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Abstract−− In this paper, we propose a portable 

hardware design that implements a Fast Fourier 
Transform oriented to its reusability as a core. The 
design has parameterized the number of samples 
and the number of the data’s bits. The module has 
been developed using a radix-2 decimation in time 
algorithm of n-point samples. Structural modelling is 
implemented using VHDL to describe, simulate, and 
perform the design. The resulting design is portable 
among different EDA tools and technology inde-
pendent. The system has been synthesized with 
Quartus II from Altera and the performance results 
are presented. 

Keywords−− FFT, VHDL, reusability, portable, 
EDA tools, Altera. 

I. INTRODUCTION 
Nowadays semiconductor technology is able to create 
very complex devices that can enclose a complete sys-
tem in a single chip (SoC). If the system is created from 
scratch, achieving the desired performance is costly and 
time consuming. To meet the tight time-to-market re-
quirement, the electronic design uses pre-designed intel-
lectual property (IP) cores as a common practice. These 
cores may be parametrizable and customizable to be 
synthesized in a large application specification. They 
are available to the designer from heterogeneous 
sources, design team, CAD tool libraries, CAD tool 
independent libraries, etc.  

One of the areas that major demands of application 
specific circuits design is digital signal processing 
(DSP). Fast Fourier Transform is a computationally 
intensive DSP function, widely used in many applica-
tions.  

Since the pioneering work by Cooley and Tukey 
(Cooley and Tukey, 1965), a lot of work has been done 
on the FFT algorithm such as the radix-2m algorithm 
and the split radix algorithm (Brigham, 1998; Wino-
grad, 1976; Duhamel and Hallmann, 1984). Among 
them, the radix-2 and radix-4 algorithms have been used 
mostly for practical applications due to their simple 
structures.  

Most of the implementations and benchmarking of 
FFT algorithms has been done using general purpose 
processors, DSP processors and dedicated FFT. In this 

paper, we present a radix-2 Fast Fourier Transform ar-
chitecture design, under the point of view of its reusabil-
ity to be embedded in different applications. The design 
has been modelled in VHDL according to the restric-
tions and recommendations for high level synthesis 
(Keating and Bricand, 2002). The resulting design is 
portable among different EDA tools and technology 
independent. 

II. FAST FOURIER TRANSFORM 
The N-point Discrete Fourier Transform (DFT) of a 
finite duration sequence x(n) is defined  as follows. 
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where )/2( NjeW π−=  is referred as the twiddle factor, 
N is the transform size and j = √-1. 

The FFT is an efficient algorithm to compute the 
DFT and its inverse (Cooley and Tukey, 1965; Brigham, 
1998).  It generally falls into two classes: Decimation In 
Time (DIT), and Decimation In Frequency (DIF). The 
DIT algorithm first rearranges the input elements in bit-
reversed order and then builds the output transform. The 
DIF algorithm first transforms and then rearranges the 
output values. The basic idea of these algorithms is to 
break up an N–point DFT transform into successive 
smaller and smaller transform known as a butterfly (ba-
sic computational element). The smallest transform used 
is a 2-point DFT known as radix-2, it processes groups 
of 2 samples. The combination of two stages of radix-2 
in one stage constitute radix-4 algorithms, it processes 
groups of 4 samples. There are also other decomposition 
schemes known as split-radix algorithms (Duhamel and 
Hallmann, 1984).  

The calculations implied in the basic computational 
element (butterfly) for radix-2 in DIT algorithm will be 
introduced next.  A and B are two complex numbers 
represented as: 

 A = x + jX  (2) 
 B = y + jY  (3) 

where x and y are real parts and X and Y are imaginary 
of them. “A transform (A’)” and “B transform (B’)” are 
calculated as shown the next equations: 
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 A’ = x’ + jX’ = A + B WN
k  (4) 

 B’ = y’ + jY’ = A - B WN
k  (5) 

 WN
k = cos(2πk/N) – jsin(2πk/N)  (6) 

Taking into consideration (2), (3) and (6), the trans-
forms may be written as: 

A’ = [(x + ycos(2πk/N) + Ysin(2πk/N)) + j(X + 
Ycos(2πk/N) - ysin(2πk/N))]  (7) 
B’ = [(x - ycos(2πk/N) - Ysin(2πk/N)) + j(X - 
Ycos(2πk/N) + ysin(2πk/N))]  (8) 

where k depends of the number of stages and the num-
ber of samples. 

III. VHDL MODELING 
The objective of this paper is to implement in an effi-
cient manner the equations (7) and (8) having in mind 
the reusability of the resulting design as embedded core 
in a possible wide range of applications. Then the num-
ber of samples N and the number of bits to coding each 
sample must be considered as generic parameters in 
order to adapt the size to the specific application and to 
control the quantization errors when using fixed point 
arithmetic. Also the degradation performance should be 
considered with the increment of the number of samples 
N. All components of the hardware used in this paper 
have been modelled in VHDL according to the restric-
tions and recommendations for high level behavioural 
synthesis (Keating and Bricand, 2002). 

A. General Description 
The FFT-N core interface structure is shown in Fig. 1 
and its associated pin functionality is described in Table 
I. This core is able to compute the direct or inverse FFT.  

The input data to the algorithm is a vector of  N 
complex values with b bits for the real part and b bits 
for the imaginary part representing numbers in two’s 
complement. In our work we have considered b = 16, as 
default value. 

CLK DONE

START FFT1_OUT[p:0]

FFT2_OUT[p:0]SAMPLES[p:0]

 
Fig. 1. FFT-N  core interface. 

 
Table I. I/O pins functionality description. 
Signal Name Dir Description 
CLK Input Master clock (active rising edge) 
START Input Start processing (active high). This signal

must be synchronized with clk. 
SAMPLES[p:0] Input Real component of the input data. The

imaginary component is initially stored in
RAM.  

DONE Output FFT finished (active high).  
FFT1_OUT[p:0] Output Real component of the FFT result.  The

values are in two’s complement format. 
FFT2_OUT[p:0] Output Imaginary component of the FFT result.

The values are in two’s complement for-
mat. 

The complete operation of the FFT processor is par-
titioned into three main processes. These are the DATA 
load, COMPUTE and RESULT unload. The processing 
cycle starts with the DATA load process, when sampled 
data is read in and stored in a RAM memory. During the 
COMPUTE process the FFT is computed on the stored 
data. And finally the RESULT unload process make the 
FFT results available at its output, ready to be used by 
another application.  A block diagram of the general 
structure is shown in Fig. 2. It has four basic blocks:  

An internal double port RAM memory to hold the 
values of the input samples, intermediate operations and 
results, a butterfly unit consisting of radix-2 butterflies 
and two ROM memories to generate the twiddle factors, 
the address unit to provide the synchronized addresses 
to extract the data from the RAM memory and twiddle 
factors, and finally a control unit. 

CONT ROL_UNIT RAM

BUT T ERFLY_UNIT
ADDRESS_UNIT

D
A

T
A

re
we

address_rom

ABA'B'start rd
1

rd
2w
r1

w
r2

 
Fig. 2. Blocks general structure 

B. RAM 
This auxiliary internal memory has different types of 
information as the computation of the algorithm pro-
gresses.  Initially holds the complete input data vector. 
Later on the result of a butterfly process between two 
samples overwrites the input data positions. And finally 
during the OUTPUT process, bit reversed address is 
given to the RAM and it reorders the final results in it 
accordingly.  

The real and imaginary part of a data share the same 
memory addresses, so in the default case the memory 
size will be N x 32 bits. The dual port capability has the 
advantage of doing available two data samples at the 
same time which is very convenient to calculate the 
radix-2 algorithm. 

C. Butterfly Unit 
A butterfly unit block consisting of (N/2) butterflies 
with the basic structure shown in Figure 3. Each one of 
them containing:  two (N/2) x 16-bits ROMs to store the 
sine and cosine of the twiddled factors, four 16 x 16 
multipliers in two’s complement, six 32-bits accumula-
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tors and two special operators to adequate the data for-
mat. The arithmetic operations involved in this block 
are shown in Table II and are performed according to a 
pipeline data flow structure. First the cosine and sine 
from the ROMs and the data inputs are read (R). Then, 
the read elements must be multiplied (x). Next the four 
partial products are added or subtracted and truncated 
(±) to 16 bits default data format. The truncated real and 
imaginary parts are concatenated (&) to assembly the 32 
bits data format. And finally these results are written to 
in the RAM (W). The scheduled operations to calculate 
a butterfly demands six instants of time. 

ROM_COS XX

& &

+

+ -

ROM_SIN

XX

-

+ -

Yy

Y y

x x

X X

A' B'

 
Fig. 3. Butterfly structure. 

 
Table II. Operations scheduling in the butterfly block. 
 1 2 3 4 5 6 

cos      
sin      
A      

R 
(Read data) 

B      
 m1=ycos     
 m2=Ysin     
 m3=ysin     

x 
(Partial 

products) 
 m4=Ycos     
  s1=m1+m2    
  s2=m4–m3    
   s3=x+s1   
   s4=x–s1   
   s5=X+s2   

± 
(Terms 

grouping 
and trunca-

tion) 

   s6=X–s2   
    A’=s3&s5  & 

 (Format 
Recovery) 

    B’=s4&s6  

     A
’ 

W  
 (Write 

results in 
RAM) 

     B
’ 

 

D. Address and control unit 
The purpose of the address unit is to provide the RAM 
and the ROMs with the correct addresses to access to its 
contents. It also keeps track of which butterfly is being 
computed in each stage. For an N-point complex FFT 
there are s stages, where s = log2N, each stage consists 
of (N/2) butterflies with the structure described before.  

The correct address depends on the mode of opera-
tion (input, output or computation). In the input and 
output process the address goes from 0 to N-1. But in 
the FFT computation process it goes from 0 to (N/2) -1 
and carries on this process s times, one per stage. As 
mentioned, the result of FFT computation is written 
back into the same location as it was read. However, 
there is a latency of one clock cycle. For example, if 
“B” is read from the RAM during cycle “3”, “B trans-
form” is written into the same location after one cycle, 
which is during cycle “4”. So the read address is de-
layed in this cycle.  

The block diagram of this unit is shown in Fig. 4. It 
includes the following sub-blocks: a base index, delay 
units and MUX’s to manage RAM memory, a ro-
madd_unit to generate the ROM memory addresses and 
an address_count block to manage the stages account. 
The address_count block provides the base_index and 
romadd_unit blocks with the stage in which FTT is be-
ing computed. During the input and output process the 
base index block goes from 0 to N-1 and this value is 
transfer to a MUX_add to generate reading address rd1, 
rd2 and to a delay unit to generate writing address wr1, 
wr2. During the FFT computation process the base in-
dex block goes from 0 to (N/2)-1 and carries on this 
process “s” times, one per stage. The romadd_unit 
blocks provides the ROM with the correct address, for 
collecting the sine and cosine coefficients, according to 
the stage in which FFT is found. 

The control unit that supervises all the operations of 
the hardware is implemented as a finite state machine 
having twelve states. 

ROMADD_UNIT

BASE_INDEX

ad
dr
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ra
m

ad
dr
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ra
m

MUX_ADD

DELAY

MUX_ADD

MUX_ADD

MUX_ADD

ADDRESS_COUNT

stage

stage

wr1

wr2

rd2

rd1

DELAY

address_rom

 
Fig.4. Address unit scheme 

IV. RESULTS 
The VHDL code has been done following the recom-
mendations of the methodology for reuse (Keating and 
Bricand, 2002). No any pre-designed component avail-
able from the libraries of any EDA vendor have been 
used, which makes possible the portability among dif-
ferent synthesis tools and the technology independence. 
The system has been simulated and synthesized with the 
EDA tools Quartus II from Altera for evaluation per-
formance purposes. The selected device was the 
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EP2S60F1020C4 from Stratix II family. In Table III the 
max frequency of operation and the demanded resources 
in terms of Logic Elements and DSP are shown for the 
complete system synthesis and for each block of the 
general structure shown in Figure 2. The results pre-
sented are for N = 8, 64 and 256 samples. As is obvious, 
the RAM’s size is proportionally increased according to 
the number of samples N. The sizes of Butterfly and 
Address unit blocks augment very slightly as the num-
ber of samples N increments. This characteristic is very 
much appropriated for reusability purposes. The control 
unit has the same size for any number of samples. The 
total conversion time of the 8-point FFT is 39 clock 
cycles. The clock cycles depend on the chip used; in this 
paper, the clock cycle of the chip is 93.86 MHz, given a 
0.42 μs conversion time. The max frequency of conver-
sion is obviously degrading as the number of samples 
increases but not drastically. This operation frequency 
could be notably improved when using library elements 
of target technology. 
 
Table III. Synthesis results for the complete system and par-

tial blocks. 
 LE DSP LE DSP LE DSP 
 8-point 64-point 256-point 

RAM 477 0 3651 0 14540 0 
Butterfly 320 32 335 32 444 32 
Address unit 92 0 263 0 873 0 
Control unit 17 0 17 0 17 0 
Total 906 32 4266 32 15874 32 
F.Max (MHz) 93.86 MHz 90.88 MHz 86.61 MHz 
 

V. CONCLUSIONS 
In this paper, we have presented a preliminary design of 
a portable and technological independent hardware de-
sign that implements a FFT oriented to its reusability as 
a core for DSP applications. Fast Fourier Transform 
module has been developed using radix-2 decimation in 
time algorithm of N-point samples. We have borne 
Hardware Description Languages restrictions for syn-
thesis in mind. The design has parameterized the num-
ber of samples and the number of the data’s bits. The 
values of the twiddle factors to be located in ROMs 
must be obtained off-line, and then the reusability of 
this structure will need some changes in its values. The 
performance of the design, excluding the size of the 
RAM memory, presents a slightly degradation as the 
number samples increments which is very adequate for 
reusability purposes. 
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