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Abstract— In this work a dual-mixed FE-
formulation for thermodynamically consis-
tent gradient-dependent plasticity is proposed
which leads to a fixed point iterative schema.
At the constitutive level, the gradient-based
Drucker-Prager model for cohesive-frictional
material by Vrech and Etse (2005) is consid-
ered, which was formulated in the framework
of the thermodynamically consistent gradient
plasticity theory by Svedberg (1999).

The robustness and efficiency of the proposed
numerical tools are verified by means of com-
putational analysis of inhomogeneous, uniaxial
compression and tensile tests. These numeri-
cal results also demonstrate the capability of
the gradient-dependent plasticity formulation
to regularize the post peak response behavior
regarding the mesh density as well as the influ-
ence of the internal length on the width of the
plastic strains band.

Keywords— Gradient-elastoplasticity, non-
local constitutive model, internal length, dual-
mixed method, FE implementation.

I. INTRODUCTION

The computational simulation of crack and shear band
formations in cohesive-frictional materials and met-
als was advocated by many different authors, see a.o.
Nadai (1931), Thomas (1961), Hill (1962), Rudnicki
and Rice (1975), and more recently, Sobh (1987), Peric¢
(1990), Ottosen and Runesson (1991), Willam and
Etse (1990), Sluys (1992), Rizzi et al. (1995), Etse
and Willam (1999). From these investigations fol-
low the strong shortcomings of the so-called ”smeared-
crack” criterium to objectively predict localized failure
modes of materials. To solve this deficit, regulariza-
tion strategies of the softening regime are required.
In this work the regularization approach that is ap-
plied to the constitutive equations is based on non-
local considerations in terms of higher gradients of the
deformation field. The gradient functions are evalu-
ated in the vicinity of the material points to obtain
a spatial average of the deformation field. This is ac-

complished by defining the gradient of a selection of
thermodynamic variables.

One of the crucial points in gradient dependent con-
stitutive materials is the FE formulation to obtain ef-
ficient and robust solutions at the global or structural
level. In this work a dual mized FE procedure for ther-
modynamically consistent gradient-dependent plastic-
ity based on CST elements is presented. The proce-
dure considers two uncoupled but sequenced iterative
processes for the update of the displacement field and
plastic multiplier.

The efficiency and potentials of the dual mized FE
integration procedure of gradient-dependent plastic-
ity is evaluated. Then, the regularization capabilities
of the FE solutions of gradient-dependent plasticity
are highlighted for bias and unbiased discretizations of
boundary value problems in which the localized failure
condition is fulfilled.

II. GRADIENT-DEPENDENT
ELASTOPLASTICITY

After reviewing the relevant thermodynamic and con-
stitutive equations, the yield condition of the con-
sistent Drucker-Prager gradient-based elastoplastic
model is presented. Thereby, the non-local character
is restricted to the internal plastic variables.

A. Thermodynamic framework

The constitutive equations are obtained from thermo-
dynamic consistency concepts. Under consideration
of small strain kinematics, the free energy density of
a strain gradient elastoplastic continuum can be ex-
pressed in an additive form as

PU(e, 5, Vi) = pU*(e®) + p U7 (1) + pTP (V) (1)

where p is the material density.

The elastic free energy density p¥¢ is defined in
terms of the elastic strain tensor €°. The local and
gradient free energy density contributions due to in-
elastic strains UP! and U9, are expressed in terms of
the scalar hardening/softening variable k. We observe
in Eq. (1) that the gradient effects are only restricted
to hardening/softening behavior via the inclusion of
Vk.
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We adopt the following expression for the elastic free
energy density
€ € 1 € € €
p\I/(s):§s:E:€ (2)
with E° the fourth order elastic operator. For the local

and gradient energy density due to inelastic strains, we
assume

1 1
pUPt = SHK? , pUP? = I’Vk-H?- Vi (3)

The parameter H and the tensor HY in Egs. (3)
are the local hard/soft modulus and the second order
tensor of non-local gradient, respectively. These state
parameters are defined as

02wpt 1 02Wp-9

H=p— H =p———~ —
P ’ PR o(Vr) ® 0(Vk)

(07 @

with

det(HY) > 0 (5)

There are three possible interpretations for the char-
acteristic length [ in Egs. (4), see Svedberg (1998):

e a convenient dimensional parameter which al-
lows that both, H and HY, get the same dimen-
sion,

e a physical entity that defines the characteristic
measure of the microstructure, and

e a parameter that brings numerical stabilization
to the local constitutive theory.

From the Coleman’s relations follow the constitutive
equations

ov
o=p— o=FE°:¢° 6
Poe (6)
where o is the stress tensor and e the strain tensor.
The dissipative stress within the continuum is defined
as

K=K'+KY (7)

being the local dissipative stress

owpl
K'=—p 5 = —Hr

(8)
and the non-local gradient one

owr-9
d(Vk)

ng-<p >12V~(H9~Vn) 9)

On the boundary 952, the dissipative stress due to the
gradient in Eq. (9) turns

o,

K(QA,b) — — . =
P e(Vr)

m-H9 Vi (10)

with the (outward) normal m to 9€Q.
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B. Constitutive equations

We consider a convex set B of plastically admissible
states defined as B = {(0, K) | ®(o, K) < 0} with the
convex yield function ® = ®(o, K), and a dissipative
potential ®* = &*(o, K), which turns ® in case of as-
sociated plasticity. The rate equations for the inelastic
strains &P and the scalar hard./soft. variable £, take
the forms

. OD* . 0P*
€ —)\ao_ and /f—)\—aK

(1)

where ) is the rate of the plastic parameter o multi-
plier.

From the Prandtl-Reuss additive decomposition of
the total strain rate tensor into the elastic and plas-
tic components that characterized the flow theory of
plasticity and considering Eqgs. (6), (8), (9), (10) and
(11) follow the constitutive equations, in rate form

*

L
5=~ im2

5y VWith ¢°=E":&é  (12)

K'= —)\H% (13)

K9= -1’V - (HY- V}\)(%(I;;) (14)
K@Y = ?>m . HY. vx(if;) (15)

The Kuhn-Tucker conditions complete the rate for-
mulation of thermodynamically consistent gradient-
dependent plasticity which, similarly to the local plas-
ticity theory, are defined by

A>0 , @0, K)<0 , A®(o,K)=0 (16)

The above indicated equations and theory were used
by Vrech and Etse (2005) to define the gradient-
based general Drucker-Prager constitutive model for
cohesive-frictional materials. This model includes an
isotropic hard/soft law to predict pre and post peak

non linear material behavior.

C. Incremental constitutive equations

The updated stresses o,4+1 and K,;; are ob-
tained by applying a extension of the Closest-Point-
Projection-Method, where E¢, H and HY define the
projection metric.

The integration of the evolution laws in Eq. (11),
by means of the Backward Euler rule, gives

@*
N - A)\M
Jo
od*
Ak = AAG—”K“ (17)

Introducing the concept of elastic trial strain sfl’rl

e,tr

€ =€p+Ae |, e =&, —€h (18)
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we obtain the updated stress tensor from Eq. (6) as

e . e e,tr »
E°:en . epp1 =64 —Ae (19)

(13) and (14

Opntl1 =

From A,y1 = A + AX and Eqgs.

updated dissipative stress becomes
0P~ 0P~
oK oK

The constrained boundary value problem based on
the plastic multiplier increment A\, for all x in the
surface €2, results in a non homogeneous differential
equation

), the

Kni1 = Kn+HAN———1?V-[H-V(A)N)] (20)

1PV - (H’ - V(AN) + hAN =001 — &,y (21)
where P P

h = Yo :E°: . + H (22)
with 5% 9*
and 55
H =H'—

H K (24)

For the particular case of gradient isotropy, we obtain

H’ = HI (25)
with HY a positive, nonzero scalar.

Introducing the relation ¢ = H{lc, being H{ > 0
the largest principal value of HY and ¢ > 0 a non-
dimensional scalar constant, the Eq. (15), for all  on
the boundary 952, becomes

m - HY - V(AX) =

—§Hf AN (26)

D. Dual mixed FE strategy

The aim of this algorithm is to describe the evolu-
tion of the localization zone at the FE level during the
hard/soft process.

Most of the FE-algorithms for gradient-dependent
plasticity formulations are based on the coupling be-
tween the two main variables of the discrete varia-
tional problem: displacement field and plastic multi-
plier. The present approach leads to solve the plastic
multiplier increment in a dual mized method, and the
algorithm procedure is implemented in a FE-code.

In case of gradient plasticity the yield criterion is
non-locally defined as

q)e ,gtr,g

eI = @0t + 1PV (H?-V(AN) =0 (27)

This expression encompasses the local yield condi-
tion in Eq.(21).

As Eq. (27) depends on the second order spacial
derivatives of A, the set of Egs. (21), (23) and (26)
need to be solved iteratively.

Introducing the notation

g=HY V(AN (28)

for the gradient field, the BVP in Eq. (21) is rephrased
as

—’V.-g+hAXN = 047" _ 3
(H)™'-g-V(AN = 0 (29)
being HY positive definite.

The boundary conditions of Eq.
Kuhn-Tucker conditions

(26) with the

AN>0 , ®<0 , ANP =0 (30)

can be rewritten as

A)\:fLm~g

1
cHY (31)

The variational form of Eqs. (29), including the

function spaces A = L2(Q) and G = [H(Q)M with
the spacial dimension M, takes the form
—12 / ANV - gdQ) + (32)
Q

/ hAXN AXNQ = / AN (@1 — ®)dN
Q Q
/ g - (HY) '.gdQ + (33)
Q
l / , ,
— g mem-gdo)) + Vg AXdQ =0
cHy? Joq (09) Q

For CST finite elements, A\ is chosen piecewise con-
stant in each element and g piecewise linear. In matrix
notation, the above conditions take the form

~ _— N

N=X . gd=¢g. . Vg =B g. (39
where X’e is the constant value of A\, g, the vector
of nodal values of g, while d)eT contains the linear
form functions. Replacing Eq. (34) in (32) and (33)
and considering the complementary Kuhn-Tucker con-
ditions, we obtain the finite element set of equations

~’B.Tg, + hAX. = 05" — @, (35)
l R ~
AXEF(M. + - M )g, + AB.AX] =0 (36)
AXe >0, &, <0, AND, = (37)
with e=1,2,3...NEL, and
M, = [ g.(E) ¢l (39)
QG
1
Me(b) = ﬁ qbem(qbem)Td(aQ) (39)
1 Joq.
Combining Egs. (35) and (36), results
l A
AYEH(M+ 2M.© +2C)g. — F] =0 (10)
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Table 1: Iterative scheme to find A/):’e“*l and gk's'1

1. Set g’ =0

2. For a given §(k), solve §(k) as follows:
(’1\):7t7"79(k) @trial + lQnggk‘H)
If 0™ >0 = ANFTV= 1§
and &)(kﬂ) 0
I BeT90) <o o AR g
and @(k"rl) CIJE ;tr,g(k)

e tr,g(k)
e

3. Solve g*** from
~(k41)
§E= B!

~ ~(k ~
(M + LM® 4 2o)ghth = 3 gkt
4. Check convergence
If |A<’“+1> g"| < tol

NEL ZNEL |A)\(k+1) A)\(k)| < tol, stop.
Else go to 2 and continue iteration

where
c, — %BGBZ (41)
f. = —V.B.AM
~ 1 ~ ~
AN = E(@?”—%)

being V. the volume of the element.
Finally, the system of Eqgs. (35) and (40) is refor-

mulated as
hAN, I — P, (42)
[ . ~
(M +-MY+1°C)g = f (43)
where
Bp0 = B 1 2B, (44)
with the notation
M= AYEEM, | M - ANELALY)
C ANELC , f ANEL (45)

For the special case of local theory, I = 0 in Eq.
(44) and %9 = @S Thus, A, can be obtained
from Eqgs. (42) and (37).

Provide &)g’” is known, the problem defined by Egs.
(42), (43) and (37) is solved using the fixed point iter-
ative scheme shown in Table 1.

III. NUMERICAL ANALYSIS

Numerical simulations were performed for a rectangu-
lar specimen under plane strain conditions. Due to
the symmetry of the problem, only one quarter of the
patch was considered in the FE analysis. Uniform ver-
tical displacements were prescribed on the top edges
as can be seen in Fig. 1-(a) for both, the compression
and the tensile tests.
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Figure 1: Uniaxial compression and tensile tests.
Boundary condition and geometry discretizations.

In the FE analysis, bias and unbiased meshes in

Figs. 1-(b) and 1-(c,d) were used. The properties of
the non- linear Drucker-Prager material are
f1=1200 £ mQ p=1 =2
v= 0.3
H= -150000 H ;= 5000.

The typical response curves for compressive and ten-
sile tests with both local and non-local gradient model
materials, were plotted in Figs. 2 and 3 respectively.
The softening behavior was evaluated at the residual
force point.

In the compression test, different widths of the local-
ization zone were obtained with the local and non-local

10
5%
45¢ -7 AN
L
At g
3.5f
5 I
=
W 25t
of
1.5f
T ~ Nonlocal Response Mesh (b)
“““ Nonlocal Response Mesh (c)
0.5F __ Local Response Mesh (c)
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

u (cm)

Figure 2: Force-displacement curves for compressive
test with local and non-local gradient material models.
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Figure 3: Force-displacement curves for tensile test
with local and non-local gradient material models.

(a)

Figure 4: Response in compressive test for local (a)
and non-local gradient (b) Drucker-Prager model with
= 2.5 cm.

Drucker-Prager material models. Using the bias mesh
of Fig. 1-(b), for the local constitutive model the final
width of the localization zone is fixed by the size of the
typical element whereas for the non-local material, the
internal length [= 2.5 ¢m defines the final width of the
failure zone as can be observed in Fig. 4-(a) and (b),
respectively.

Therefore, in non-local gradient Drucker-Prager ma-
terial, the width of the plastic zone coincides with the
internal length [.

In the tensile test, we analyze the predictions with
the bias and the unbiased meshes in Fig. 1-(b) and
1-(c) respectively. The internal length [=3.5 em was
considered. The width of the plastic strain zone at
final stage coincides with [. Figure 5 shows that the
final width of the plastic strain zone is similar for both
meshes. We conclude that bias and unbiased meshes
lead to similar results when gradient-dependent mate-
rials are considered.

For the unbiased mesh in Fig. 1-(c¢), the FE analysis
was performed with two different internal lengths: =
2.5 ¢m and I= 5.0 em. As before, we observe that
the characteristic length [ defines the width of the the
plastic strain zone. These results are shown in Fig.

L
DX

i

Figure 5: Bias (a) and unbiased mesh (b) with {=3.5
cm in tension test

2

R <
4

| P

B
D]

pe

Figure 6: Unbiased meshes with [=2.5 c¢cm (a) and
[=5.0 cm (b), in tension test.

6-(a) and (b), respectively.

The numerical analysis in this section with the gra-
dient plasticity model and FE approach in this paper
have demonstrated the robustness of the proposed al-
gorithms. In this sense, a super linear convergence rate
was obtained, that is consistent with the fixed point
iterative procedure considered in the dual mixed FE
method.

The numerical tools shown stability during the en-
tire non-lineal process including the formation of the
localized failure zone.

The results in this work also demonstrate the capa-
bility of non-local gradient-based constitutive formula-
tions in conjunction with the dual mixed FE-approach
to regularized the post-peak response behavior of the
smeared-crack approach.

IV. CONCLUSIONS

A FE procedure for thermodynamically consistent
gradient-dependent plasticity was proposed for CST
elements. The procedure consider two uncoupled but
sequenced iterative processes for the update of the dis-
placement field and plastic multiplier.

The results in this work demonstrate the efficiency
and potentials of the so called dual mized method for
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FE analysis of gradient-dependent plasticity. The re-
sults further show the strong control of the width of
the localization zone by the characteristic length [ that
characterizes the gradient-based plasticity models.
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