
Latin American Applied Research 37:93-97 (2007)

93

COMPARISON OF FPGA IMPLEMENTATION
OF THE MOD M REDUCTION

J-P. DESCHAMPS† and G. SUTTER‡

† Escola Tècnica Superior d’ Enginyeria, Universitat Rovira i Virgili, Tarragona, Spain,
jeanpierre.deschamps@urv.net; http://www.etse.urv.es

‡ Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain,
gustavo.sutter@ii.uam.es; http://www.ii.uam.es

.

Abstract Several algorithms for computing x
mod m are presented, among others the reduction
mod Bk-a, the pre-computation of Bi.k mod m, a gen-
eralized version of the Barrett algorithm and a modi-
fied version of the same Barrett algorithm. The four
mentioned algorithms, as well as the classical integer
non-restoring division algorithm, have been synthe-
sized and implemented within xc3s4000 components.
Keywords Arithmetic in FPGA, Galois Field,

Cryptography, modular operation.

I. INTRODUCTION
Arithmetic operations over the finite ring Zm = {0, 1, ...,
m-1} are used as computation primitives for executing
numerous cryptographic algorithms, especially those
related with the use of public keys (asymmetric cryptog-
raphy). Classical examples are ciphering / deciphering,
authentication and digital signature protocols based on
RSA-type or elliptic curve algorithms. One of the basic
operations is the modulo m reduction. Combined with
operations over the set Z of integers (sum, subtraction,
product, and so on) it allows to perform the same opera-
tions over Zm. A straightforward solution consists of
using an integer division algorithm. Nevertheless, more
efficient algorithms have been proposed (Blake et al,
2002; Hankerson et al, 2004). In this paper several algo-
rithms are described, namely the reduction mod Bk-a,
the pre-computation of Bi.k mod m, a generalized version
of the Barrett algorithm and a modified version of the
same Barrett algorithm. The four mentioned algorithms,
as well as the classical integer non-restoring division
algorithm, have been synthesized and implemented
within xc3s4000 components.

II. ALGORITHM
In this section the following problem is studied: given
two naturals x and m, compute z = x mod m.

A. Integer division
A straightforward method consists of performing the
integer division of x by m, that is,

x = q.m + z, z < m.

For that purpose, any division algorithm can be used,
for example the non-restoring division algorithm
(Deschamps et al, 2006).

Algorithm 1 – Non-restoring reduction
y := m*(2**(n-k));
rems(1) := x - y;
for i in 1 .. n-k loop
 if rems(i) < 0 then
 rems(i+1) := 2*rems(i)+ y;
 else
 rems(i+1) := 2*rems (i) - y;
 end if;
end loop;
if rems(n-k+1) < 0 then
 z := rems(n-k+1)/(2**(n-k)) + m;
else
 z := rems(n-k+1)/(2**(n-k));
end if;

The core of the algorithm is an (n-k)-step iteration. If a
ripple-carry k-bit adder-subtractor is used, the computa-
tion time is about

time(n,k) (n-k).k.TFA , (1)

where TFA is the delay of a full-adder.

B. Reduction mod Bk-a
Assume that Bk-1 m < Bk, where B is a natural number

 2. Then m = Bk – a where 1 a Bk – Bk-1.
Compute the following quotients qi and remainders

ri:
x = q0.Bk + r0,
q0.a = q1.Bk + r1,
q1.a = q2.Bk + r2, (2)
...
qs-2.a = qs-1.Bk + rs-1.

Multiply the second equation of (2) by (Bk/a), the third
one by (Bk/a)2, ... , the last one by (Bk/a)s-1, and sum up
the s equations; the result is

x = r0 + r1.(Bk/a) + r2.(Bk/a)2 + ...
 + rs-1.(Bk/a)s-1 + qs-1.Bk.(Bk/a)s-1. (3)

As a < Bk, that is, Bk/a > 1, there exists a minimum
value of s such that

x < Bk.(Bk/a)s-1, (4)

and thus qs-1 = 0. Let s be the minimum value of s such
that qs-1 = 0. Notice that if rs-1 = 0 then the last equation

Latin American Applied Research 37:93-97 (2007)

94

of (2), with qs-1 = 0, is qs-2.a = 0, that is, qs-2 = 0, so that
s is not the minimum value of s such that qs-1 = 0. Thus

x = r0 + r1.(Bk/a) + r2.(Bk/a)2 + ... + rs-1.(Bk/a)s-1,
 with rs-1 > 0. (5)

By summing up the s equations of system (2), with
qs-1 = 0, the following relation is obtained:

x = q0.(Bk-a) + q1.(Bk-a) + ... + qs-2.(Bk-a)
 + r0 + r1 + ... + rs-1. (6)

Define

r = r0 + r1 + ... + rs-1. (7)

According to (6) and (7),

x r mod m, with m = Bk-a. (8)

Comparing (5) with (7) it is obvious that if s > 1, that is,
if x Bk, then r < x. If r is still greater than or equal to
Bk, the same method can be used in order to get r’ x
mod m, with r’ < r. After a finite number of iterations, a
number r’’ is obtained such that r’’ x mod m and r’’ <
Bk, so that z = r’’ – q.m where 0 q B-1. In particular,
if B = 2 then z is either r’’ or r’’-m. To summarize, the
mod m reduction algorithm, with m = Bk-a, is the fol-
lowing:

Algorithm 2 – mod m reduction algorithm, with m = Bk-a
r := x mod b**k; q := x/b**k;
loop
 loop
 r := r + (q*a mod b**k);
 q := q*a/b**k;
 if q = 0 then exit; end if;
 end loop;
 q := r/b**k; r := r mod b**k;
 if q = 0 then exit; end if;
end loop;
while r >= m loop r := r-m; end loop;
z := r;

If B is the base (or a power of the base) of the chosen
numeration system, then the division by Bk and the mod
Bk reduction are trivial operations. The only non-trivial
operations are multiplication by a, sums (remainder
accumulation) and subtractions (final reduction). The
number of executions of the internal loop body can be
estimated as follows: a sufficient condition for qs-1 being
equal to 0 is (4), which is equivalent to s > (log x – log
a) / (k.log B - log a). Thus s = (log x – log a) / (k.log B
- log a) . In particular, if x = Bn-1, that is, the greatest n-
digit B-ary number, then

s = (n – logBa) / (k – logBa) , (9)

and, assuming that logBa is much smaller than k and n,

s n/k. (10)

As regards the reduction rate of the algorithm, that is,
the relation between an initial value x and the obtained
value r after a first execution of the internal loop, notice

that r is smaller than s.Bk, so that the number d(r) of B-
ary digits of r satisfies the condition

d(r) k + logBs , (11)

where s is approximately equal to (10). Thus d(rmax)
logBn + k – logBk < logBn + k.
In order to define the size of the variable r = r0 + r1 + ...
+ rs-1, the following values are previously calculated
(see (9) and (11)):

s = (n – log2a) / (k – log2a) , t = log2s ,

so that r can be represented as a (k+t)-bit number.

The core of the algorithm is an (n/k)-step iteration. Each
step includes the multiplication of an (n-k)-bit number q
by a k-bit number a, and the sum of a (k+t)-bit number r
and a k-bit number. The computation time of the multi-
plier depends on the particular value of a. Nevertheless,
in order to get an estimation of the computation time, it
will be assumed that a parallel multiplier is used. Its
computation time is about ((n-k)+2.k-2).TFA (n+k).TFA
(Deschamps et al, 2006). The step duration is approxi-
mately equal to (n+k).TFA + (k+t).TFA. If n+2.k >> t
then the computation time is approximately equal to

time(n,k) (n/k).(n+2.k).TFA. (12)

C. Pre-computation of Bi.k mod m
Assume again that Bk-1 m < Bk, and that x is repre-
sented in base Bk, i.e.

x = xs-1.B(s-1).k + xs-2.B(s-2).k + ... + x1.Bk + x0,
 where xs-1 > 0. (13)

The following values must have been previously com-
puted:

b0 = 1, b1 = Bk mod m, b2 = B2.k mod m, ...
 , bs-1 = B(s-1).k mod m.

Then x xs-1.bs-1 + xs-2.bs-2 + ... + x1.b1 + x0.b0 mod m,
and the problem is reduced to the computation of r mod
m where

r = xs-1.bs-1 + xs-2.bs-2 + ... + x1.b1 + x0.b0. (14)

Observe that bi = (Bi.k mod m) < m < Bk Bi.k , i > 0.
Comparing (14) with (13), it is obvious that if s > 1, that
is, if x Bk, then r < x. If r is still greater than or equal
to Bk, the same method can be used in order to get r’ x
mod m with r’ < r. After a finite number of iterations, a
number r’’ is obtained such that r’’ x mod m and r’’ <
Bk, so that z = r’’ – q.m where 0 q B-1. In particular,
if B = 2 then z is either r’’ or r’’-m.

To summarize, the mod m reduction algorithm, with
pre-computation of Bi.k mod m, is the following (it is
assumed that the constants bi = Bi.k mod m have been
previously calculated):

J-P. DESCHAMPS, G. SUTTER

95

Algorithm 3 – mod m reduction, with pre-computation of
Bi.k mod m
main: loop
--represent x as an s-digit number:

 vector_x(0) := x mod base**k;
 q := x/base**k;
 for i in 1 .. s-1 loop
 vector_x(i) := q mod base**k;
 q := q/base**k;
 end loop;
--end of computation detection:

 one_digit := true;
 for i in 1 .. s-1 loop
 if vector_x(i) /= 0 then
 one_digit := false;
 exit;
 end if;
 end loop;
--main computation

 if one_digit then
 exit main;
 else
 x := vector_x(0);
 internal: for i in 1 .. s-1 loop
 x := x + vector_x(i)*b(i);
 end loop internal;
 end if;
end loop main;
r := vector_x(0);
while r >= m loop r := r-m; end loop;
z := r;

The mod Bk reduction and the integer division by Bk are
trivial operations. The only non-trivial operations are
products of base-Bk digits (vector_x(i)*b(i)) and sums,
as well as the end of computation detection.

Let n be the number of B-ary digits of x. According
to (13), xmax = Bs.k - 1 , so that n = s.k and the number s
of executions of the internal loop body is

s = n/k. (15)

As regards the reduction rate of the algorithm, notice
that r is smaller than s.B2.k, so that the number d(r) of B-
ary digits of r satisfies the condition d(r) 2.k + logBs ,
where s is equal to (15). Thus

d(rmax) logBn + 2.k – logBk < logBn + 2.k. (16)

The core of the algorithm is an (n/k)-step iteration. Each
of them includes the product of two k-bit numbers xi and
bi, and the sum of two (log2n + 2.k)-bit numbers. The
total computing time is approximately equal to

time(n,k) (n/k).(log2n + 5.k). (17)

D. Barrett reduction algorithms
A generalized version of the Barrett algorithm (Blake et
al, 2002; Hankerson et al, 2004) is presented.
D.1 n-digit to (k+t)-digit reduction
Assume that m belongs to the range Bk-1 < m < Bk where
B is the base (or a power of the base) of the chosen nu-

meration system (if m is a power of B the computation
of x mod m is trivial). The value of z = x mod m is the
remainder of the integer division of x by m, that is, x =
q.m + z, z < m. The Barrett algorithm starts with the
computation of an approximation q’ of q = x/m such
that

q-a q’ q. (18)

Compute

r’ = x – q’.m. (19)

Taking into account that z = x – q.m, then, according to
(18), z r’ z + a.m. Let t be the minimum integer such
that

Bt a+1. (20)

Then r’ z + a.m < (a+1).m < Bk+t. Thus 0 z r’ <
Bk+t, so that

r’ = r’ mod Bk+t = (x - q’.m) mod Bk+t. (21)

Furthermore, according to (19)

r’ mod m = x mod m = z. (22)

The following algorithm, including a function approxi-
mation which generates an approximation q’ of x/m -
see relation (18) - , computes a (k+t)-digit number r
equivalent to x mod m:

Algorithm 4 – n-digit to (k+t)-digit reduction
q := approximation(x, m);
r := ((x mod Bk+t) –
 (q*m mod Bk+t)) mod Bk+t;

If a = 2 and B 3, then condition (20) is Bt 3 and is
satisfied if t = 1. Thus x - q’.m can be computed mod
Bk+1. This case corresponds to the classical Barrett algo-
rithm.

D.2 A first approximation of q
Let x and m be expressed in base B:

x = xn-1.Bn-1 + xn-2.Bn-2 + ... + x0.B0,

m = mk-1.Bk-1 + mk-2.Bk-2 + ... + m0.B0, where mk-1 > 0.

The approximation q’ of q = x/m is

q’ = x/Bk-1 . Bn/m / Bn-k+1 .

It can be demonstrated (Hankerson et al, 2004) that
q q’ + 2, that is a = 2.

According to (20) the value of t must be chosen in such
a way that Bt 3. Thus

if B = 2, then t = 2 (the computation is performed
mod Bk+2),

if B > 2 (classical Barrett algorithm), then t = 1 (the
computation is performed mod Bk+1).

Latin American Applied Research 37:93-97 (2007)

96

To summarize, the following algorithm computes z = x
mod p. The constant

c = Bn/m (23)

must have been previously calculated.

Algorithm 5 – Generalized Barrett reduction
y := x/B**(k-1); w := y*c;
q := (w/B**(n-k+1)) mod B**(k+t);
r := ((x mod B**(k+t)) –
 ((q*m) mod B**(k+t))) mod B**(k+t);
while r >= m loop r := r-m; end loop;
z := r;

The division by Bk-1 or Bn-k+1 and the mod Bk+t reduction
are trivial operations. The only non-trivial operations
are the multiplication by m and the subtractions.

Comment In the classical Barrett algorithm (Blake et
al, 2002; Hankerson et al, 2004), n is assumed to be
equal to 2.k, so that

c = B2.k/m , q’ = x/Bk-1 . B2.k/m / Bk+1 .

Assuming (best case approximation) that the first value
of r is already smaller than m, the computation time is
the sum of the delays of an (n-k+1)-bit by (n-k+1)-bit
multiplier (computation of w), a (k+t)-bit by k-bit mul-
tiplier (computation of q.m) and a (k+t+1)-bit subtrac-
tor. It is approximately equal to ((3.(n-k+1)-2) +
(k+t+2.k-2) + (k+t+1)).TFA. If 2.t << 3.n+k, then

time(n,k) (3.n+k).TFA. (24)

A drawback of the Barrett algorithm is the high cost of
the multipliers. The cost of an n-bit by m-bit multiplier
is proportional to n.m (Deschamps et al, 2006). Thus,
the total cost of both multipliers is proportional to (n-
k+1)2 + (k+t).k (n-k)2 + k2 whose minimum value (for
k smaller than n) is n2/2 (when k = n/2).

D.3 A second approximation of q
In order to reduce the computation complexity (basi-
cally the computation of w), a worse approximation of q
can be computed. First observe that c = Bn/m is an at
most (n-k+1)-digit number. Thus

w = y.c = c0.B0.y + c1.B1.y + ...+ cn-k.Bn-k.y,

q’ = y.c / Bn-k+1 = c0.B-n+k-1.y + c1.B-n+k.y +...
 + cn-k.B-1.y . (25)

Define q’’ = c0. B-n+k-1.y + c1. B-n+k.y + ...+ cn-k. B-1.y ,
that is

q’’ = c0.v0 + c1. v1 + ... + cn-k. vn-k,
with vi = y/Bn-k-i+1 , i = 0, 1, ... , n-k. (26)

Obviously q’’ q’. Furthermore q’ q’’+ c0 + c1 + ...+
cn-m = q’’ + weight(c), where weight(c) is the sum of all
digits of c. Thus q’ – weight(c) q’’ q’ and q - 2 –
weight(c) q’’ q, that is, q’’ is an approximation (18)
of q such that a = 2 + weight(c).

Algorithm 6 – Modified Barrett reduction
y := x/B**(k-1);
for i in 0 .. n-k loop
 v(i) := (y/B**(n-k-i+1)) mod B**(k+t);
end loop;
q := c(0)*v(0) + c(1)*v(1)) mod B**(k+t);
for i in 2 .. n-k loop
 q := (q + c(i)*v(i)) mod B**(k+t);
end loop;
r := ((x mod B**(k+t)) –
 ((q*m) mod B**(k+t))) mod B**(k+t);
while r >= m loop r := r-m; end loop;
z := r;

The division by Bk-1 or Bn-k-i+1 and the mod Bk+t reduc-
tion are trivial operations. The only non-trivial opera-
tions are multiplications by B-ary digits ci (a trivial op-
eration if B=2), multiplication by m, additions and sub-
tractions. The computation is divided into two parts.
First, an (n-k)-step iteration computes q. The corre-
sponding time is approximately (n-k).(k+t).TFA (n-
k).k.TFA. Assuming again (best case approximation) that
the first value of r is smaller than m, the second part
consists of a (k+t)-bit by k-bit product (q.m) and a (k+t)-
bit subtraction, that is, a delay equal to ((3.k+t-2) +
(k+t)).TFA 4.k.TFA. Thus, the total time is about

time(n,k) (n-k+4).k.TFA (n-k).k.TFA. (27)

E. Summary
The main results are summarized in table 1. The ap-
proximate computation time, expressed in full-adder
delays, is given for every reduction method. In particu-
lar, the values obtained when n = 2.k are computed: they
correspond to the case where x is the result of multiply-
ing two elements of Zm, that is, two k-bit numbers.

Table 1. Computation time, expressed in full-adder delays, for
reducing an n-bit number modulo a k-bit number

algorithm time(n,k) time(2.k,k)
non-restoring division (n-k).k k2

mod 2k-a (n/k).(n+2.k) 8.k
pre-comput of 2i.k mod m (n/k).(log2n+5.k) 10.k
Barrett 3.n+k 7.k
modified Barrett (n-k).k k2

As long as the computation time is considered, and as-
suming that the approximations are reasonably good,
the Barrett algorithm is the best choice. Nevertheless, as
quoted above, its cost is O(n2) and could be prohibi-
tively high for great values of n (see next section) .

III. FPGA IMPLEMENTATIONS
Reduction circuits, with n = 2.k = 16, 64, 256 and 1024,
have been synthesized using ISE6.3i (Xilinx, 2006). The
results for an xc3s4000-5 device are given in tables 2 to
6. The cost is expressed in number of slices. Apart from
the logic slices, both Barrett algorithms need a lot of 18-
by-18-bit multipliers. The xc3s4000-5 device contains
96 such dividers, an insufficient number for implement-

J-P. DESCHAMPS, G. SUTTER

97

ing Barrett algorithms for great values of n. This fact is
indicated by the symbol within the cost column. Re-
duction circuits for n = 64 and m = 239, so that k = 8,
have also been synthesized (table 7).

Table 2. Non-restoring division: cost and computation time
(n = 2.k)

n cost
(slices)

minimum
period (ns)

average
time (ns)

16 49 7 60
64 133 9 300

256 430 14 1,800
1024 1619 36 19,000

Table 3. Reduction mod 2k-a: cost and computation time
(n = 2.k)

n cost
(slices)

minimum
period (ns)

average
time (ns)

16 25 6 25
64 72 8 35

256 240 13 55
1024 918 35 140

Table 4. Pre-computation of 2i.k mod m: cost and computation
time (n = 2.k)

n cost
(slices)

minimum
period (ns)

average
time (ns)

16 42 6 50
64 144 9 75

256 536 20 160
1024 2061 62 500

Table 5. Barrett algorithm: cost and computation time
(n = 2.k)

n cost
(slices)

minimum
period (ns)

average
time (ns)

16 31 8 25
64 130 10 30

256 - -
1024 - -

Table 6. Modified Barrett algorithm: cost and computation
time (n = 2.k)

n cost
(slices)

minimum
period (ns)

average
time (ns)

16 62 9 80
64 373 17 650

256 4,245 25 3,300
1024 - -

Table 7. Cost and computation time (n = 64 and m = 239)

algorithm cost
(slices)

min. pe-
riod (ns)

time
(ns)

non-restoring division 118 14 850
mod 2k-a 101 14 300
pre-comput. of 2i.k mod m 116 20 600
Barrett 546 13 50
modified Barrett 215 19 1,600

IV. COMMENTS AND CONCLUSIONS
According to both the theoretical analysis (table 1) and
the practical synthesis results (tables 2 to 7), the fastest
circuits are obtained with the Barrett algorithm. Never-
theless, the corresponding costs are excessive for great
values of n. The second best solution, as regards the
computation time, is the reduction mod 2k-a. Actually,
these conclusions are valid as long as generic reduction
circuits are considered. For specific values of n and m,
the pre-computation option could be an interesting al-
ternative (chapter 8 of Deschamps et al, 2006). For
small values of n, the best option is a block of ROM
storing the 2n pre-computed values of x mod m. In the
case where the reduction is part of an algorithm includ-
ing a lot of multiplications, for example an exponentia-
tion algorithm, an alternative solution is the Montgom-
ery product (Montgomery, 1985). It has not been stud-
ied in this paper dedicated to reduction circuits, but is
one of the main topics of another (not yet published)
work on finite ring and field operations.

REFERENCES
Blake, I.V., G. Seroussi and N. Smart, Elliptic Curves in Cryp-

tography. Cambridge University Press (2002)
Hankerson, D., A.J. Menezes and S. Vanstone, Guide to Ellip-

tic Curve Cryptography, Springer (2004)
Deschamps, J.-P., G.A. Bioul, and G.D. Sutter, Synthesis of

Arithmetic Circuits, Wiley (2006)
Montgomery, P., “Modular Multiplication without Trial Divi-

sion”, Mathematics of Computation, 44, 519-521 (1985)
Xilinx Inc, http://www.xilinx.com (2006)

Received: April 14, 2006.
Accepted: September 8, 2006.
Recommended by Special Issue Editor Hilda Larrondo.

