. ShiftRows() Transformation. 
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The RAM memory used in this transformation    
cannot be reused in the next round because it would be 
written at the same time it is being read.  

This is the reason of the duplication of the compo-
nents U5 and U15 and its accessories: U11, U13, Z11 
and Z13. The multiplexer U16 allows the selection of 
the right memory output between even and odd round 
numbers. 

The MixColumns()/InvMixColumns() transforma-
tions previously described can be written as a circular 
matrix multiplication. As a result, in the case of the en-
cryption mode, the four bytes in the column can be re-
placed by the following expressions: 
       c3,c2,c1,co,co, ss)({03}.s)({02}.ss' ⊕⊕⊕=        (2) 

       ccccc sssss ,3,2,1,0,1 )}.03({)}.02({' ⊕⊕⊕=          (3)        

       )}.03({)}.02({' ,3,2,1,0,2 ccccc sssss ⊕⊕⊕=        (4) 

       )}.02({)}.03({' ,3,2,1,0,3 ccccc sssss ⊕⊕⊕=         (5) 
In the case of decryption mode these expressions are 

replaced by: 
)s}.09({)s}.0({)({0b}.s)({0e}.ss' c3,c2,c1,co,co, ⊕⊕⊕= d (6) 

)}.0({)}.0({)}.0({)}.09({' ,3,2,1,0,1 ccccc sdsbsess ⊕⊕⊕=  (7) 

)}.0({)}.0({)}.09({)}.0({' ,3,2,1,0,2 ccccc sbsessds ⊕⊕⊕=  (8) 

)}.0({)}.09({)}.0({)}.0({' ,3,2,1,0,3 ccccc sessdsbs ⊕⊕⊕=  (9) 
A development of these equations allows us to iden-

tify the basic components to perform the mentioned 
transformations. Multiplication by x (i.e. 00000010 or 
{02}) can be implemented at the byte level as a left shift 
and a subsequent conditional EXOR with {1B}. This 
operation on bytes is denoted by xtime() (Karri and 
Kim, 1999).  Multiplication by higher powers of x can 
be implemented by repeated application of xtime(). Mul-
tiplication by (1+x) (i.e. 00000011 or {03}) can be 
thought of as multiplication by ({01}⊕ {02}).  Fig. 9 
and Fig 10 shows one basic block to perform MixCol-
umns()operation and its inverse InvMixColumnns(). 
 
 
 
 
 
 
 
 
Figure 9. Basic block to perform MixColumns() Transforma-

tion 
Four components like the one shown in Fig. 9, each 

with its entries consistent with Eq. (2) to Eq. (5), are 
needed to process 32-bit data simultaneously (Liberatori 
and Bonadero, 2005). In order to generate four bytes in 
one operation, reg32mix8x8 accepts four bytes from 
input via a serial to parallel converter register. The re-
sult, one column of the state generated from each input 
column, must be converted to the serial form to fit in the 
original 8-bit data path (Shim et al., 2002). 

 
 
 
 
 
 
 
 
Figure 10. Basic block to perform InvMixColumns Transfor-

mation 
The same reasoning applies to the inverse transfor-

mation in the decryption mode. Fig 10 shows the basic 
block to perform multiplication by constants in the Eq. 
(6) to Eq. (9). Four blocks like the one shown in Fig. 10 
and a set of four EXORs are needed to perform the In-
vMixColumns() transformation.  

V. RESULTS FOR THE ALTERA 10K FAMILY 
The parameters used to evaluate the quality of the im-
plementation are logic cells, bits of memory, cipher 
speed and Throughput Per LE (TPL).  
 The results of the implementation in terms of area 
and speed are summarized in Table 2. This table also       
presents the results obtained with other hardware im-
plementations of the AES-128, targeted on different 
devices manufactured by Altera.    
 Altera synthesis tools measure the amount of used 
resources in terms of logic cells (LC´s ) or logic ele-
ments (LE´s), because they are the basic constructive 
block inside any Altera device. Other FPGA manufac-
turers have similar tools that generate the same kind of 
reports.  The principal difference between the reports 
from different manufacturers is the basic element defini-
tion and its interconnection with others of the same 
kind. For this reason, the results of the synthesis are 
compared with other implementations that have been 
targeted on chips from the same manufacturer.   
 Another metric used to compare different implemen-
tations is the Throughput Per LE´s (TPL) = Speed / 
Area (LE´s). When comparing implementations using 
TPL , it is required that the architectures are imple-
mented on the same FPGA. Different FPGAs within the 
same family could yield different timing results as a 
function of available logic and routing resources, (El-
birt, et al, 2001).   
 Panato main design proposal is to produce a small 
area device with good performance and internal sub-key 
generation. The architecture is implemented in a high 
volume FPGA. To guarantee small area the Panato´s 
decision is to mix processes of 32 bits and 128 bits. The 
design with better TPL uses 66% of the memory re-
sources.  
 Mroczkowski´s design contains an internal sub-key 
generator, 16 parallel  working S-boxes for encryption 
or decryption and used an external clock with minimal 
period 22 ns ((45,45 kHz) for the encryption chip and 
24 ns. (41, 46 kHz) for the decryption chip. The shift 
transformation is done by interconnections.  
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Table 2. Performance Results for comparison between differ-
ent hardware implementations.  

Design  Bits 
Memo 

LE´s Speed 
Mbps 

TPL x 
103 

FPGA 

Panato et al. 
2003 (1)  

32768 
66% 

3222 
64% 

150 46,55. Acex1K 

Panato et 
al.2003 (1) 

0 
0% 

7034 
35% 

197 28 Cyclone 

Mroczkowski 
(2001) (2)  

40960 1032 268 259,68 Flex 
10K250A

Mroczkowski 
(2001) (3) 

40960 2885 248 85,96 Flex 
10K250A

Fischer 
(2000) (4)  

24EAB 3348 179 53,46 Flex 10KE

Fischer 
(2000) (5)  

12EAB 3320 93.8 28,25 Flex 10KE

Fischer 
(2000) (6)  

3 EAB 3324 24.3 7,34 Flex 10KE

Our design 6528 
53% 

957 
83% 

11 11,49 Flex 
10K20 

(1) Internal 32-bit /128-bit data path  
(2) 128-bit data path for Encryption  
 (3) 128-bit data path for Decryption 
(4) Fast configuration. 128-bit data path 
(5) Fair configuration. 64-bit data path 
(6) Minimum configuration. 16-bit data  path 
 
 Fischer fast configuration uses as much S-boxes as 
possible to increase speed and also stores sub-keys in 
EAB. Fair configuration processes 64-bit data words. 
Minimum configuration uses as few memory blocks as 
possible with a 16-bit internal bus.  

From Table 2, the most comparable VHDL imple-
mentation is the Fischer´s Minimum 16-bit data path 
(Fischer, 2000). Although it achieves more than the 
double of speed when is compared with our design, it 
requires almost twice the memory bits and three times 
more area in terms of logical cells. Our design offers 
better throughput per area, probably as a consequence of 
the hand placement and internal bus selection.  In our 
approach, a small amount of memory is used as a regis-
ter file to store intermediate results, with the data path 
performing the basic operations of the cipher/decipher. 
A state machine controls the basic 8 bit data path. Such 
a sequential approach is usually limited in performance 
but offers complete functionality in a small space.  

On the other hand, none of the implementations pre-
sented in Table 2 can be synthesized on a device of low 
volume, just as Altera Flex 10K20. 

In terms of complexity, the operation that requires 
more hardware resources as well as computation time is 
the InvMixColumns() multiplication. The design deci-
sion of working with an internal 8-bit data path implies 
two conversions: 8-bit serial to 32-bit parallel to per-
form the MixColumns()/InvMixColumns() transforma-
tion and 32-bit parallel to 8-bit serial to fit in the origi-
nal 8-bit data path. This is the main limitation of the 
cipher performance in terms of speed. 
 

VI. CONCLUSIONS 
This paper presents a low area, cost-effective Rijndael 
cipher for encryption and decryption using a basic 8-bit 
iterative architecture, targeted towards the Altera Flex 
10 K family of FPGAs. This architecture is based on 
previous work on the cipher design. In this work a de-
cryption core is added, the number of clock cycles re-
quired to encrypt a single block has been reduced and 
the amount of hardware resources has been optimized 
with respect to the original design (Liberatori and 
Bonadero, 2005).  The cipher has been synthesized  
using Altera MAX+PLUS II Version 7.21 Student Edi-
tion. The algorithm is implemented in VHDL, which led 
to the use of bottom-up design and test methodology. 
This choice also insures portability of the code to the 
devices of other vendors.  

The architecture needs fewer logic cells than other 
ciphers and uses as few memory blocks as possible. It 
has 11 Mbps throughput. The minimum clock period 
depends on the access time to memories used and the 
frequency of the external clock.  

Future work should concentrate on speed perform-
ance.  
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