
Latin American Applied Research 37:79-82 (2007)

79

A PORTABLE HARDWARE DESIGN OF A FFT ALGORITHM

C. GONZÁLEZ-CONCEJERO, V. RODELLAR, A. ÁLVAREZ-MARQUINA, E. MARTÍNEZ
DE ICAYA and P. GOMEZ-VILDA †

† Departamento de Arquitectura y Tecnología de Sistemas Informáticos.
Grupo de investigación en informática aplicada al procesamiento de señal e imagen.

Facultad de Informática - Universidad Politécnica de Madrid
Campus de Montegancedo s/n – Boadilla del Monte.

28630 (Madrid) – SPAIN
coral@junipera.datsi.fi.upm.es

Abstract−− In this paper, we propose a portable

hardware design that implements a Fast Fourier
Transform oriented to its reusability as a core. The
design has parameterized the number of samples
and the number of the data’s bits. The module has
been developed using a radix-2 decimation in time
algorithm of n-point samples. Structural modelling is
implemented using VHDL to describe, simulate, and
perform the design. The resulting design is portable
among different EDA tools and technology inde-
pendent. The system has been synthesized with
Quartus II from Altera and the performance results
are presented.

Keywords−− FFT, VHDL, reusability, portable,
EDA tools, Altera.

I. INTRODUCTION
Nowadays semiconductor technology is able to create
very complex devices that can enclose a complete sys-
tem in a single chip (SoC). If the system is created from
scratch, achieving the desired performance is costly and
time consuming. To meet the tight time-to-market re-
quirement, the electronic design uses pre-designed intel-
lectual property (IP) cores as a common practice. These
cores may be parametrizable and customizable to be
synthesized in a large application specification. They
are available to the designer from heterogeneous
sources, design team, CAD tool libraries, CAD tool
independent libraries, etc.

One of the areas that major demands of application
specific circuits design is digital signal processing
(DSP). Fast Fourier Transform is a computationally
intensive DSP function, widely used in many applica-
tions.

Since the pioneering work by Cooley and Tukey
(Cooley and Tukey, 1965), a lot of work has been done
on the FFT algorithm such as the radix-2m algorithm
and the split radix algorithm (Brigham, 1998; Wino-
grad, 1976; Duhamel and Hallmann, 1984). Among
them, the radix-2 and radix-4 algorithms have been used
mostly for practical applications due to their simple
structures.

Most of the implementations and benchmarking of
FFT algorithms has been done using general purpose
processors, DSP processors and dedicated FFT. In this

paper, we present a radix-2 Fast Fourier Transform ar-
chitecture design, under the point of view of its reusabil-
ity to be embedded in different applications. The design
has been modelled in VHDL according to the restric-
tions and recommendations for high level synthesis
(Keating and Bricand, 2002). The resulting design is
portable among different EDA tools and technology
independent.

II. FAST FOURIER TRANSFORM
The N-point Discrete Fourier Transform (DFT) of a
finite duration sequence x(n) is defined as follows.

 ∑
−

=

=
1

0
)()(

N

n

nkWnxkX k= 0,1,… N-1 (1)

where)/2(NjeW π−= is referred as the twiddle factor,
N is the transform size and j = √-1.

The FFT is an efficient algorithm to compute the
DFT and its inverse (Cooley and Tukey, 1965; Brigham,
1998). It generally falls into two classes: Decimation In
Time (DIT), and Decimation In Frequency (DIF). The
DIT algorithm first rearranges the input elements in bit-
reversed order and then builds the output transform. The
DIF algorithm first transforms and then rearranges the
output values. The basic idea of these algorithms is to
break up an N–point DFT transform into successive
smaller and smaller transform known as a butterfly (ba-
sic computational element). The smallest transform used
is a 2-point DFT known as radix-2, it processes groups
of 2 samples. The combination of two stages of radix-2
in one stage constitute radix-4 algorithms, it processes
groups of 4 samples. There are also other decomposition
schemes known as split-radix algorithms (Duhamel and
Hallmann, 1984).

The calculations implied in the basic computational
element (butterfly) for radix-2 in DIT algorithm will be
introduced next. A and B are two complex numbers
represented as:

 A = x + jX (2)
 B = y + jY (3)

where x and y are real parts and X and Y are imaginary
of them. “A transform (A’)” and “B transform (B’)” are
calculated as shown the next equations:

Latin American Applied Research 37:79-82 (2007)

80

 A’ = x’ + jX’ = A + B WN
k (4)

 B’ = y’ + jY’ = A - B WN
k (5)

 WN
k = cos(2πk/N) – jsin(2πk/N) (6)

Taking into consideration (2), (3) and (6), the trans-
forms may be written as:

A’ = [(x + ycos(2πk/N) + Ysin(2πk/N)) + j(X +
Ycos(2πk/N) - ysin(2πk/N))] (7)
B’ = [(x - ycos(2πk/N) - Ysin(2πk/N)) + j(X -
Ycos(2πk/N) + ysin(2πk/N))] (8)

where k depends of the number of stages and the num-
ber of samples.

III. VHDL MODELING
The objective of this paper is to implement in an effi-
cient manner the equations (7) and (8) having in mind
the reusability of the resulting design as embedded core
in a possible wide range of applications. Then the num-
ber of samples N and the number of bits to coding each
sample must be considered as generic parameters in
order to adapt the size to the specific application and to
control the quantization errors when using fixed point
arithmetic. Also the degradation performance should be
considered with the increment of the number of samples
N. All components of the hardware used in this paper
have been modelled in VHDL according to the restric-
tions and recommendations for high level behavioural
synthesis (Keating and Bricand, 2002).

A. General Description
The FFT-N core interface structure is shown in Fig. 1
and its associated pin functionality is described in Table
I. This core is able to compute the direct or inverse FFT.

The input data to the algorithm is a vector of N
complex values with b bits for the real part and b bits
for the imaginary part representing numbers in two’s
complement. In our work we have considered b = 16, as
default value.

CLK DONE

START FFT1_OUT[p:0]

FFT2_OUT[p:0]SAMPLES[p:0]

Fig. 1. FFT-N core interface.

Table I. I/O pins functionality description.
Signal Name Dir Description
CLK Input Master clock (active rising edge)
START Input Start processing (active high). This signal

must be synchronized with clk.
SAMPLES[p:0] Input Real component of the input data. The

imaginary component is initially stored in
RAM.

DONE Output FFT finished (active high).
FFT1_OUT[p:0] Output Real component of the FFT result. The

values are in two’s complement format.
FFT2_OUT[p:0] Output Imaginary component of the FFT result.

The values are in two’s complement for-
mat.

The complete operation of the FFT processor is par-
titioned into three main processes. These are the DATA
load, COMPUTE and RESULT unload. The processing
cycle starts with the DATA load process, when sampled
data is read in and stored in a RAM memory. During the
COMPUTE process the FFT is computed on the stored
data. And finally the RESULT unload process make the
FFT results available at its output, ready to be used by
another application. A block diagram of the general
structure is shown in Fig. 2. It has four basic blocks:

An internal double port RAM memory to hold the
values of the input samples, intermediate operations and
results, a butterfly unit consisting of radix-2 butterflies
and two ROM memories to generate the twiddle factors,
the address unit to provide the synchronized addresses
to extract the data from the RAM memory and twiddle
factors, and finally a control unit.

CONT ROL_UNIT RAM

BUT T ERFLY_UNIT
ADDRESS_UNIT

D
A

T
A

re
we

address_rom

ABA'B'start rd
1

rd
2w
r1

w
r2

Fig. 2. Blocks general structure

B. RAM
This auxiliary internal memory has different types of
information as the computation of the algorithm pro-
gresses. Initially holds the complete input data vector.
Later on the result of a butterfly process between two
samples overwrites the input data positions. And finally
during the OUTPUT process, bit reversed address is
given to the RAM and it reorders the final results in it
accordingly.

The real and imaginary part of a data share the same
memory addresses, so in the default case the memory
size will be N x 32 bits. The dual port capability has the
advantage of doing available two data samples at the
same time which is very convenient to calculate the
radix-2 algorithm.

C. Butterfly Unit
A butterfly unit block consisting of (N/2) butterflies
with the basic structure shown in Figure 3. Each one of
them containing: two (N/2) x 16-bits ROMs to store the
sine and cosine of the twiddled factors, four 16 x 16
multipliers in two’s complement, six 32-bits accumula-

C. GONZÁLEZ-CONCEJERO, V. RODELLAR, A. ÁLVAREZ-MARQUINA, E. MARTÍNEZ DE ICAYA, P. GOMEZ-VILDA

81

tors and two special operators to adequate the data for-
mat. The arithmetic operations involved in this block
are shown in Table II and are performed according to a
pipeline data flow structure. First the cosine and sine
from the ROMs and the data inputs are read (R). Then,
the read elements must be multiplied (x). Next the four
partial products are added or subtracted and truncated
(±) to 16 bits default data format. The truncated real and
imaginary parts are concatenated (&) to assembly the 32
bits data format. And finally these results are written to
in the RAM (W). The scheduled operations to calculate
a butterfly demands six instants of time.

ROM_COS XX

& &

+

+ -

ROM_SIN

XX

-

+ -

Yy

Y y

x x

X X

A' B'

Fig. 3. Butterfly structure.

Table II. Operations scheduling in the butterfly block.
 1 2 3 4 5 6

cos
sin
A

R
(Read data)

B
 m1=ycos
 m2=Ysin
 m3=ysin

x
(Partial

products)
 m4=Ycos
 s1=m1+m2
 s2=m4–m3
 s3=x+s1
 s4=x–s1
 s5=X+s2

±
(Terms

grouping
and trunca-

tion)

 s6=X–s2
 A’=s3&s5 &

 (Format
Recovery)

 B’=s4&s6

 A
’

W
 (Write

results in
RAM)

 B
’

D. Address and control unit
The purpose of the address unit is to provide the RAM
and the ROMs with the correct addresses to access to its
contents. It also keeps track of which butterfly is being
computed in each stage. For an N-point complex FFT
there are s stages, where s = log2N, each stage consists
of (N/2) butterflies with the structure described before.

The correct address depends on the mode of opera-
tion (input, output or computation). In the input and
output process the address goes from 0 to N-1. But in
the FFT computation process it goes from 0 to (N/2) -1
and carries on this process s times, one per stage. As
mentioned, the result of FFT computation is written
back into the same location as it was read. However,
there is a latency of one clock cycle. For example, if
“B” is read from the RAM during cycle “3”, “B trans-
form” is written into the same location after one cycle,
which is during cycle “4”. So the read address is de-
layed in this cycle.

The block diagram of this unit is shown in Fig. 4. It
includes the following sub-blocks: a base index, delay
units and MUX’s to manage RAM memory, a ro-
madd_unit to generate the ROM memory addresses and
an address_count block to manage the stages account.
The address_count block provides the base_index and
romadd_unit blocks with the stage in which FTT is be-
ing computed. During the input and output process the
base index block goes from 0 to N-1 and this value is
transfer to a MUX_add to generate reading address rd1,
rd2 and to a delay unit to generate writing address wr1,
wr2. During the FFT computation process the base in-
dex block goes from 0 to (N/2)-1 and carries on this
process “s” times, one per stage. The romadd_unit
blocks provides the ROM with the correct address, for
collecting the sine and cosine coefficients, according to
the stage in which FFT is found.

The control unit that supervises all the operations of
the hardware is implemented as a finite state machine
having twelve states.

ROMADD_UNIT

BASE_INDEX

ad
dr

es
s_

ra
m

ad
dr

es
s_

ra
m

MUX_ADD

DELAY

MUX_ADD

MUX_ADD

MUX_ADD

ADDRESS_COUNT

stage

stage

wr1

wr2

rd2

rd1

DELAY

address_rom

Fig.4. Address unit scheme

IV. RESULTS
The VHDL code has been done following the recom-
mendations of the methodology for reuse (Keating and
Bricand, 2002). No any pre-designed component avail-
able from the libraries of any EDA vendor have been
used, which makes possible the portability among dif-
ferent synthesis tools and the technology independence.
The system has been simulated and synthesized with the
EDA tools Quartus II from Altera for evaluation per-
formance purposes. The selected device was the

Latin American Applied Research 37:79-82 (2007)

82

EP2S60F1020C4 from Stratix II family. In Table III the
max frequency of operation and the demanded resources
in terms of Logic Elements and DSP are shown for the
complete system synthesis and for each block of the
general structure shown in Figure 2. The results pre-
sented are for N = 8, 64 and 256 samples. As is obvious,
the RAM’s size is proportionally increased according to
the number of samples N. The sizes of Butterfly and
Address unit blocks augment very slightly as the num-
ber of samples N increments. This characteristic is very
much appropriated for reusability purposes. The control
unit has the same size for any number of samples. The
total conversion time of the 8-point FFT is 39 clock
cycles. The clock cycles depend on the chip used; in this
paper, the clock cycle of the chip is 93.86 MHz, given a
0.42 μs conversion time. The max frequency of conver-
sion is obviously degrading as the number of samples
increases but not drastically. This operation frequency
could be notably improved when using library elements
of target technology.

Table III. Synthesis results for the complete system and par-

tial blocks.
 LE DSP LE DSP LE DSP
 8-point 64-point 256-point

RAM 477 0 3651 0 14540 0
Butterfly 320 32 335 32 444 32
Address unit 92 0 263 0 873 0
Control unit 17 0 17 0 17 0
Total 906 32 4266 32 15874 32
F.Max (MHz) 93.86 MHz 90.88 MHz 86.61 MHz

V. CONCLUSIONS
In this paper, we have presented a preliminary design of
a portable and technological independent hardware de-
sign that implements a FFT oriented to its reusability as
a core for DSP applications. Fast Fourier Transform
module has been developed using radix-2 decimation in
time algorithm of N-point samples. We have borne
Hardware Description Languages restrictions for syn-
thesis in mind. The design has parameterized the num-
ber of samples and the number of the data’s bits. The
values of the twiddle factors to be located in ROMs
must be obtained off-line, and then the reusability of
this structure will need some changes in its values. The
performance of the design, excluding the size of the
RAM memory, presents a slightly degradation as the
number samples increments which is very adequate for
reusability purposes.

ACKNOWLEDGMENT
This research is being carried out under the following
projects of Programa Nacional de las Tecnologias de la
Información y de las Comunicaciones from the Ministry
of Science and Technology of Spain: TIC2002-02273
and TIC2003-08756.

REFERENCES
Cooley, J.W., and J.W. Tukey, “An algorithm for the

machine calculation of the complex Fourier series”,
Math. of Computation, 19, 297-301 (1965).

Brigham, E.O., The Fast Fourier Transform and its Ap-
plications. Prentice Hall (1998).

Winograd S., “On computing the discrete Fourier trans-
form”, Proc. Nat. Acad. Sci. U.S, 73, 1005-1006,
(1976).

Duhamel, P., and H. Hallmann, “Split Radix FFT algo-
rithm”, IEEE Electronic Letters, 20, 14-16, (1984).

Keating, M. and P. Bricand, Reuse Methodology Man-
ual: For System-on-a-Chip Designs. Third Edition.
Kluwer Academic Publishers (2002).

Received: April 14, 2006.
Accepted: September 8, 2006.
Recommended by Special Issue Editors Hilda Larrondo,
Gustavo Sutter.

