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Abstract  Several algorithms for computing x 
mod m are presented, among others the reduction 
mod Bk-a, the pre-computation of Bi.k mod m, a gen-
eralized version of the Barrett algorithm and a modi-
fied version of the same Barrett algorithm. The four 
mentioned algorithms, as well as the classical integer 
non-restoring division algorithm, have been synthe-
sized and implemented within xc3s4000 components.  
Keywords  Arithmetic in FPGA, Galois Field, 

Cryptography, modular operation. 

I. INTRODUCTION 
Arithmetic operations over the finite ring Zm = {0, 1, ..., 
m-1} are used as computation primitives for executing 
numerous cryptographic algorithms, especially those 
related with the use of public keys (asymmetric cryptog-
raphy). Classical examples are ciphering / deciphering, 
authentication and digital signature protocols based on 
RSA-type or elliptic curve algorithms. One of the basic 
operations is the modulo m reduction. Combined with 
operations over the set Z of integers (sum, subtraction, 
product, and so on) it allows to perform the same opera-
tions over Zm. A straightforward solution consists of 
using an integer division algorithm. Nevertheless, more 
efficient algorithms have been proposed (Blake et al,
2002; Hankerson et al, 2004). In this paper several algo-
rithms are described, namely the reduction mod Bk-a,
the pre-computation of Bi.k mod m, a generalized version 
of the Barrett algorithm and a modified version of the 
same Barrett algorithm. The four mentioned algorithms, 
as well as the classical integer non-restoring division 
algorithm, have been synthesized and implemented 
within xc3s4000 components.  

II. ALGORITHM 
In this section the following problem is studied: given 
two naturals x and m, compute z = x mod m.

A.  Integer division 
A straightforward method consists of performing the 
integer division of x by m, that is, 

x = q.m + z, z < m.

For that purpose, any division algorithm can be used, 
for example the non-restoring division algorithm     
(Deschamps et al, 2006). 

Algorithm 1 – Non-restoring reduction 
y := m*(2**(n-k)); 
rems(1) := x - y; 
for i in 1 .. n-k loop 
  if rems(i) < 0 then
    rems(i+1) := 2*rems(i)+ y;
  else
    rems(i+1) := 2*rems (i) - y;
  end if; 
end loop; 
if rems(n-k+1) < 0 then
   z := rems(n-k+1)/(2**(n-k)) + m;
else
   z := rems(n-k+1)/(2**(n-k));
end if; 

The core of the algorithm is an (n-k)-step iteration. If a 
ripple-carry k-bit adder-subtractor is used, the computa-
tion time is about 

time(n,k)   (n-k).k.TFA ,      (1) 

where TFA is the delay of a full-adder. 

B.  Reduction mod Bk-a
Assume that Bk-1 m < Bk, where B is a natural number 

 2. Then m = Bk – a where 1 a Bk – Bk-1.
Compute the following quotients qi and remainders 

ri:
x = q0.Bk + r0,
q0.a = q1.Bk + r1,
q1.a = q2.Bk + r2,          (2) 
...
qs-2.a = qs-1.Bk + rs-1.

Multiply the second equation of (2) by (Bk/a), the third 
one by (Bk/a)2, ... , the last one by (Bk/a)s-1, and sum up 
the s equations; the result is 

x = r0 + r1.(Bk/a) + r2.(Bk/a)2 + ...  
          + rs-1.(Bk/a)s-1 + qs-1.Bk.(Bk/a)s-1.    (3) 

As a < Bk, that is, Bk/a > 1, there exists a minimum 
value of s such that  

x < Bk.(Bk/a)s-1,          (4) 

and thus qs-1 = 0. Let s be the minimum value of s such 
that qs-1 = 0. Notice that if rs-1 = 0 then the last equation 
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of (2), with qs-1 = 0, is qs-2.a  = 0, that is, qs-2 = 0, so that 
s is not the minimum value of s such that qs-1 = 0. Thus 

x = r0 + r1.(Bk/a) + r2.(Bk/a)2 + ... + rs-1.(Bk/a)s-1,
       with rs-1 > 0.          (5) 

By summing up the s equations of system (2), with       
qs-1 = 0, the following relation is obtained: 

x = q0.(Bk-a) + q1.(Bk-a) + ... + qs-2.(Bk-a)
                     + r0 + r1 + ... + rs-1.     (6) 

Define 

r = r0 + r1 + ... + rs-1.         (7) 

According to (6) and (7), 

x r mod m, with m = Bk-a.       (8) 

Comparing (5) with (7) it is obvious that if s > 1, that is, 
if x Bk, then r < x. If r is still greater than or equal to 
Bk, the same method can be used in order to get r’ x
mod m, with r’ < r.  After a finite number of iterations, a 
number r’’ is obtained such that r’’ x mod m and r’’ < 
Bk, so that z = r’’ – q.m where 0 q B-1. In particular, 
if B = 2 then z is either r’’ or r’’-m. To summarize, the 
mod m reduction algorithm, with m = Bk-a, is the fol-
lowing: 

Algorithm 2 – mod m reduction algorithm, with m = Bk-a
r := x mod b**k; q := x/b**k; 
loop
  loop 
    r := r + (q*a mod b**k);
    q := q*a/b**k;
    if q = 0 then exit; end if; 
  end loop; 
  q := r/b**k; r := r mod b**k; 
  if q = 0 then exit; end if; 
end loop;
while r >= m loop r := r-m; end loop;
z := r; 

If B is the base (or a power of the base) of the chosen 
numeration system, then the division by Bk and the mod 
Bk reduction are trivial operations. The only non-trivial 
operations are multiplication by a, sums (remainder 
accumulation) and subtractions (final reduction). The 
number of executions of the internal loop body can be 
estimated as follows: a sufficient condition for qs-1 being 
equal to 0 is (4), which is equivalent to s > (log x – log 
a) / (k.log B - log a). Thus s = (log x – log a) / (k.log B 
- log a) . In particular, if x = Bn-1, that is, the greatest n-
digit B-ary number, then 

s = (n – logBa) / (k – logBa) ,      (9) 

and, assuming that logBa is much smaller than k and n,

s n/k.               (10) 

As regards the reduction rate of the algorithm, that is, 
the relation between an initial value x and the obtained 
value r after a first execution of the internal loop, notice 

that r is smaller than s.Bk, so that the number d(r) of B-
ary digits of r satisfies the condition 

d(r) k + logBs ,            (11) 

where s is approximately equal to (10). Thus d(rmax)
logBn + k – logBk < logBn + k.       
In order to define the size of the variable r = r0 + r1 + ... 
+ rs-1, the following values are previously calculated 
(see (9) and (11)): 

s = (n – log2a) / (k – log2a) , t = log2s ,

so that r can be represented as a (k+t)-bit number.  

The core of the algorithm is an (n/k)-step iteration. Each 
step includes the multiplication of an (n-k)-bit number q
by a k-bit number a, and the sum of a (k+t)-bit number r
and a k-bit number. The computation time of the multi-
plier depends on the particular value of a. Nevertheless, 
in order to get an estimation of the computation time, it 
will be assumed that a parallel multiplier is used. Its 
computation time is about ((n-k)+2.k-2).TFA  (n+k).TFA
(Deschamps et al, 2006). The step duration is approxi-
mately equal to (n+k).TFA + (k+t).TFA. If  n+2.k >> t
then the computation time is approximately equal to 

time(n,k)  (n/k).( n+2.k).TFA.         (12) 

C.  Pre-computation of Bi.k mod m
Assume again that Bk-1 m < Bk, and that x is repre-
sented in base Bk, i.e. 

x = xs-1.B(s-1).k + xs-2.B(s-2).k + ... + x1.Bk + x0,
       where xs-1 > 0.            (13) 

The following values must have been previously com-
puted: 

b0 = 1, b1 = Bk mod m, b2 = B2.k mod m, ...  
          , bs-1 = B(s-1).k mod m.

Then x xs-1.bs-1 + xs-2.bs-2 + ... + x1.b1 + x0.b0 mod m,
and the problem is reduced to the computation of r mod 
m where 

r = xs-1.bs-1 + xs-2.bs-2 + ... + x1.b1 + x0.b0.            (14) 

Observe that bi = (Bi.k mod m) < m < Bk Bi.k , i > 0. 
Comparing (14) with (13), it is obvious that if s > 1, that 
is, if x Bk, then r < x. If r is still greater than or equal 
to Bk, the same method can be used in order to get r’ x
mod m with r’ < r. After a finite number of iterations, a 
number r’’ is obtained such that r’’ x mod m and r’’ < 
Bk, so that z = r’’ – q.m where 0 q B-1. In particular, 
if B = 2 then z is either r’’ or r’’-m. 

To summarize, the mod m reduction algorithm, with 
pre-computation of Bi.k mod m, is the following (it is 
assumed that the constants bi = Bi.k mod m have been 
previously calculated): 
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Algorithm 3 – mod m reduction, with pre-computation of 
Bi.k mod m
main: loop
--represent x as an s-digit number: 

  vector_x(0) := x mod base**k;
  q := x/base**k; 
  for i in 1 .. s-1 loop
    vector_x(i) := q mod base**k;
    q := q/base**k;
  end loop; 
--end of computation detection: 

  one_digit := true; 
  for i in 1 .. s-1 loop
    if vector_x(i) /= 0 then
      one_digit := false; 
      exit;
    end if; 
  end loop; 
--main computation 

  if one_digit then
    exit main;
  else 
    x := vector_x(0); 
    internal: for i in 1 .. s-1 loop
      x := x + vector_x(i)*b(i);
    end loop internal; 
  end if; 
end loop main; 
r := vector_x(0); 
while r >= m loop r := r-m; end loop;
z := r; 

The mod Bk reduction and the integer division by Bk are 
trivial operations. The only non-trivial operations are 
products of base-Bk digits (vector_x(i)*b(i)) and sums, 
as well as the end of computation detection. 

Let n be the number of B-ary digits of x. According 
to (13), xmax = Bs.k - 1 , so that n = s.k and the number s
of executions of the internal loop body is 

s = n/k.               (15) 

As regards the reduction rate of the algorithm, notice 
that r is smaller than s.B2.k, so that the number d(r) of B-
ary digits of r satisfies the condition d(r)  2.k + logBs ,
where s is equal to (15). Thus 

d(rmax) logBn + 2.k – logBk < logBn + 2.k.     (16) 

The core of the algorithm is an (n/k)-step iteration. Each 
of them includes the product of two k-bit numbers xi and 
bi, and the sum of two (log2n + 2.k)-bit numbers. The 
total computing time is approximately equal to 

time(n,k)   (n/k).(log2n + 5.k).         (17) 

D. Barrett reduction algorithms 
A generalized version of the Barrett algorithm (Blake et
al, 2002; Hankerson et al, 2004) is presented. 
D.1  n-digit to (k+t)-digit reduction
Assume that m belongs to the range Bk-1 < m < Bk where 
B is the base (or a power of the base) of the chosen nu-

meration system (if m is a power of B the computation 
of x mod m is trivial). The value of z = x mod m is the 
remainder of the integer division of x by m, that is, x = 
q.m + z, z < m. The Barrett algorithm starts with the 
computation of  an approximation q’ of q = x/m  such 
that 

q-a q’ q.              (18) 

Compute  

r’ = x – q’.m.              (19) 

Taking into account that z = x – q.m, then, according to 
(18), z r’ z + a.m. Let t be the minimum integer such 
that 

Bt a+1.              (20) 

Then r’ z + a.m < (a+1).m < Bk+t.  Thus 0 z r’ <
Bk+t, so that

r’ = r’ mod Bk+t =  (x - q’.m) mod Bk+t.       (21) 

Furthermore, according to (19) 

r’ mod m = x mod m = z.           (22) 

The following algorithm, including a function approxi-
mation which generates an approximation q’ of x/m  - 
see relation (18) - , computes a (k+t)-digit number r
equivalent to x mod m:

Algorithm 4 – n-digit to (k+t)-digit reduction 
q := approximation(x, m);
r := ((x mod Bk+t) – 
     (q*m mod Bk+t)) mod Bk+t;

If a = 2 and B  3, then condition (20) is Bt  3 and is 
satisfied if t = 1. Thus x - q’.m can be computed mod 
Bk+1. This case corresponds to the classical Barrett algo-
rithm. 

D.2  A first approximation of q
Let x and m be expressed in base B:

x = xn-1.Bn-1 + xn-2.Bn-2 + ... + x0.B0,

m = mk-1.Bk-1 + mk-2.Bk-2 + ... + m0.B0, where mk-1 > 0. 

The approximation q’ of q = x/m  is 

q’ = x/Bk-1 . Bn/m  / Bn-k+1 .

It can be demonstrated (Hankerson et al, 2004) that 
q q’ + 2, that is a = 2. 

According to (20) the value of t must be chosen in such 
a way that Bt  3. Thus 

if B = 2, then t = 2 (the computation is performed 
mod Bk+2),

if B > 2 (classical Barrett algorithm), then t = 1 (the 
computation is performed mod Bk+1). 
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To summarize, the following algorithm computes z = x
mod p. The constant 

c = Bn/m                      (23)

must have been previously calculated. 

Algorithm 5 – Generalized Barrett reduction 
y := x/B**(k-1); w := y*c;
q := (w/B**(n-k+1)) mod B**(k+t); 
r := ((x mod B**(k+t)) –
      ((q*m) mod B**(k+t))) mod B**(k+t); 
while r >= m loop r := r-m; end loop; 
z := r; 

The division by Bk-1 or Bn-k+1 and the mod Bk+t reduction 
are trivial operations. The only non-trivial operations 
are the multiplication by m and the subtractions. 

Comment In the classical Barrett algorithm (Blake et
al, 2002; Hankerson et al, 2004), n is assumed to be 
equal to 2.k, so that 

c = B2.k/m , q’ = x/Bk-1 . B2.k/m  / Bk+1 .

Assuming (best case approximation) that the first value 
of r is already smaller than m, the computation time is 
the sum of the delays of an (n-k+1)-bit by (n-k+1)-bit 
multiplier (computation of w), a (k+t)-bit by k-bit mul-
tiplier (computation of q.m) and a (k+t+1)-bit subtrac-
tor. It is approximately equal to  ((3.(n-k+1)-2) + 
(k+t+2.k-2) + (k+t+1)).TFA. If 2.t << 3.n+k, then  

time(n,k)  (3.n+k).TFA.                  (24) 

A drawback of the Barrett algorithm is the high cost of 
the multipliers. The cost of an n-bit by m-bit multiplier 
is proportional to n.m (Deschamps et al, 2006). Thus, 
the total cost of both multipliers is proportional to (n-
k+1)2 + (k+t).k  (n-k)2 + k2 whose minimum value (for 
k smaller than n) is n2/2 (when k = n/2).  

D.3  A second approximation of q
In order to reduce the computation complexity (basi-
cally the computation of w), a worse approximation of q
can be computed. First observe that c = Bn/m  is an at 
most (n-k+1)-digit number. Thus 

w = y.c = c0.B0.y + c1.B1.y + ...+ cn-k.Bn-k.y,

q’ = y.c / Bn-k+1  = c0.B-n+k-1.y + c1.B-n+k.y +... 
                                + cn-k.B-1.y .        (25) 

Define q’’ = c0. B-n+k-1.y  + c1. B-n+k.y  + ...+ cn-k. B-1.y ,
that is 

q’’ = c0.v0 + c1. v1 + ... + cn-k. vn-k,
with vi = y/Bn-k-i+1 , i = 0, 1, ... , n-k.       (26) 

Obviously q’’ q’. Furthermore q’ q’’+ c0 + c1 + ...+ 
cn-m = q’’ + weight(c), where weight(c) is the sum of all 
digits of c. Thus q’ – weight(c)  q’’ q’ and q - 2 – 
weight(c)  q’’ q, that is, q’’ is an approximation (18) 
of q such that a = 2 + weight(c).

Algorithm 6 – Modified Barrett reduction 
y := x/B**(k-1); 
for i in 0 .. n-k loop
  v(i) := (y/B**(n-k-i+1)) mod B**(k+t);
end loop; 
q := c(0)*v(0) + c(1)*v(1)) mod B**(k+t); 
for i in 2 .. n-k loop
  q := (q + c(i)*v(i)) mod B**(k+t); 
end loop; 
r := ((x mod B**(k+t)) –
     ((q*m) mod B**(k+t))) mod B**(k+t); 
while r >= m loop r := r-m; end loop; 
z := r; 

The division by Bk-1 or Bn-k-i+1 and the mod Bk+t reduc-
tion are trivial operations. The only non-trivial opera-
tions are multiplications by B-ary digits ci (a trivial op-
eration if B=2), multiplication by m, additions and sub-
tractions. The computation is divided into two parts. 
First, an (n-k)-step iteration computes q. The corre-
sponding time is approximately (n-k).(k+t).TFA  (n-
k).k.TFA. Assuming again (best case approximation) that 
the first value of r is smaller than m, the second part 
consists of a (k+t)-bit by k-bit product (q.m) and a (k+t)-
bit subtraction, that is, a delay equal to ((3.k+t-2) + 
(k+t)).TFA  4.k.TFA. Thus, the total time is about 

time(n,k)   (n-k+4).k.TFA  (n-k).k.TFA.      (27) 

E. Summary
The main results are summarized in table 1. The ap-
proximate computation time, expressed in full-adder 
delays, is given for every reduction method. In particu-
lar, the values obtained when n = 2.k are computed: they 
correspond to the case where x is the result of multiply-
ing two elements of Zm, that is, two k-bit numbers. 

Table 1. Computation time, expressed in full-adder delays, for 
reducing an n-bit number modulo a k-bit number 

algorithm time(n,k) time(2.k,k)
non-restoring division (n-k).k k2

mod 2k-a (n/k).(n+2.k) 8.k
pre-comput of 2i.k mod m (n/k).(log2n+5.k) 10.k
Barrett  3.n+k 7.k
modified Barrett (n-k).k k2

As long as the computation time is considered, and as-
suming that the approximations are reasonably good, 
the Barrett algorithm is the best choice. Nevertheless, as 
quoted above, its cost is O(n2) and could be prohibi-
tively high for great values of n (see next section) .

III. FPGA IMPLEMENTATIONS 
Reduction circuits, with n = 2.k = 16, 64, 256 and 1024, 
have been synthesized using ISE6.3i (Xilinx, 2006). The 
results for an xc3s4000-5 device are given in tables 2 to 
6. The cost is expressed in number of slices. Apart from 
the logic slices, both Barrett algorithms need a lot of 18-
by-18-bit multipliers. The xc3s4000-5 device contains 
96 such dividers, an insufficient number for implement-  
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ing Barrett algorithms for great values of n. This fact is 
indicated by the  symbol within the cost column. Re-
duction circuits for n = 64 and m = 239, so that k  = 8, 
have also been synthesized (table 7).

Table 2. Non-restoring division: cost and computation time  
(n = 2.k)

n cost 
(slices)

minimum 
period (ns)

average 
time (ns)

16 49 7 60
64 133 9 300 

256 430 14 1,800 
1024 1619 36 19,000 

Table 3. Reduction mod 2k-a: cost and computation time     
(n = 2.k)

n cost 
(slices)

minimum 
period (ns)

average 
time (ns)

16 25 6 25
64 72 8 35 

256 240 13 55 
1024 918 35 140 

Table 4. Pre-computation of 2i.k mod m: cost and computation 
time (n = 2.k)

n cost 
(slices)

minimum 
period (ns)

average 
time (ns)

16 42 6 50
64 144 9 75 

256 536 20 160 
1024 2061 62 500 

Table 5. Barrett algorithm: cost and computation time           
(n = 2.k)

n cost 
(slices)

minimum 
period (ns)

average 
time (ns)

16 31 8 25
64 130 10 30 

256 - - 
1024 - - 

Table 6. Modified Barrett algorithm: cost and computation 
time (n = 2.k)

n cost 
(slices)

minimum 
period (ns)

average 
time (ns)

16 62 9 80
64 373 17 650 

256 4,245 25 3,300 
1024 - - 

Table 7. Cost and computation time (n = 64 and m = 239) 

algorithm cost 
(slices)

min. pe-
riod (ns)

time
(ns)

non-restoring division 118 14 850
mod 2k-a 101 14 300 
pre-comput. of 2i.k mod m 116 20 600 
Barrett 546 13 50 
modified Barrett 215 19 1,600

IV. COMMENTS AND CONCLUSIONS 
According to both the theoretical analysis (table 1) and 
the practical synthesis results (tables 2 to 7), the fastest 
circuits are obtained with the Barrett algorithm. Never-
theless, the corresponding costs are excessive for great 
values of n. The second best solution, as regards the 
computation time, is the reduction mod 2k-a. Actually, 
these conclusions are valid as long as generic reduction 
circuits are considered. For specific values of n and m,
the pre-computation option could be an interesting al-
ternative (chapter 8 of Deschamps et al, 2006). For 
small values of n, the best option is a block of ROM 
storing the 2n pre-computed values of x mod m. In the 
case where the reduction is part of an algorithm includ-
ing a lot of multiplications, for example an exponentia-
tion algorithm, an alternative solution is the Montgom-
ery product (Montgomery, 1985). It has not been stud-
ied in this paper dedicated to reduction circuits, but is 
one of the main topics of another (not yet published) 
work on finite ring and field operations.   
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