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Abstract−− This paper presents a new Fuzzy Dy-

namic Programming model that calculates the opti-
mum solution of problems with uncertainties in data 
defined by fuzzy sets. The result includes the deter-
mination of an Intrinsic Risk Threshold of the solu-
tion. Extrinsic Risk Thresholds may also be set by a 
Decision Maker, in order to obtain more robust solu-
tions. The technique is applied to the calculation of 
Distribution System expansion costs to serve the ob-
jectives of a Regulatory Authority (Regulator) in 
fixing levels of efficiency, targets and penalties to a 
regulated market.   

Keywords−− Distribution Planning; Fuzzy Dy-
namic Programming; Risk Analysis, Risk Threshold, 
Fuzzy Regret. 

I. INTRODUCTION 
Distribution expansion planning is no longer an activity 
that only interests utilities. In a market environment, 
where several actors may participate or contribute to the 
evolution of distribution systems, regulators have the 
need to evaluate the impacts and costs of this evolution, 
too.  

This is especially relevant when the regulator wishes 
to define a theoretical case for distribution expansion 
costs, in order to be able to compare the actual perform-
ance of an utility with such reference - this may allow 
the establishment of efficiency measures that may have 
consequences on the rewards allowed to the distribution 
utilities, on the assessment of added costs induced by 
external factors or in fixing penalties. 

However, the definition of a theoretically optimal 
expansion cost is not easy, not only because of the com-
plexity of the problem but also due to the level of uncer-
tainties present in data and in forecasts. Therefore, one 
must develop models in which these uncertainties are 
recognized and treated as such. 

But the incorporation of uncertainties in a system 
expansion model in which decisions are sequentially 
made, cannot be done without considering risks associ-
ated with such decisions.  

Besides, many of the uncertainties are not of prob-
abilistic or stochastic nature and should not be repre-

sented as such - in this case, representing uncertainties 
by Fuzzy Sets is an alternative. 

In this paper, a solution to a mid-term distribution 
expansion planning problem is proposed, from the per-
spective of a Regulator. Along several stages in time, 
one searches for the set of decisions (associated with 
investment costs – new lines, new substations - and op-
eration costs - namely power losses) that “optimize” the 
global cost of system development. However, because 
of uncertainties (in power demand, in equipment costs) 
this goal cannot be achieved: depending on the instanti-
ated values for data with uncertainty, the optimal deci-
sions may vary. 

In the work reported in this paper, the development 
of a distribution system is simulated, according to a Dy-
namic Programming principle. This simulation intends 
to retain the set of decisions that may be optimal in dis-
tinct scenarios, in order to seek the sequence of deci-
sions that may display, as much as possible, a degree of 
immunity to uncertainties. These sets of decisions may 
be seen as a fuzzy trajectory through system state space. 
By establishing thresholds, delimiting admissible from 
inadmissible risk levels, one is able to control the size of 
the corresponding optimizing fuzzy trajectory. 

This is a Risk Analysis paradigm approach - deci-
sions are selected in order to minimize the possible re-
gret felt, in case the future demonstrates that the deci-
sion made was not optimal. In the following sections, 
the model will be described and its usefulness illus-
trated. 

II. METHODS 

A. Discussing the Fuzzy Dynamic Programming 
There is an algorithm in the class of Dynamic Pro-
gramming (Bellman and Dreyfus, 1962), called Fuzzy 
Dynamic Programming, which enables the calculation 
of an optimum of certain problems that include uncer-
tainties, modeled as fuzzy sets, in constraints and objec-
tive function – following the Optimality Principle of 
Bellman-Zadeh (1970). This principle leads to the cal-
culation of a maximizing decision (maximizing a mem-
bership degree) over the intersection of objective and 
constraints.  
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However, the result offered by this approach is still a 
simple trajectory over a deterministic or crisp space of 
system states. Therefore, there is not an explicit account 
of risk in the decision making process, and a Decision 
Maker can only implicitly consider it by defining an 
order of importance or hierarchy in the problem criteria 
(Sakawa, 1993; Saaty, 1977; Shu and Kuo, 1992; Yager, 
1977). In this sense, the notion of risk is more depend-
ent on the relative aversion of the planner to criteria 
than on the Structure of Uncertainties of the problem. 

In the following paragraphs, an alternative Dynamic 
Programming approach is presented, in which the uncer-
tainties, under the form of fuzzy numbers, condition the 
search for optimizing strategies in a space of fuzzy 
states. In this formulation there is not a clear single op-
timizing trajectory in the space of system states but in-
stead a fuzzy set of trajectories (a set of trajectories, 
each with a membership value). This result is extremely 
important if one wishes to deal with uncertainty and 
risk. The concept of risk only makes sense if one is able 
to consider different scenarios and evaluate the conse-
quences of decisions in each scenario. The scenarios are 
generated or result from the recognition of uncertainties. 
By keeping trace of the optimizing trajectory for each 
scenario, one retains the ability to evaluate regrets and 
therefore to keep track of the robustness of decisions. 

Because the space state may be very large, its di-
mension is reduced with the help of the concept of 
Fuzzy Regret (Miranda, 1998) regulating the choices 
among alternatives. 

B. Ranking the Fuzzy Numbers 

General Comments 
One necessary step in every optimization technique is to 
compare alternatives. If their values are expressed as 
fuzzy numbers, then the problem becomes more com-
plicated, because there is not a strict relation of order 
definable in the set of fuzzy numbers but only a relation 
of partial order. However, for practical purposes, the 
application of a sequence of criteria may help in ranking 
fuzzy alternatives. 

Among the proposed methods, the Removal criterion 
(Kaufmann and Gupta, 1985) and the Total Distance 
Criterion or Generalized Hurwicz Criterion (GHC) 
(Saade, 1996) may be mentioned. One must also men-
tion the possibility of ranking fuzzy numbers using a 
defuzzification approach such as the Center of Mass, 
often used in Control but not usually in Decision Mak-
ing. 

Also a definition of a fuzzy maximum C of two 
fuzzy numbers A and B, such as proposed by Kaufmann  
and Gupta (1985), based on the membership functions µ 
of A, B and C 

µC(x)= Max {[µA(x), µB(x)],  x}∀   (1) 
is not useful in decision making when comparing alter-
natives: in this case, one is searching for reasons to pre-
fer A over B and not trying to obtain any kind of “fu-
sion” between the alternatives. 

Risk and α-cut of Fuzzy Numbers 
A fuzzy number, represented by a membership function, 
can be seen as a set of nested intervals, each associated 
with a membership level α. This parameter, in the con-
text of decision making, is a measure of the risk of ac-
cepting an α-cut as representative of the concept de-
scribed by the fuzzy number. This risk level is defined 
in the interval [0,1]. See Fig. 1, below. 

In Fig. 1 a possible fuzzy representation of “more or 
less 5” is illustrated; one may see that level α = 0.5 cor-
responds to the interval [3,7], while for a higher level of 
risk such as 0.7 the interval [4,6] must be adopted as a 
surrogate of “more or less 5”. Of course, the highest risk 
corresponds to level 1, taking the “exact” or “crisp” 
number 5 as a representation of “more or less 5”. 
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Figure 1 - Fuzzy number “more or less 5” and an α-cut at 

level 0.5 

Intrinsic Risk Threshold and Partial Comparison of 
Fuzzy Numbers 
Now observe Fig. 2. Admit that A and B represent the 
values associated to two alternative investment deci-
sions. 

Above level ac, it is guaranteed that, no matter  what 
the crisp instantiation of A and B is, the value of B will 
always be greater than A.  

This “exposure level” defines the maximum ampli-
tude of uncertainty in both A and B that one may accept 
while being certain that one alternative will always be 
preferred over the other. 

The lower ac, is the more confident one may be that 
selecting B over A will not be a regrettable decision; of 
course, if ac=0 one is absolutely sure that, no matter 
what the crisp outcome values of A and B may be, after 
the uncertainties are solved, the ordering of alternatives 
is maintained. 
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Figure 2 – Definition of the Risk Level ac, above which one  
has  B  > A regardless of  the expression  of uncertainties 

ac 

B A 



 G.A. SCHWEICKARDT, V. MIRANDA 

 229 

Level ac is a risk level. In this work, it will be indi-
cated as the Intrinsic Risk Threshold. Of course, there is 
no risk if ac=0 and the risk is maximum if ac=1 (when 
there is no confidence level for which selecting B over 
A is a safe decision). Notice that the definition of the 
intrinsic risk threshold depends on the establishment of 
a decision gradient in the attribute space where the 
fuzzy values of alternatives are represented: when com-
paring A with B, the risk threshold is different whether 
one is trying to decide if B is preferable over A or A to 
B. 

Therefore, in the presence of a decision making 
process with several alternatives with uncertainty, it is 
important not only to select a preferred alternative but 
also to identify the intrinsic risk level of such selection - 
this will define the degree of exposure of the decision to 
adverse futures. This process will be indicated as Par-
tial Comparison of Fuzzy Numbers (Alternatives). 

Fuzzy Regret 
Another important decision factor when comparing al-
ternatives is the concept of fuzzy regret.  

In risk analysis, regret is a measure of how sorry a 
Decision Maker is likely to feel for having selected one 
alternative, in a context of uncertainty, and then later 
realizing that, if a Decision Maker had known the future 
with certainty, another alternative would have been bet-
ter (Miranda and Proença, 1998). 

Admit two alternatives valued by two overlapping 
fuzzy numbers A and B such as in Fig. 3. Admit also 
that the uncertainties associated to each outcome are 
independent.  
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Figure 3 - Two triangular fuzzy numbers A(1,10,10) and 
B(5,5,14) 
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Figure 4 - Fuzzy Regrets, referring to Figure 3. Top - regret 
for choosing A instead of B; bottom - regret for choosing B 

instead of A 

Checking Fig. 3, it is possible to observe that at 
higher α levels, B is always less than A but at lower α 
levels B may exceed A. 

Without loss of generality, let's assume a context of 
minimization. A fuzzy number Reg(A|B) will be define 
as the possible regret felt by a Decision Maker when he 
chooses A but then B occurs; using the segment of con-
fidence notation (Kaufmann and Gupta, 1985): 

∀ α∈ [0,1] , A = [a1(α) , a2(α) ] and B = [b1(α) , b2(α) ]               
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| .        (2) 

Of course, if one chooses A and A results better than 
B, no regret will be felt - that's why the above expres-
sion does not allow for negative regrets. 

In Fig. 4, the two fuzzy numbers Reg(A|B) and 
Reg(B|A) are represented. In a decision context, the 
smaller the potential regret, the better. One may now 
rank the two fuzzy regrets using any defuzzification 
technique. In the case of Fig. 4, a criterion such as the 
Center of Mass places Reg(B|A) < Reg(A|B) - therefore, 
decision B would be preferable over decision A, in this 
pairwise comparison. 

The relevant point to be kept is that decisions about 
fuzzy valued solutions must be weighted in pairwise 
comparisons, while solution fuzzy values may be ranked 
based on individual defuzzified values.  

C. Fuzzy Dynamic Programming Model 
General Model 
The classical Dynamic Programming model assumes 
deterministic conditions in the decision process. The 
Bellman Optimality Principle states that 
  ( ){ }

( ){ }11
1 1

−∈=

+−= −∗∗

K;i
,C)K,i(fOpt)K,j(f K

j
K

itr       (3) 

where: 
Opt = Optimum (min or max, according to the problem) 
f* = Optimum value of objective function f, at a given 
state and Stage 
(j, K)    = State j corresponding to Stage K 

( )K
j

K
itr ,C 1− = Variation of function f between States 

(i, K-1) and (j, K) = Transition cost between those states 
in their Stages. One could apply the Extension Principle 
(Kaufmann and Gupta, 1985) to generate a fuzzy ver-
sion of the Optimality Principle, where the values of 
variables are fuzzy and therefore one must use extended 
operations to do the calculations. However, the problem 
in making comparisons between alternatives must be 
dealt with, in order to decide, at each Stage, what the 
Optimal partial decision is. 

According to the principles of partial comparison de-
fined in Section B, each comparison between fuzzy ob-
jective function values and the consequent decision of 
preferring one over another implies accepting a certain 
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intrinsic risk threshold (above which the decision is not 
questioned). As a large number of comparisons will 
exist during the optimization process, one will collect an 
equal number of intrinsic risk thresholds.  

Operational Definition of Intrinsic Risk Threshold 

What is the Intrinsic Risk Threshold for the problem 
solution, given the possible trajectories along system 
Stages? The answer is to take the maximum: 

{ }Nk

Tkk
caMaxT

ca

..1

*,
*

=
⎭
⎬
⎫

⎩
⎨
⎧

∈∀
∗

=            (4)  

with: 
*T

ca - the Intrinsic Risk Threshold of the Optimum 
Trajectory T* along Stages 

∗k
ca - the Intrinsic Risk Level associated to each State 

k included in T* 
N - the number of  Stages of the problem. 

This means that the Optimizing trajectory (which 
leads to the Optimal Solution) is only risk-safe or Ro-
bust if the uncertainties are represented by narrower 
intervals than the ones defined by the α-cut at ac

T*. 

D. Fuzzy Optimization Model for Distribution Ex-
pansion Cost 
The development of a distribution system is a multi-
stage multi-criteria problem in a context of uncertainty. 
The evaluation of the possible cost for a preferred de-
velopment strategy may be done using the concepts of 
Fuzzy Dynamic Programming described in the previous 
sections. 

Before presenting a practical application, some rele-
vant aspects of the model are discussed: 

Multiple attributes and Aggregated Objective Cost 
There is a set of criteria that may be represented by an 
economic value or an equivalent, which allows their 
consolidation into a single value. The most important 
are: 

• I: Investment; 
• Perd: Losses;  
• QS – Quality of Supply, usually evaluated by 

ENS – Energy not Supplied; 
• EI – Environmental Impact (for a distribution 

system, it will be measured through an index of 
visual impact of overhead lines and transform-
ers). 

The economic evaluation of each attribute requires 
the definition of Opportunity Costs. Furthermore, three 
main types of agents acting in the market environment 
can be identified; two of them have conflicting ration-
ales (utilities and consumers) and a third one acts on 
behalf of a collective welfare (the Regulator). 

This last agent has the responsibility to identify 
what, in a market equilibrium theoretical context, would 

be a set of opportunity costs such as the value of Power 
Quality or Environmental Quality. These lead to setting 
Objectives for quality levels, that must be reached 
through the application of Incentives and Penalties to 
the other agents. These Penalties will therefore consti-
tute the costs of the (no) Quality of Supply and Envi-
ronmental Impact that an utility must take into account 
in a Distribution Expansion Planning activity. 

If all these attributes are valued as costs, it is possi-
ble to aggregate them into a single attribute and, in this 
respect, deal with the planning problem as a single ob-
jective model instead of a multiple criteria model. 

Financial Uncertainties 
Many of the financial uncertainties in planning are re-
lated to the value of the interest rate or opportunity cost 
used in evaluating equivalent capital costs. The CAPM 
(Capital Asset Pricing Method) approach (Bodie et al., 
1999) evaluates the return rate to be applied as 

               t CAPM   =   [ t f + ß d ( t m - t f ) ]     (5) 

with: 
t CAPM : return rate 
t f  : risk free asset return rate   
ßd : Systematic risk in the Power Industry  
tm : return of a diversified portfolio with ( t m - t f ) as  the 
market risk premium. 

Numbers and therefore, a fuzzy tCAPM  can be de-
fined, then, the equivalent capital costs will be fuzzy. 

Demand Forecast Uncertainties 
Uncertainties in demand forecast must be taken into 
account. There are a number of methods to consider 
uncertainties in demand predictions, from projections 
based on econometric models to more complex models.  
From these predictions one may build Possibility Distri-
butions associated to the demand forecast. 

Power Flow simulation 
Given fuzzy loads, one must adopt fuzzy models to ver-
ify the loading of equipment in each investment variant. 
One of such models is the Fuzzy Load Flow (Miranda et 
al., 1990). 

Reliability 
There are also models to deal with reliability in a fuzzy 
environment. The results may be fuzzy ENS (Energy 
Not Supplied) and fuzzy reliability costs (Miranda, 
1998). 

Fuzzy Objective Function 
The objective function to be minimized will be the 
Fuzzy Net Present Value (FNPV) of all aggregated costs 
during the study period 

( ) ( )
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with each Cxi being the cost associated to each attribute, 
i the Stage index and n the number of Stages in the 
planning period. 

In particular, each Fuzzy Capital Cost for each alter-
native v (of using distinct equipment solutions) is given 
by 

     ( )
( )

t vue t 1 t m
C Cv, i m vum 1 1 t 1m

⎡ ⎤× +⎢ ⎥= ×∑
⎢ ⎥= + −⎣ ⎦

         (7) 

with: 

Cv,i: fuzzy annualized investment associated with alter-
native v in Stage i, 
Cm: fuzzy annualized cost associated with equipment m,  
te: total number of pieces of equipment in alternative v, 
vum: useful life of the equipment m in such alternative, 

             FRCm= 
( )

( )

vut 1 t m
vu1 t 1m

⎡ ⎤× +⎢ ⎥
⎢ ⎥+ −⎣ ⎦

          (8)  

is the Fuzzy Capital Recovery Factor , 
t: fuzzy return rate. 

Constraints 
An alternative is based on a set of resources satisfying 
all technical conditions imposed at each Planning Stage. 
Not all combinations of pieces of equipment or re-
sources are possible. A combination of alternatives is 
only possible if  

                           1K,iK,j VV +⊆                  (9) 

where Vj,K denotes the set of equipment pieces forming 
alternative j up to Stage K. This condition gives coher-
ence to a trajectory through states along the Planning 
Stages. 

Extrinsic Risk  Threshold 
The Intrinsic Risk Threshold, defined above, results 
from all the uncertainties considered in the model. 
However, it may happen that this threshold is unaccept-
able to the Decision Maker, because it is too high, lead-
ing to intervals (of stability of the solution given the 
uncertainty in data) that are too narrow.  

Instead, the Decision Maker may wish to impose an 
Extrinsic Risk Threshold as a constraint – meaning that 
he does not wish to select options that reduce the capac-
ity to absorb uncertainty. He is therefore searching for 
robust strategies, or stable decisions within a certain 
interval of uncertainty of data. This means that the deci-
sion process may discard alternatives that could perhaps 
have a smaller cost, but that become sub-optimal very 
easily, depending on the actual outcome values of pa-
rameters affected by uncertainty in data. This, in fact, 
contributes to reduce the state space, eliminating alter-
natives leading to a high risk. This elimination can be 
made applying the concept of fuzzy regret explained 
above: by making pair-wise comparisons of alternatives, 

the Decision Maker may discard from further examina-
tion an alternative that shows a higher potential regret. 

This can also be seen as a hedging attitude: the De-
cision Maker accepts a higher possible cost but becomes 
surer of having decided for a more stable strategy, i.e., 
with an evaluation of the interval of uncertainty that will 
less likely lead to unpleasant surprises. 

Trade-off calculation 
Setting an Extrinsic Risk Threshold defines a level of 
risk taken by the Decision Maker (that the solution he 
chooses may become unacceptable in a set of adverse 
scenarios included in the intervals of uncertainty con-
tained above such threshold). 

One may therefore develop a trade-off calculation, 
identifying the relation between (extrinsic) risk thresh-
old and selected system expansion strategy. Typically, 
the global cost will increase if one aims at having a so-
lution trajectory that is insensitive to larger uncertain-
ties. 

Independence of uncertainties 
When doing the partial comparison of two fuzzy num-
bers, one must identify uncertainty sources that are 
common to both numbers so that a real risk threshold is 
identified, instead of an apparent threshold.  
If uncertainties are wrongly mistaken as fully independ-
ent from a common source, the resulting uncertainty is 
much larger than it should be. Only the uncorrelated 
uncertainties must be counted for in determining the 
actual risk threshold level. 

Summary 
The model developed to evaluate the cost of an ideal 
expansion strategy for a distribution system may be 
summarized as follows: 
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(Extrinsic Risk Threshold constraint)                            
This problem is solved by applying recursively the 

Bellman’s Optimality Principle, extended to the fuzzy 
domain: 
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where NPV stands for Net Present Value and Minac 
means that the decisions are made following the Partial 
Comparison Principle, which is associated with a Risk 
Threshold ac, as explained above. 
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Proposed Model of Fuzzy Optimization and the State of 
Art in Planning Distributions Systems 
In this paper, a solution of mid-term distribution expan-
sion planning problem, from the perspective of a Regu-
lator, is proposed.  The basis for this model, is the Bell-
man’s Optimality Principle, under its formulation in the 
Dynamic Programming Optimization method. It’s an 
extensively used tool in dynamic planning systems. In 
the State of Art (Distribution System’s Planning), it has 
been applied in pseudo-dynamic (long-mid term) 
(Ramírez-Rosado and Gönen, 1991) and dynamic (mid-
short term) (Youssef and Hackam, 1988; Partanen, 
1990) planning.  In general, this plannig has two stages: 
1) long-term and 2) mid-(short)term. In the former, allo-
cation of substations and feeders are defined for each 
sub-stage (grouping some years) as alternatives of 
equipment. In the second, mid-term, these alternatives, 
with more details in investments,  to make up the states 
of the Search Space to application of classic Dynamic 
Programming. Here, in the mid-term, is where the 
Bellman’s Principle is used to solve both models: clas-
sical and proposed.  

But from the Regulator’s point of view, there is a de-
ficiency in economic assessment of objectives and con-
straints, that distribution system expansion problems 
exhibit (except in investment cost of equipment). How-
ever, in some regulations (Argentinean, for example), 
penalty factors are imposed to the utilities, over a basis 
of some limits in quality of service and, less frequently, 
environmental quality. These factors are not defined in 
an objective way. Therefore, they have uncertainties 
whose treatment in the regulation process is not estab-
lished clearly. Only a level cost for each penalty is 
known, but it does not participate as element of expan-
sion model, rather as component of control distribution 
system exploitation, once its planning is available. 

The proposed model assumes that costs of penalty 
factors are opportunity costs, in economical sense. Ad-
ditionally, the lack of clarity in its definition (uncertain-
ties), is modeled, as an alternative, via fuzzy sets. In this 
way, an approximation of an aggregate of opportunity 
costs, one for each objective or constraints in the model  
(namely attributes), has a possible formulation.  This 
aggregate will be a fuzzy cost to be minimized in the 
mid-term horizon of planning. 

Therefore, the planner-Regulator has a new formula-
tion in planning distribution systems, where all attrib-
utes, as “fitness” measures (opportunity cost) of system, 
are integrated. Then, the search for fuzzy minimum ex-
pansion and operation cost follows, defined, finally, by 
means of a segment of confidence (values in alpha-cut 
of fuzzy set cost). The Search Space of the problem is 
bounded by a constraint of coherence of choice in 
equipment variants, Eq. (9), and the application of 
Bellman’s Optimality Principle, extended to fuzzy do-
main, is then valid and appropriate, under the rules im-
posed for the Extension Principle in fuzzy sets and num-
bers (Kaufmann  and Gupta, 1985). 

E. Case Study 
Comments 

The methodology described above was applied to the 
case of the distribution system exploited by the utility of 
the region of Bariloche, in the Argentinean Patagonia. 
The period under analysis was the sequence of years 
1998-2002, corresponding to a 5-year Tariff Control 
period denoted in Argentina as a Quinquenio. The Dis-
tribution Network of Bariloche covers an area of 350 
km2 around the lake Nahuel Huapi (500 km2). It is sup-
plied at 33 kV and it has three 33/13.2 kV substations. 
The 13.2 kV lines feed about 400 LV substations of an 
average installed capacity of 150 kVA. The local 
weather conditions are hard, characteristic of a moun-
tain region. The quality of supply suffers from these 
conditions. This is a winter tourist destination (which 
imposes some strong environmental constraints). This is 
a fast developing area, where new consumers dominate 
over the growth of existing consumption, which ex-
plains why the expansion costs become relevant in the 
planning of the network.  

All fuzzy data (costs, demand forecasts…) as well as 
the results from operations with fuzzy numbers were 
represented by trapezoidal membership functions. It is a 
reasonable approximation that is adopted in many cir-
cumstances. The reliability calculations were performed 
based on a model that is consistent with the regulatory 
environment in Argentina, which imposes penalties to 
all non supplied Energy. 

Simulation 
The simulation corresponded to a period of five years 
which was divided in five stages. A number of possible 
network expansion reinforcements and development 
alternatives were considered, and the following were 
retained, complying with a constraint for possible com-
bination of alternatives: Stage 1: 5 alternatives; Stage 2: 
4 alternatives; Stage 3: 4 alternatives; Stage 4: 3 alterna-
tives; stage 5: 1 final stage. 

The annualities corresponding to fuzzy costs are ex-
pressed in k$/year. One cannot fully describe in the pa-
per all the details of the example, but some graphs illus-
trate the results obtained. Figure 5, for example, illus-
trates the decision process at Stage 2 departing from the 
partial optimal found at stage 1. One of the variants is 
clearly better and it represents an Intrinsic Risk Thresh-
old of 0.6723, compared with the next best (as marked 
in the figure). Figure 6 illustrates the result at the end of 
the process. 

A back-tracking procedure has been developed to 
identify dependencies in uncertainties in a trajectory 
along the several stages, so that a Real Risk level could 
be calculated. This has enabled the identification of a 
Real Intrinsic Risk Threshold for the optimal solution.  
The Apparent Risk, is a consequence of dependence on 
the uncertainties inherent to all the fuzzy numbers (cost) 
that are component of aggregate fuzzy cost, for each 
state,  in the fuzzy minimum trajectory building. 
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Figure 5 – Fuzzy partial optimum in the transition of Stage 

1 to Stage 2 
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Figure 6 – Fuzzy partial optimum, in the transition of 

Stage 4 to Stage 5. The apparent accumulated Intrinsic Risk 
Threshold is now 0.9746 

The following table summarizes such calculations: 

Stage Apparent risk Real Risk 
1 0 0 
2 0.6723 0.6723 
3 1 0.9134 
4 0.9923 0.7339 
5 0.9746 0.7992 

 
The successive application of the concept of Fuzzy 

Regret, reducing the state space, leads to the elimination 
of states that could have been better in some futures. To 
be safe in his evaluation of the interval of uncertainty, 
the Decision Maker has renounced to be pleasantly sur-
prised in the future, in some scenarios. This has been 
observed through the building of a graph denoting the 
increase in the “accumulated value of discarded sur-
prises” with the decrease of the Risk Threshold resulting 
from the application of the Minimum Fuzzy regret pro-
cedure to reduce the state space. 

Let eca
1V y eca

2V  be two alternatives defining an In-
trinsic Risk Threshold ace in the Optimal Fuzzy Path at 
a given state e. Let eca

1V  be preferred over eca
2V , when 

applying the Minimum Fuzzy Regret principle to reduce 
such threshold. Then, a Surprise Index was calculated 
as:  

..E ; e]}|[{CpsoS
e

ee

ac
ac 1== ∑  cc aa

21 VVReg    (12) 

with E being the number of eliminated states. Figure 7 

shows the calculated values of  S with successive state 
elimination, using two defuzzification criteria (Removal 
and GHC). The key Cpso means the defuzzification 
criteria employed – Collapse of Possibility Distribution. 
Then, S is a measure of over-cost respect the fuzzy 
minimum, that appears when the planner-regulator 
“feel” the Intrinsic Risk Threshold very high. Formally, 
this situation implies that Extrinsic Risk Threshold con-
straint was violated. If this event occurs, the proposal 
model proceed to eliminate the state of minimum fuzzy 
regret in the fuzzy space, Cpso, by means of steps de-
scribe above. The Real Risk decreases, confidence in-
creases, but the minimum fuzzy cost increases too. 
Some relevant results are commented as follows: 
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Figure 7 – Variation of the value of discarded states with the 

decreasing choice of Risk Threshold 

1) The minimum Fuzzy Net Present Value is calcu-
lated as lying inside the interval [404,74 ; 468,44] 
k$/year, determining an Intrinsic Risk Threshold of 
ac

T=0.9134, when direct comparisons are made be-
tween fuzzy numbers. 

2) However, if one adopts the minimum fuzzy regret 
evaluation when deciding using eq. (12), one 
reaches a risk threshold of ac

T=0.7992 defining a 
minimum FNPV within [394,42 ; 481,87] k$/year. 

III. CONCLUSIONS 
This paper deals with the problem of finding the cost of 
an optimal expansion strategy for a distribution system 
over a given period of time. 

The Regulator must take into account, in his evalua-
tion, a number of uncertainties both in costs and in de-
mand forecasts. Therefore, the Regulator must be able 
to calculate a credible interval for the costs associated 
with an expansion strategy and he must also have an 
indication of the risk of accepting this interval or of re-
gretting such decision. 

The paper offers the following contributions: 
• A Fuzzy Dynamic Programming Optimization 

model that determines an optimum expansion strat-
egy while keeping track of the uncertainties in data 
and its reflection on results. 

• A model that calculates the Intrinsic Risk Threshold 
of the optimum strategy, i.e., that defines the size of 
the uncertainty interval for which one is sure that, 
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no matter what the instantiation of uncertainties 
may be, the solution will remain as the selected one 

• A model that may accept an Extrinsic Risk Thresh-
old as a constraint, so that the user may opt for a 
more robust set of decisions; this may lead to a sub-
optimal evaluation of the cost, but the Decision 
Maker may be more confident of being immune to 
a wider range of uncertainties (it is a way of obtain-
ing some hedging against adverse futures). 

• A model that may give the Decision Maker an indi-
cation about a Trade-Off between an over-
evaluation of the expansion costs and an increase in 
the robustness of the decisions. 
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