
Latin American Applied Research 37:71-77 (2007)

71

AES-128 CIPHER. MINIMUM AREA, LOW COST FPGA
IMPLEMENTATION

M. C. LIBERATORI† and J. C. BONADERO‡

† Laboratorio de Comunicaciones, Facultad de Ingeniería, UNMDP, Mar del Plata, Argentina
mlibera@fi.mdp.edu.ar.

‡ Laboratorio de Comunicaciones, Facultad de Ingeniería, UNMDP, Mar del Plata, Argentina
jbona@fi.mdp.edu.ar

Abstract−− The Rijndael cipher, designed by Joan

Daemen and Vincent Rijmen and recently selected as
the official Advanced Encryption Standard (AES) is
well suited for hardware use. This implementation
can be carried out through several trade-offs be-
tween area and speed. This paper presents an 8-bit
FPGA implementation of the 128-bit block and 128
bit-key AES cipher. Selected FPGA Family is Altera
Flex 10K. The cipher operates at 25 MHz and con-
sumes 286 clock cycles for algorithm encryption or
decryption, resulting in a throughput of 11 Mbps.
Synthesis results in the use of 957 logic cells and 6528
memory bits. The design target was optimization of
area and cost.
Keywords−− FPGA, cryptography, AES, cipher,

VHDL.

I. INTRODUCTION
The Rijndael Algorithm, developed by Joan Daemen
and Vincent Rijmen, has been approved by the U. S.
National Institute of Standards and Technology (NIST)
as the new Advanced Encryption Standard (AES). It
became official in October 2000, replacing DES (FIPS
197, 2001). As this block cipher is expected to be
widely used in an extensive variety of products, its effi-
cient implementation becomes a significant priority.
Hardware implementation is, by nature, more physically
secure than software implementation.

The three major design targets with respect to hard-
ware realization are: optimization for area or cost, low
latency that minimizes time to encrypt a single block
and high throughput to encrypt multiple blocks in paral-
lel. All these design criteria involve a trade off between
area and speed. There are a wide range of equipment
where encryption is needed for authentication and secu-
rity but throughput is not the principal concern. A low
cost, small area design could be used in smart card ap-
plications as well as in other storage devices and low
speed communication channels.

This paper presents an architecture for the 10 rounds
AES Algorithm implemented on an Altera FPGA de-
vice. The goal of this design is to produce, in a low cost
FPGA, a minimum area core cipher that exploits the
symmetry between encryption and decryption opera-
tions.

The final architecture is based on previous work on
the cipher design. In this work a decryption core is

added, the number of clock cycles required to encrypt a
single block has been reduced and the amount of hard-
ware resources has been optimized with respect to the
original design (Liberatori and Bonadero, 2005). A hi-
erarchical design was adopted so that a collection of
components were identified. Specified functions related
with AES internal transformations were developed in-
dependently and composed to create the core cipher.
The resulting design requires 957 LE´s, 6528 memory
bits, operates at 11 Mbps and is compared with other
known implementations.

 II. THE AES ALGORITHM
AES is an iterative private-key symmetric block cipher
(Stalling, 1999), operating on a block size of 128 bits. It
comprises 10, 12 or 14 rounds when the key size is 128,
192 or 256 bits respectively. In an iterative block cipher,
the block of information (plaintext) is transformed into
another block of the same length (ciphertext) by re-
peated application of a round function. The intermediate
cipher result is called the state in the AES proposal
(Daemen and Rijmen, 1999). Each round involves an
addition or bitwise EXOR of the plaintext and the key,
so the original key must be expanded into a number of
Round Keys and this transformation is known as the Key
Schedule. A Round Key consists of a Nc word sub-array
from the Key Schedule (Bonadero et al, 2005). In gen-
eral the length of the cipher input, the cipher output and
the cipher state is also Nc, and is measured in multiples
of 32 bits. Rijndael Algorithm allows Nc to take values
4, 6 or 8 but the AES standard only allows a length of 4.
The length of the cipher key, Nk, again measured in mul-
tiples of 32 bits, is also 4, 6 or 8, all of which are al-
lowed by both Rijndael and the AES standard.

Each encryption round is composed of four opera-
tions: SubBytes(), ShiftRows(), MixColumns() and
AddRoundKey(). The last round is slightly different be-
cause MixColumns() is not present.

SubBytes() transformation is a non-linear byte sub-
stitution as depicted in Fig. 1. Each byte of the state is
inverted over GF(28) followed by an affine transforma-
tion (Murphy and Robshaw, 2001). The overall opera-
tion is known as the S-Box (Rijmen, 2003) and can be
performed by using a look up table.

ShiftRows() transformation operates on a whole state
(128 bits). Rows of the state are cyclically shifted to the
left as shown in Fig. 2.

Latin American Applied Research 37:71-77 (2007)

72

Figure 1 – SubBytes() Transformation

Figure 2 – ShiftRows() Transformation

MixColumns() transformation acts independently on
every column of the state and treats each column as a
four-term polynomial (Kerins et al., 2002). The columns
of the state are considered as polynomials over GF(28)
(Rijmen, 2003) and multiplied modulo 4(1)x + with a
fixed polynomial c(x), coprime to 4(1)x + and therefore
invertible (Murphy and Robshaw, 2001). This operation
can be written as a matrix multiplication.

Figure 3 – MixColumns() Transformation
The cipher transformations can be inverted and then

implemented in reverse order to produce an Inverse
Cipher for the AES Algorithm. The individual trans-
formations used in the Inverse Cipher are InvShif-
tRows(), InvSubBytes(), AddRoundKey() and InvMix-
Columns(). The last round is slightly different because
InvMixColumns() is not present.

In the Inverse Cipher the sequence of transforma-
tions differs from that of the Cipher while the form of
the Key Schedule for encryption and decryption remains
the same.

However, several properties of the AES Algorithm
allow for an Equivalent Inverse Cipher (Daemen and
Rijmen, 1999) that has the same sequence of transfor-
mations as the cipher. This is accomplished with a
change in the Key Schedule. There are two properties
that allow for this Equivalent Inverse Cipher. On one
hand, SubBytes() and ShiftRows() transformations com-
mute and the same is true for their inverses. On the
other hand, the column mixing operation and its inverse
are linear with respect to the column input. Then the
order of AddRoundKey() and InvMixColumns() trans-
formations can be reversed, provided that the columns
of the decryption Key Schedule are modified using the
InvMixColumns() transformation:

)()(
)(

RoundkeymnsInvMixColustatemnsInvMixColu
RoundkeystatemnsInvMixColu

⊕
=⊕ (1)

Given these changes, the resultant EquivalentInverse
Cipher offers a more efficient structure than the Inverse
Cipher. In this way the amount of extra resources that
must be added to the original cipher perform both op-
erations, encryption and decryption, is reduced. (Lib-
eratori and Bonadero, 2005).

III. ARCHITECTURE OPTIONS
Rijndael is a block cipher with a basic looping architec-
ture whereby data is iteratively passed through a round
function. There are several architectural options to yield
optimized implementations (Biham, 1999; Elbirt et al,
2001).
Basic Achitecture: When examining AES principal as-
pects, it is obvious that an implementation of the fully
128 data path stream could encrypt 128 bits per cycle
(Gaj and Chodowiec, 2001) as shown in Fig. 4. One
round of the cipher is implemented using combinational
logic, one register and an input multiplexer. Such an
implementation will encrypt 128 bits per clock cycle
and consume many resources in terms of area. It will
require a large amount of I/O pins and will not fit on
low target FPGA.

Figure 4 – Basic Architecture
Inner pipelining: In this architecture extra registers are
added in the middle of the combinational logic, so that
several blocks of data can be processed by the cipher at
the same time, as depicted in Fig. 5. Circuit throughput
is improved and area is increased.

Figure 5 – Inner pipelining.

s0,0 s0,1 s,0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

 s’1,1 s1,1

SubBytes

s0,0 s0,1 s,0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3 0 s3 1 s3 2 s3 3

s0,0 s0,1 s0,2 s0,3
s1,1 s1,2 s1,3 s1,0
s2,2 s2,3 s2,0 s2,1
s3 3 s3 0 s3 1 s3 2

s0,0 s0,1 s,0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

MixColumns

s0,1
s1,1
s2,1
s3,1

s’0,1
s’1,1
s’2,1
s’3,1

MUX

....register

1 round

pipeline 1= round
1

MUX

...register 1

register k
…… 1

pipeline k= round
k

M. C. LIBERATORI, J. C. BONADERO

73

Loop Unrolling (LU-k): In this case the combinational
part of the basic architecture implements k rounds of the
cipher instead of a single round. An increase in speed is
obtained at the cost of circuit area.
Proposed Architecture: In a minimum configuration
(Fischer, 2000), the cipher should use as few memory
blocks as possible and a basic interface with a host sys-
tem as to allow its adaptation to a wide range of propos-
als. The provided embedded RAM is used to replace the
round key and S-Box hardware. As a result, there is no
key scheduling unit; instead a memory for storing the
internal keys and the circuitry necessary to distribute
these keys is included in the encryption/decryption unit.
As the circuit uses one Embedded Array Block (EAB) for
key and sub-keys storage, only 5 EAB´s are free inside
the selected FPGA. If we choose an internal bus of 16
bits we will need 4 EAB´s to implement S-boxes. Since
one byte is the basic data unit for the Rijndael operations,
the architecture selected to implement the cipher is an 8
bit basic one (Liberatori and Bonadero, 2005). In this
way, only 2 EAB´s are used to implement SubBytes()
operation.

On the other hand, MixColumns() operation is imple-
mented over 4 bytes at a time. In this case we have to
leave the 8 bit internal bus and introduce extra internal
registers such that 4 blocks of the original internal data
unit can be processed together. This is internal pipelining.

A first analysis of the algorithm identifies primary
operations, which leads to the development of the func-
tional units needed. This design strategy is a hierarchical
one, where the basic blocks are implemented and then
composed to obtain the cipher (Pardo and Boluda, 1999).

In the encryption/decryption core, only one round is
implemented and the cipher must iterate ten rounds to
perform an encryption/decryption. Iterative looping (LU-
1) is a subset of loop unrolling (LU-k) where only one
round is unrolled (Gaj and Chodowiec, 2001). This ap-
proach usually minimizes the hardware required for the
implementation and an effort is made to maximize the
speed. Thus, one round is implemented with combinato-
rial logic supplemented with registers, memories and
multiplexers. First, input block of data is fed to the circuit
via the 8-bit input interface and the initial round is exe-
cuted. In this round the input data is XORed with the
Cipher Key. Then the encryption/decryption unit evalu-
ates ten rounds of the algorithm and the result is tempo-
rarily stored in the RAM. A control unit generates control
signals for the other units, solving the problem of the
separation between control and data path logic.

The basic architecture in conjunction with the non-
feedback mode of operation (Stalling, 1999) is easy to
implement and will likely result in smaller circuit area
(Gaj and Chodowiec, 2001). The cipher was designed
keeping in mind the amount of resources shared between
encryption and decryption.

IV. FPGA IMPLENTATION
The FPGA family selected for the present implementa-
tion is Altera Flex 10K, in particular EPF10K20. It is a

low volume device which has only 1152 logic elements
(LEs) and 6 embedded array blocks (EABs). In this de-
sign, the device is part of the UP1 Educational Board of
the University Program Design Laboratory Package
from Altera. MAX+PLUS II (1996) Version 7.21 Stu-
dent Edition is the software used to synthesize a VHDL
(Terés et al., 1997) implementation of the AES algo-
rithm. This tool is also used to perform behavioral and
timing simulations. Although it is tempting to generate
cipher blocks with this automated tool, it has limita-
tions. The high modular language that is integrated into
the MAX+PLUS II System is AHDL. However, the
cipher design is described in VHDL to ensure portabil-
ity. On the other hand, our experience suggests that the
best implementation results are achieved when hand
mapping is used. And this is particularly true in the case
of block cipher circuits that are used to implement algo-
rithms. For this reason we have identified basic ele-
ments and followed a hierarchical design strategy where
basic blocks are combined to create the desired cipher.
 The round transformation data path is shown in Fig.
6.

It consists of one 16x8 RAM (U1), two 256x8 ROM
(U2 and U3), one set of blocks to perform MixCol-
umns()/InvMixColumns() operations with interfaces for
the 8 bit data bus (reg32mix8x8/invreg32mix8x8), an-
other two components to perform the ShiftRows()/Inv
ShiftRows() operations (shift/invshift), one 8-bit EXOR
and six multiplexers. Round Keys for encryp-
tion/decryption are stored in the 256x8 RAM (ramkey).
All keys are loaded before the process begins. The con-
trol unit is a finite state machine with only three states
to manage one initial round, nine similar intermediate
rounds and a final round. It provides multiplexers select
signals and generates control signals for the previously
mentioned round components. The operation mode (en-
cryption/decryption) is indicated to the control unit via
an external signal: encrypt/ decrypt.

In either mode of operation, the input multiplexer,
mux4x8 U0, sequentially receives the 128-bit input data
block, through an 8 bit bus (datain). The circuit proc-
esses this block through the successive rounds and the
final result (plaintext or ciphertext) is stored in the
RAM U1.

In the first round, the AddRoundKey() function is
common to both modes of operation and the original
key (encrypt mode) or the last sub-key (decrypt mode)
is EXORed byte to byte with the input data.

Within each intermediate round, each byte is passed
through the S-Box U2(encrypt) or InvS-Box U3 de-
crypt). These ROMs perform byte substitution, storing
the overall transformation needed in 8 x 256 bits. They
are implemented using two EAB blocks. An 8-bit ad-
dress is the data input and an 8-bit data value is the out-
put. The control unit selects the appropriate bus of the
multiplexer U4.

The results from the SubBytes()/InvSubBytes() op-
eration are temporarily stored in RAM U5 when the
round number is even or in RAM U15 when the round

Latin American Applied Research 37:71-77 (2007)

74

number is odd. These memories are written so that
SubBytes() / InvSubBytes() and ShiftRows()
/InvShiftRows() operations are combined. The compo-
nents U13 and Z13 present the appropriate address

value on the RAM memories address bus. Components
U5 and U15 are read or written in this way.

In the case of encryption, the execution of these

Figure 6 - Round Transformation Data Path for Encryption/Decryption

transformations modifies the address coming from the
control unit via the shift component as it is depicted in
Fig. 7. In the case of decryption, the writing order is
imposed by the invshift component, shown in Fig. 8.

The shift or the invshift component generates the
addresses in either RAM so that it can be written in the
order that is presented in Table 1 (Karri and Kim, 1999).
The control unit generates the addresses to read the
memory. The reading process is a direct one, advancing
from address 0 to address F.

Figure 7 – shift component.

Figure 8 – invshift component

Table 1. ShiftRows() Transformation.
Reading from
SROM

Writing
RAM1

Reading from
SROM

Writing
RAM1

Byte 0 Address 0 Byte 8 Address 8
Byte 1 Address D Byte 9 Address 5
Byte 2 Address A Byte 10 Address 2
Byte 3 Address 7 Byte 11 Address F
Byte 4 Address 4 Byte 12 Address C
Byte 5 Address 1 Byte 13 Address 9
Byte 6 Address E Byte 14 Address 6
Byte 7 Address B Byte 15 Address 3

in1 in2
in3
in4

out1 out2 out3 out4

in1
in2
in3
in4

out1 out2 out3 out4

U2

U3

U4

U5

U15

U1

U7

U
0

U1 U10

U13 Z1

U1U1U1
4

U9

U8

invreg32mix8x8

mux4x8

mux3xmux3x8

in-

Z1 Z1

in-shif shift

mux2x

in-

datainramout

clk
en-
reset

+

S-Box

InvS-
Box mux2x

RAM

RAM

reg32mix8x8

U6
....

8
....

mux2x

....

RAM

CONTRO
L

RAMKE
Y

8

8

4
4

4

4

8

M. C. LIBERATORI, J. C. BONADERO

75

The RAM memory used in this transformation
cannot be reused in the next round because it would be
written at the same time it is being read.

This is the reason of the duplication of the compo-
nents U5 and U15 and its accessories: U11, U13, Z11
and Z13. The multiplexer U16 allows the selection of
the right memory output between even and odd round
numbers.

The MixColumns()/InvMixColumns() transforma-
tions previously described can be written as a circular
matrix multiplication. As a result, in the case of the en-
cryption mode, the four bytes in the column can be re-
placed by the following expressions:
 c3,c2,c1,co,co, ss)({03}.s)({02}.ss' ⊕⊕⊕= (2)

 ccccc sssss ,3,2,1,0,1)}.03({)}.02({' ⊕⊕⊕= (3)

)}.03({)}.02({' ,3,2,1,0,2 ccccc sssss ⊕⊕⊕= (4)

)}.02({)}.03({' ,3,2,1,0,3 ccccc sssss ⊕⊕⊕= (5)
In the case of decryption mode these expressions are

replaced by:
)s}.09({)s}.0({)({0b}.s)({0e}.ss' c3,c2,c1,co,co, ⊕⊕⊕= d (6)

)}.0({)}.0({)}.0({)}.09({' ,3,2,1,0,1 ccccc sdsbsess ⊕⊕⊕= (7)

)}.0({)}.0({)}.09({)}.0({' ,3,2,1,0,2 ccccc sbsessds ⊕⊕⊕= (8)

)}.0({)}.09({)}.0({)}.0({' ,3,2,1,0,3 ccccc sessdsbs ⊕⊕⊕= (9)
A development of these equations allows us to iden-

tify the basic components to perform the mentioned
transformations. Multiplication by x (i.e. 00000010 or
{02}) can be implemented at the byte level as a left shift
and a subsequent conditional EXOR with {1B}. This
operation on bytes is denoted by xtime() (Karri and
Kim, 1999). Multiplication by higher powers of x can
be implemented by repeated application of xtime(). Mul-
tiplication by (1+x) (i.e. 00000011 or {03}) can be
thought of as multiplication by ({01}⊕ {02}). Fig. 9
and Fig 10 shows one basic block to perform MixCol-
umns()operation and its inverse InvMixColumnns().

Figure 9. Basic block to perform MixColumns() Transforma-

tion
Four components like the one shown in Fig. 9, each

with its entries consistent with Eq. (2) to Eq. (5), are
needed to process 32-bit data simultaneously (Liberatori
and Bonadero, 2005). In order to generate four bytes in
one operation, reg32mix8x8 accepts four bytes from
input via a serial to parallel converter register. The re-
sult, one column of the state generated from each input
column, must be converted to the serial form to fit in the
original 8-bit data path (Shim et al., 2002).

Figure 10. Basic block to perform InvMixColumns Transfor-

mation
The same reasoning applies to the inverse transfor-

mation in the decryption mode. Fig 10 shows the basic
block to perform multiplication by constants in the Eq.
(6) to Eq. (9). Four blocks like the one shown in Fig. 10
and a set of four EXORs are needed to perform the In-
vMixColumns() transformation.

V. RESULTS FOR THE ALTERA 10K FAMILY
The parameters used to evaluate the quality of the im-
plementation are logic cells, bits of memory, cipher
speed and Throughput Per LE (TPL).
 The results of the implementation in terms of area
and speed are summarized in Table 2. This table also
presents the results obtained with other hardware im-
plementations of the AES-128, targeted on different
devices manufactured by Altera.
 Altera synthesis tools measure the amount of used
resources in terms of logic cells (LC´s) or logic ele-
ments (LE´s), because they are the basic constructive
block inside any Altera device. Other FPGA manufac-
turers have similar tools that generate the same kind of
reports. The principal difference between the reports
from different manufacturers is the basic element defini-
tion and its interconnection with others of the same
kind. For this reason, the results of the synthesis are
compared with other implementations that have been
targeted on chips from the same manufacturer.
 Another metric used to compare different implemen-
tations is the Throughput Per LE´s (TPL) = Speed /
Area (LE´s). When comparing implementations using
TPL , it is required that the architectures are imple-
mented on the same FPGA. Different FPGAs within the
same family could yield different timing results as a
function of available logic and routing resources, (El-
birt, et al, 2001).
 Panato main design proposal is to produce a small
area device with good performance and internal sub-key
generation. The architecture is implemented in a high
volume FPGA. To guarantee small area the Panato´s
decision is to mix processes of 32 bits and 128 bits. The
design with better TPL uses 66% of the memory re-
sources.
 Mroczkowski´s design contains an internal sub-key
generator, 16 parallel working S-boxes for encryption
or decryption and used an external clock with minimal
period 22 ns ((45,45 kHz) for the encryption chip and
24 ns. (41, 46 kHz) for the decryption chip. The shift
transformation is done by interconnections.

xtime

x3

s0,c

s1,c

s2,c

s3,c

s0,c
´

8
8

8

8 8
8

8

xtime()
8

xtime()

xtime()

8

8

8

8

by-

bytein •{0B}

bytein •{0E}

bytein

bytein • {0D}

Latin American Applied Research 37:71-77 (2007)

76

Table 2. Performance Results for comparison between differ-
ent hardware implementations.

Design Bits
Memo

LE´s Speed
Mbps

TPL x
103

FPGA

Panato et al.
2003 (1)

32768
66%

3222
64%

150 46,55. Acex1K

Panato et
al.2003 (1)

0
0%

7034
35%

197 28 Cyclone

Mroczkowski
(2001) (2)

40960 1032 268 259,68 Flex
10K250A

Mroczkowski
(2001) (3)

40960 2885 248 85,96 Flex
10K250A

Fischer
(2000) (4)

24EAB 3348 179 53,46 Flex 10KE

Fischer
(2000) (5)

12EAB 3320 93.8 28,25 Flex 10KE

Fischer
(2000) (6)

3 EAB 3324 24.3 7,34 Flex 10KE

Our design 6528
53%

957
83%

11 11,49 Flex
10K20

(1) Internal 32-bit /128-bit data path
(2) 128-bit data path for Encryption
 (3) 128-bit data path for Decryption
(4) Fast configuration. 128-bit data path
(5) Fair configuration. 64-bit data path
(6) Minimum configuration. 16-bit data path

 Fischer fast configuration uses as much S-boxes as
possible to increase speed and also stores sub-keys in
EAB. Fair configuration processes 64-bit data words.
Minimum configuration uses as few memory blocks as
possible with a 16-bit internal bus.

From Table 2, the most comparable VHDL imple-
mentation is the Fischer´s Minimum 16-bit data path
(Fischer, 2000). Although it achieves more than the
double of speed when is compared with our design, it
requires almost twice the memory bits and three times
more area in terms of logical cells. Our design offers
better throughput per area, probably as a consequence of
the hand placement and internal bus selection. In our
approach, a small amount of memory is used as a regis-
ter file to store intermediate results, with the data path
performing the basic operations of the cipher/decipher.
A state machine controls the basic 8 bit data path. Such
a sequential approach is usually limited in performance
but offers complete functionality in a small space.

On the other hand, none of the implementations pre-
sented in Table 2 can be synthesized on a device of low
volume, just as Altera Flex 10K20.

In terms of complexity, the operation that requires
more hardware resources as well as computation time is
the InvMixColumns() multiplication. The design deci-
sion of working with an internal 8-bit data path implies
two conversions: 8-bit serial to 32-bit parallel to per-
form the MixColumns()/InvMixColumns() transforma-
tion and 32-bit parallel to 8-bit serial to fit in the origi-
nal 8-bit data path. This is the main limitation of the
cipher performance in terms of speed.

VI. CONCLUSIONS
This paper presents a low area, cost-effective Rijndael
cipher for encryption and decryption using a basic 8-bit
iterative architecture, targeted towards the Altera Flex
10 K family of FPGAs. This architecture is based on
previous work on the cipher design. In this work a de-
cryption core is added, the number of clock cycles re-
quired to encrypt a single block has been reduced and
the amount of hardware resources has been optimized
with respect to the original design (Liberatori and
Bonadero, 2005). The cipher has been synthesized
using Altera MAX+PLUS II Version 7.21 Student Edi-
tion. The algorithm is implemented in VHDL, which led
to the use of bottom-up design and test methodology.
This choice also insures portability of the code to the
devices of other vendors.

The architecture needs fewer logic cells than other
ciphers and uses as few memory blocks as possible. It
has 11 Mbps throughput. The minimum clock period
depends on the access time to memories used and the
frequency of the external clock.

Future work should concentrate on speed perform-
ance.

REFERENCES
Biham, E.: ¨A note on Comparing the AES Candidates¨.

Second AES conference (1999).
Bonadero, J.C., M. Liberatori and H. Villagarcía Wan-

za,¨Expansión de la Clave en Rijndael. Diseño y
Optimización en VHDL¨. XI Reunión de Trabajo
en Procesamiento de la Información y Control, Rio
Cuarto, Argentina, 115-120 (2995)

Daemen, J. and V. Rijmen, AES Proposal: Rijndael¨.
Document version 2. NIST´s AES home page,
http://www.nist.gov/aes. Date: 03/09/99. (1999)

Elbirt, A., W. Yip, B. Chetwynd and C. Paar, ¨An
FPGA Implementation and Performance Evalua-
tion of the AES block cipher candidates algorithm
finalists¨. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 545-557 (2001).

FIPS 197, Federal Information Processing Standards
Publication (FIPS) 197: ¨Specification for the Ad-
vanced Encryption Standard (AES)” NIST´s AES
home page, http://www.nist.gov/aes. November 26
(2001).

FISCHER, V., ¨Realization of the round 2 AES candi-
dates using Altera FPGA¨. http://csrc.nist.gov/ en-
cryption/aes/round2/conf3/aes3papers.html. March
2000.

Gaj, K. and P. Chodowiec, “Comparison of the hard-
ware performance of the AES candidates using re-
configurable hardware”. Proceedings of RSA Secu-
rity Conference - Cryptographer's Track, San Fran-
cisco, CA, 84-99 (2001).

Karri, R. and Y. Kim, ¨Field Programmable Gate Array
implementation of Advanced Encryption Stan-
dard¨. http://www.eeweb.poly.edu/dream-
it/publications/Rijndael.pdf. (2001).

M. C. LIBERATORI, J. C. BONADERO

77

Kerins, T., A Popovici, A. Daly and W. Marnane,
“Hardware encryption engines for e-commerce”.
Proceedings of Irish Signals and Systems Confer-
ence, 89-94 (2002).

Liberatori, M. and J.C. Bonadero, “Minimum Area, low
cost FPGA implementation of AES”. VIII Interna-
tional Symposium on Communications Theory and
Applications, UK, 461-466 (2005).

MAX+PLUS II. Programmable Logic Development
System. VHDL. Altera Corporation. (1996)

Mroczkowski, P., “Implementation of the block cipher
Rijndael using Altera FPGA”. http://csrc.nist.gov/
encryption/aes/round2/comments/20000510-
pmroczkowski.pdf (2001).

Murphy, S. and M. Robshaw, “Essential Algebraic
Structure within AES”. Second NESSIE. New
European Schemes for Signature, Integrity and
Encryption Workshop. September (2001).

Panato, A., M. Barcelos and R. Reis, “A Low Device
Occupation IP to Implement Rijndael Algorithm¨.
http://www.inf.ufrgs.br/%7Epanato/artigos/designf
orum03.pdf. Designer´s Forum. Munich, Germany.
(2003)

Pardo, F. and J. Boluda, VHDL. Lenguaje para síntesis
y modelado de circuitos. Editorial RaMa (1999).

Rijmen, V.: ¨Efficient Implementation of the Rijndael
S-Box¨. CHES 2003, LNCS 2779, 334-350 (2003).

Shim, J., D. Kim, Y. Kang, T. Kwon and J. Choi, “In-
ner-pipelining Rijndael cryptoprocessor with on-
the-fly key scheduler”. http://www.ap-
sic.org/2002/proceedings/2B/2B-3.PDF (2002).

Stallings W.: Cryptography and Network Security, 2nd
Edition, Prentice Hall.(1999).

Terés, L., Y. Torroja, S. Olcoz and E. Villar, VHDL.
Lenguaje Estándar de Diseño Electrónico. Edito-
rial Mc Graw Hill/Interamericana de España,
S.A.U. (1997).

Received: April 14, 2006.
Accepted: September 8, 2006.
Recommended by Special Issue Editors Hilda Larrondo,
Gustavo Sutter.

