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Abstract  The proposed constrained model 
predictive control (MPC) is based on a successive 
linearization of a neural model at each sampling time 
and the closed loop response is subject to a first 
order reference system as set of equality constraints. 
In addition the system inputs are subject to hard 
constraints. In order to satisfy both types of 
constraints simultaneously it was needed to include a 
slack vector in the equality constraints. This slack 
vector provides more flexibility in the control moves 
in order to render the solution of the optimization 
problem feasible. The proposed MPC was 
implemented in an experimental pH neutralization 
plant. Results showed a very satisfactory 
performance of the proposed strategy. 
 Keywords  Model Based Control, Neural 
Control, Neural network Models, pH control, Real-
Time Control Systems. 

I. INTRODUCTION 
Global industrial competition has revealed the 
importance of the automatic control for industrial 
profitability and safety. In this fashion advanced control 
strategies are used to assure that processes can be 
operated safely in regions of the high product quality 
with low consumption of raw materials and energy. 
However the development of advanced control 
strategies is a very hard task mainly due to nonlinear 
behavior of the chemical processes.  
 Nonlinear processes have been controlled by linear 
controllers in spite of the fact that the vast majority of 
chemical processes is inherently nonlinear. The 
advantage of this approach is that an easy analytical 
solution of the control problem can be found and a low 
computational effort is demanded by linear controllers. 
However, the linear approach can be very limiting for 
highly nonlinear processes and it can drive the system to 
unstable solution. The use of nonlinear process models 
within the control strategy has been shown to provide 
the potential for significant improvement over linear 
controllers for nonlinear processes (Bequette, 1991; 
Henson and Seborg, 1997). Nonlinear model predictive 
control (NMPC) (Garcia and Morshedi, 1986; Garcia et
al., 1989; Gattu and Zafiriou, 1992) and input-output 
linearizing control (IOLC) are the most widely studied 
nonlinear control techniques for process control 
problems. NMPC offers many of the appealing features 

of linear model predictive control, including explicit 
compensation for input and output constraints 
(Meadows et al., 1995). As compared to NMPC, IOLC 
offers several important advantages including 
transparent controller tuning and low computational 
requirements (Kravaris and Kantor, 1990). However, 
conventional feedback linearization techniques have 
neither constraint handling (Rawlings et al., 1994) nor 
predictive capabilities. This has motivated the 
development of several modifications of the basic input-
output linearization approach (Balchen and Sandrib, 
1995; Kendi and Doyle, 1995). On the other hand, the 
nonlinear approach can result in a large computational 
effort that limits its use in practical applications. 
 The scope of this paper is to deal with nonlinear 
process by using a control technique which is 
computationally feasible for industrial and practical 
implementation. Feasible for industrial implementation 
means the controller must have low computational 
effort and, the most important, the solution of the 
optimization problem must be guaranteed. When we 
linearized the model we can transform the optimization 
problem into a quadratic programming problem and this 
type of optimization problem has convergence 
guaranteed in a finite number of iteration steps (low 
computational effort). If we use a nonlinear model 
directly in the optimization problem we can guarantee 
neither convergence nor feasibility of the solution and 
this is unacceptable for industrial and practical 
applications. This is one of prime problems in nonlinear 
MPC. In addition the computational effort is generally 
very large in a fully nonlinear approach and all MPC 
calculations must be done during a sampling time (10 
seconds in the present case). In the present application 
we deal with process nonlinearities by using a 
successive linearization which showed to be effective in 
an experimental application. 
 The aim of this work is to present a nonlinear 
control technique which is computationally feasible for 
industrial implementation. The proposed strategy is a 
model predictive control technique (MPC) based on a 
successive linearization of the model via Taylor’s series 
expansion at each sampling time following the Gattu 
and Zafiriou (1992) idea. 
 The cost function of the optimization problem is 
subject to a first order reference system and upper and 
lower limits in the inputs. In order to satisfy both 
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constraints simultaneously and to provide a feasible 
solution, it is necessary to include a slack variable ( ) in
the cost function of the optimization problem. The 
prime advantage of the proposed algorithm is that it 
does not need be re-tuned for different operating points. 
An experimental study was carried out in a pH 
neutralization plant. 

II. THE DYNAMIC SYSTEM 
Consider a general forced nonlinear dynamic system 
described by: 

)(t)ˆ((t)ˆ   and    )(t)(t)ˆ(
dt

(t)ˆd whzm,wfw ,       (1) 

where m(t) n is the vector of manipulated variables, 
(t)ŵ m is the estimated state vector and (t)ẑ n is 

the estimated output vector. It is well known that the use 
of Eq. (1) in a MPC strategy can result in a large 
computational effort and the convergence of the 
involved optimization problem can not be guaranteed in 
a finite number of iteration steps. These problems have 
limited the use of models based on Eq. (1) directly into 
MPC formulations for industrial applications. 
 The scope of this research is to deal with a MPC 
strategy that can be implemented industrially, i.e., MPC 
with convergence guaranteed and low computational 
cost. The basic idea is similar to the Gattu and 
Zafiriou´s (1992) idea which uses a successively 
linearized model. The use of a linear model in 
constrained MPC calculations allows transforming the 
involved optimization problem into a quadratic 
programming problem (convergence guaranteed in a 
finite number of iteration steps). The system 
nonlinearity is considered by updating the linear model 
at each sampling instant. This update is computationally 
inexpensive. However we have included a reference 
system in MPC calculations to force the closed-loop 
output to be as linear as possible. The main advantage 
of this formulation is that re-tuning of the controller is 
no need when setpoint tracking is desirable. This result 
will be shown later. So, in order to get a linear model, 
Eq. (1) is linearized via Taylor’s series expansion 
around a general point (m0, w0, z0) but a measured 
point. The following equation is obtained: 

,))t(ˆ()()t(ˆ

),)t(())t(ˆ(),(
dt

)t(ˆd

00

0000

wwCwhz

mmBwwAmwfw
(2) 

where A m m, B m n, C n m, f(w0, m0): n+m

m and h(w0):  are given by: m n

00,ˆˆ mmwwwA f ,
00,ˆ mmwwmB f ,

0ˆˆ wwwC h ,
00 ˆˆ)( wwwhwh           (3) 

0000 ,ˆ,ˆ),( mmwwmwfmwf ,.

 The maps f(.), h(.) and the general point (m0, w0, z0)
must be known in order to evaluate the matrices A, B
and C. In order to get accurate system predictions by 

using the linearized model, the point (m0, w0, z0) about 
which we form the Taylor expansion should be as close 
as possible to the point (m(t), , ). Thus, in 
control fashion, the output vector and state vector 

 are available (measured values) at current 
sampling time “t

(t)ŵ (t)ẑ
(t)ẑ

(t)ŵ
k” (zk and wk respectively) but the input 

vector mk will still be calculated by the MPC. The 
freshest actual input, state and output information 
available about the system is the information at previous 
sampling instant “tk-1”. Therefore, we will use the 
previous actual point (m(tk-1), w(tk-1), z(tk-1)) to perform 
the linearization of the system: 

,))()(ˆ()(ˆ

))()((                       

))()(ˆ(
dt

)(ˆd

111
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111

kkk

kk

kkk

ttt

tt

tt
t
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(4) 

where Ak-1
m m, BB k-1 , Cm n

 k-1 , fn m
 k-1:

 and hn+m m
 k-1:  are given by: m n

)(,)(ˆ1 11ˆ kk ttk mmwwwA f ,

)(,)(ˆ1 11 kk ttk mmwwmB f ,

)(ˆ1 1ˆ ktk wwwC h  ,            (5) 

)(,)(ˆ1 11
,ˆ

kk ttk mmwwmwff ,

)(ˆ1 1
ˆ

ktk wwwhh .

Now, we define the following deviation variable: 
)()(ˆ)(ˆ 1kttt wwx ,

)()(ˆ)(ˆ 1kttt zzy , (6) 

)()()( 1kttt mmu .
Substituting Eq. (6) into Eq. (4) and taking the constant 
matrices A = Ak-1, B = BBk-1 and C = Ck-1 and constant 
vectors f = fk-1 and h = hk-1 in order to make the 
nomenclature cleaner, Eq. (4) can be rewritten as 
follows: 

 xCy

uBxAfx

.(t)ˆ(t)ˆ

,(t)(t)ˆ
dt
(t)ˆd

 (7) 

 It is important to keep in mind that u(t), and 
are deviation variable in relation to their values at 

previous sampling instant and that vector f and matrices 
A, B and C are kept constant during all MPC 
calculation (prediction phase) but they must be updated 
after all MPC calculations was performed and a new 
sampling time is going to be implemented in a receding 
horizon fashion. Now, considering matrix A
nonsingular, Eq. (7) can be integrated from “t” to “t+ t” 
or, in the other words, from “t

(t)x̂
(t)ŷ

k“ to “tk+1“ assuming u(k) 
constant during the sampling instant. The result is as 
follows: 
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1),(kˆ1)(kˆ
,(k)(k)ˆ1)(kˆ

xCy
ΨfuΨBxΦx

            (8) 

,M)(kΔ             

)1(kΔ)(             

 )(kΔ)(             

(k)ˆΔ)((k)ˆ)2M(kˆ

1M

1i

1i

2M

1i
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2M
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i

uΦΨΒC

uΨΒΦC

uΒΦC

xΦCyy

   (15) 
where the matrices m m, m m are given as 
follows: 

. te1
,te

IAAΨ

AΦ
                           (9) 

Eq (7) can also be integrated analytically from “tk-1“ to 
“tk“ assuming u(k-1) constant during the sampling 
instant and taking . The result is as 
follows: 

)1k()1(kˆ xx

. M)(kΔ)(               

)1(kΔ)(               

)(kΔ)(               

(k)ˆΔ)
1i

((k)ˆP)(kˆ

MP
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P

1i

P
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uΨΒΦC

uΨΒΦC
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xΦCyy

(16) . (k)ˆ(k)ˆ
,1)-(k1)-(k(k)ˆ

xCy
ΨfuΨBxΦx

        (10) 

 Now, subtracting Eq. (8) from Eq. (10), taking the 
 vector as  = and the u(k) 

vector as u(k) = u(k)-u(k-1), we can rearrange the 
resulting equation to obtain: 

(k)x̂ (k)x̂ )1(k-(k)-ˆ xx

(k)(k)ˆ)k(ˆ1)(kˆ uBCΨxCΦyy .     (11)  It is important to keep in mind that the prediction 
instant from j > M to j = P u(k+j) = 0 because u(k+j) 
remains constant. The Eqs. (11)-(16) can be put in a 
matrix form: 

 If this procedure is continuously carried out up to 
instant k = P where P is the prediction horizon, M is the 
control horizon with P ≥ M and u(k + j) = 0 to M < j ≤
P, the following set of equations is obtained: γuΓŷ ,                           (17) 

),1k(Δ)k(Δ                
)k(ˆΔ)k(ˆ)2k(ˆ 2

uΨΒCuΨΒIΦC
xΦΦCyy   (12) where: 

TTTT )Pk(ˆ)Mk(ˆ)1k(ˆˆ yyyy , (18) 
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2
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A. The Reference System 
The controller is designed to transform the closed loop 
output into a first order system as follows: 

)t(ˆ)t(
dt

)t(ˆd SP yyKy ,                    (22) 

where K n n is a tuning parameter, ySP(t) n is the 
setpoint vector and )t(ŷ n is the estimated system 
output vector. However, infeasible solutions of the MPC 
optimization problem can occur when equality 
constraints represented by Eq.(22) and hard constraints 
(upper and lower bounds for inputs) must be satisfied 
simultaneously. To overcome this problem, a slack 
variable ( ) is introduced into Eq.(22) in order to allow 
the system to deviate from reference system and to 
satisfy the hard constraints. This approach is based on 
the generic model control approach by Lee and Sullivan 
(1988). The use of a slack variable to handle 
infeasibility problems in MPC has been used in several 
publications (Lee, 1993; Lopes, 2000; Kalra et. al.,
2002). Therefore, introducing slack variable (t) n

into Eq. (22) and substituting Eq. (7) into Eq. (22) we 
obtain:

(t)ˆ(t)(t)(t)(t)ˆ SP yyKλBuCxACfC .      (23) 
 Equation (23) can be discretized at the current 
instant t = tk. In addition, u(k) = u(k) and 

because the system variables in Eq. (23) 
are written in deviation variable. Thus, rearranging Eq. 
(23) we obtain: 

)t(ˆ)t(ˆ xx

. (k)ˆ                                           
(k))ˆ(k)((k)(k)Δ SP

fCxΑC
yyKλuΒC (24) 

 Equation (23) is now evaluated at instant t = tk+1 and 
the resulting equation is subtracted from Eq. (23). After 
an algebraic manipulation we obtain: 

.(k)ˆΔ)()1(kΔ (k)        

)1(k)1(kΔ(k)Δ)(
SP xΦKCCΑyKλ

λuCΒuΨΒKCCΑ
 (25) 

 If this procedure is continuously carried out up to 
instant k = P where P is the prediction horizon, M is the 
control horizon with P ≥ M and u(k + j) = 0 to M < j ≤
P, the following set of equations is obtained: 

,(k)ˆΔ)()2(kΔ                   

)1(k)2(k)2(k           
)1(kΔ)((k)Δ)(

2SP xΦKCCΑyK
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uΨΒKCCΑuΦΨΒKCCΑ

(26) 

,(k)ˆΔ)(M)(kΔ

)1M(kM)(kM)(kΔ
)1M(kΔ)(              

(k)Δ)(

MSP

1M

xΦKCCΑyK

λλuΒC
uΨΒKCCA

uΨΒΦKCCΑ

   (27) 
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The Eqs. (24)-(30) can be put in a matrix form: 

bzD ,                              (31) 

where: 

][][][][][MP)(2P)(1P)(

][][][][][)(M)(1M)(

][][][][][)(1M)(M)(

][][][][][2M)(1M)(

][][][][][][)()(

][][][][][][)(

][][][][][][][

I0000ΨΒΦKCCΑΨΒΦKCCΑΨΒΦKCCΑ

I0000ΨΒΦKCCΑΨΒΦKCCΑΨΒΦKCCΑ

I0000ΒΨKCCΑΨΒΦKCCΑΨΒΦKCCΑ
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D , (32) 
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(k)ˆΔP)(P)(kSPΔ

(k)ˆΔ2M)()2M(kSPΔ

(k)ˆΔ1M)()1M(kSPΔ

(k)ˆΔM)(M)(kSPΔ

(k)ˆΔ2)()2(kSPΔ

)k(ˆΔ)()1(kSPΔ
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b

, (33) 

TTTTT )Pk()k()Mk()k( λλuuz . (34) 

B  The proposed MPC Design 
The aim of the proposed controller is to do the system 
output to follow a first order linear system. This aim 
would be achieved if the slack variable (k) was zero 
for all time instant ( (k) = 0 for  k  [1, P]). This 
requirement would yield a more aggressive and less 
robust controller. In addition, infeasible solutions of the 
MPC optimization problem can also occur when hard 
and reference system constraints are both present in the 
optimization problem. To avoid infeasible solutions and 
to improve the robustness of the proposed controller, it 
is allowed (k) to being different to zero. However this 
is done in an optimal fashion, i.e., minimizing the 
quadratic norm of the vector (k). It is also well know 
from MPC literature that the penalization of the 
quadratic norm of the control effort vector ( u(k)) 
improves the MPC stability. Thus, the proposed cost 
function is a dual cost function defined as: 

λSλuRuJ

λλ
uu

TT
2
1

)Pk()k(
)Mk()k(

min ,

M,,0j
j)(kj)(k j)(k

:subject to

maxmax

j)(kmaxj)(kj)(kmin

uuu
uuu

bzD
,   (35) 

where the matrices R and S are positive definite 
matrices, the lambda vector  is given by  = [ T(k) … 

T(k+P)]T and the control vector u is given by u = 
[ u T(k) … u T(k+M)]T. It is very easy to show that 
this cost function can also be put as a cost function of a 
quadratic programming problem: 

zHzJ

zz

T
2
1

)2(k (k),...,

min

PM

,        (36) 

Mj ,,0
j)(k j)(k j)(k

:subject to

maxmax

j)(kmaxj)(kj)(kmin

uuu

uuu

bzD

where z is given by Eq.(34) and matrix H
(P+M+2) (P+M+2) is given by: 

. (37) 
S0
0R

H
][

][

 Borges (2001) showed the proposed controller as 
presented here can not eliminate offset unless that the 
following change in Eqs. (21) and (33) is made: 

, (38) )k()k(ˆ yy
, (39) )k()k(ˆ xx

t
kk

k
1

1
yyCf , (40) 

where yk and yk-1 are the system outputs at kth and (k-1)th

sampling instants respectively. Remember the actual 
system state and system output (x(k) and y(k), 
respectively) are available at time instant “tk

”. The basic 
structure of this MPC can be summarized by Fig. (1). 

Z
-1

Z
-1

Plant
Proposed

MPC
(quadratic programming)

NN

Z
-1

Z
-1

setpoints

A
B
f

k-1

k-1

k-1 uk-1

yk-1

uk-1

yk-1

uk

yk

yk

Disturbances

constraints
cost function

Figure 1: Basic structure of the proposed MPC. 

C. The Classical MPC design 
A MPC is designed in order to compare results with the 
proposed controller. A classical dual cost function is 
used where the quadratic norms of setpoint deviation 
vector and control effort vector are penalized: 

uRuQee
uu

TT
)Mk()k( 2

1Jmin ,     (41) 

M,,0j
j)(kj)(k j)(k

:to Subject

maxmax

 j)(kmaxj)(kj)(kmin

uuu
uuu

,

where the matrices Q and R are positive definite 
matrices. In this formulation the predictions are 
calculated by using Eq. (17)-(21) modified by Eqs. (38) 
and (39). The vector e is the setpoint deviation vector 
and it is given by: 
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'euΓe ,                           (42) 

)(' SP γye ,                           (43) 
TTSPTSPSP )Pk()1k( yyy .          (44) 

 In this case the optimization problem represented by 
Eq. (41)-(44) can also be put as a quadratic 
programming problem. If the modifications represented 
by Eq. (38)-(39) are also included in the MPC 
formulation represented by Eq. (17)-(21) it is very easy 
to show that this MPC will also eliminate offset. In this 
case the nonlinearities are considered by updating the 
matrices A, B and C next sampling instant after all 
MPC calculations are performed. Nevertheless, the 
constraints used by this MPC are different from the 
proposed MPC because they do not include the 
reference system constraints. The basic structure of this 
MPC can also be summarized by Fig. (1). But in this 
case, the cost function and constraints are different from 
the proposed MPC. 

III. EXPERIMENTAL SETUP 
The pH system was chosen because it is used as 
benchmark in control applications mainly due to its very 
strong nonlinear behavior. Figure 2 presents 
schematically the system. It consists of a continuous 
stirred tank reactor fed by a base flowrate (NaOH) and 
an acid flowrate (HNO3). Both flowrates are measured 
by using infrared turbine meters and can be manipulated 
by using magnetic pump with external control. The 
system pH is measured by using a pH probe in the 
reactor output and sent to a data acquisition system. All 
input and output signals were manipulated in a low cost 
hardware (Pentium III 500 MHz IBM/PC computer) by 
using LabVIEW® software (version 6.1). 

IV. SYSTEM MODELING 

A. The physical model 
Consider a neutralization process that occurs in the 
CSTR shown in Fig.2. The system has an output (pH) 
and two inputs (Q1 and Q2, acid stream and base stream 
respectively). The liquid level is kept constant and the 
chemical reactions involved are: 

 (45) 

. OHNaNaOH

,NOHHNO

,HOHOH

33

2

 Following the approach of Gustafsson and Waller 
(1983), a reaction invariant can be defined for each 
stream as follows: 

]OH[]H[Wa .                    (46) 
 The quantity Wa is called reaction invariant because 
it is not affected by the extent of the reactions. It is 
assumed that the reactions are fast enough and the 
system can be considered in equilibrium. Then the 
equilibrium relations can be used to determine the 
hydrogen ion concentration from the reaction invariant. 
The water equilibrium constant is given by 

]OH][H[K W .                     (47) 
 Equations (46) and (47) can be combined and an 
implicit algebraic relation between [H+] and Wa can be 
derived: 

]H[

K
]H[W W

a . (48) 

 Now, the dynamic of the process is given by mass 
balance for the invariant Wa (Montandon, 2005): 

)WW(Q)WW(Q
dt

)W(d
V a2a2a1a1

a , (49) 

aa W)0(W . (50) 
 Equation Eq.(50) represents initial steady state 
condition for the reactor and is given by: 

)QQ(
)WQWQ(

W
21

2a21a1
a . (51) 

Wa(t) can be obtained by integrating of Eq.(49) subject 
to the initial condition represented by Eq. (50), [H+] is 
obtained by substituting Wa(t) into Eq.(48) and pH(t) is 
obtained by substituting [H+] into Eq. (52): 

. (52) ]Hlog[pH

FT FT
HNO  (Q )3 1

NaOH (Q )2

pHT

W  = [HNO ]a1 3 0
W  = -[NaOH]a2 0

W  = [NO ]-[Na ]a 3
- +

Input signals (4-20 mA)

Output signals (4-20 mA)

from and to computer
(0-10V)

1

2a 2b

3a 3b

4

5
Legend:
1.         Reactor
2a, 2b. Magnetic pump with external control
3a, 3b. Infrared turbine flowmeter
4.         pH transmitter
5.         Data acquisiton system

Figure 2: Experimental setup. 
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Table 1: Nominal values of the system parameters. 
Variable Symbol Nominal values 

Volume V 4459.94 cm3
Acid flowrate Q1 12.0 mL/s 
Base flowrate Q2 12.0 mL/s 
pH pH 7.0
Acid conc. in Q1 [HNO3]0 3.611e-03 M 
Base conc. in Q2 [NaOH]0 3.611e-03 M 
Wa in Q1 Wa1 3.611e-03 M 
Wa in Q2 Wa2 -3.611e-03 M 
Wa in output Wa 0.0
Water equil. const. KW 10-14

 Table 1 gives the nominal values of system 
parameters. This system is interesting from control point 
of view because it is strongly nonlinear (see Fig. 3). 
This figure also reveals that the predicted titration curve 
obtained from the physical model was stepper over the 
operating range than the experimental titration curve. 
This result is due to water source used to prepare the 
solutions. The water is provided by the public water 
supplier of the Uberlandia city. Therefore, a buffering 
effect took place probably due to minerals presented in 
the water used to prepare the acid and base solutions. A 
more nonlinear curve would be expected to result if 
deionized or distillated water was used to prepare the 
solutions. Water provided from the public water 
supplier was used in order to reduce the costs with 
utilities and to render the system more realistic. 
 In order to validate the physical model an open loop 
prediction using this model was carried out. The 
experimental system was excited using a random 
uniform step sequence for base flow rate with Q2  [8 - 
13,3 mL/s] with a step probability (probability of a step 
change occurring at any given sampling instant) equal to 
0.8 (Bomberger and Seborg, 1998). Q1 was kept 
constant in its nominal value. The sampling time was 
chosen based on the dynamic of the system and the 
noise level of the experimental data. A sampling time of 
10s was considered satisfactory based on several 
experimental tests. Figure 4 shows the experimental 
results and the physical model prediction. 
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Figure 3: Predicted and experimental titration curves. 
 Results from Fig. 4 reveal modeling errors are well 
distributed around zero but with very large amplitude 
(standard deviation) as for one step as for fifteen ahead 
prediction. Modeling errors of this magnitude can 
deteriorate the performance of the MPCs. Due to the 
bad performance of the physical model a neural network 

model was tested. The bad performance of the physical 
model is likely due to presence of other ions in the 
water used to prepare the solutions. Performance of the 
neural model will be presented in next section. 
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Figure 4: Physical model response. a). system input. b). 
system output and one step ahead prediction. c). one step 
ahead prediction error. d). system output and fifteen step 
ahead prediction. e). fifteen step ahead prediction error. 
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B. The neural network model 
Input/output data are generally available in industrial 
application. To take advantage of this fact, it was 
developed a version of proposed controlled based on a 
neural network model. Before introducing the neural 
network (NN) model, it is convenient to discuss some 
practical aspects of the representation of this type of 
dynamic system. The natural way to represent the 
dynamic system represented by Eq. (1) is to use neural 
networks with neurons with dynamic characteristics 
(You and Nikolaou, 1993). This approach has the 
advantage of producing models of small dimension. For 
a single input single output system (SISO), the resulting 
neural network will have just one input. The prime 
disadvantage of this type of neural network is the 
training phase. It is very time consuming and hard to 
converge. A popular alternative is to consider a neural 
network with static neurons representing a discrete 
approximation of the dynamic system in the form of a 
NARX model (Su et al, 1992). In this case, the prime 
advantage is associated with the simplicity of the 
training phase. The disadvantage is that the number of 
required network inputs increases with input and output 
lags causing a huge increase in network structure. 
Another problem is that the determination of the input 
and output lags requires very often a tedious iterative 
process. For these reasons, in this work we consider a 
different alternative (Henrique et al., 2000) that consists 
of the direct representation of Eq. (1) with a static 
neural network followed by a numerical integration to 
recover y(t+1). Figure 5 shows the neural network 
topology schematically. 

Q ( t )2

p H (t )

+ 1

d p H ( t )

d t

+ 1

Fig. 5: Neural network topology used. 

 If the y(t) from plant is used as initial condition for 
obtaining y(t+1) by integration then one step ahead 
prediction is obtained. But if the y(t) is obtained from 
previous integration step then multiple step ahead 
prediction is obtained. For the pH neutralization process 
studied, the feedforward neural network model (FNN) 
predicts the time derivatives of the pH as a function of 
the base flow rate and the system pH. A sampling 
period of 10s was used and data from the time interval 
[0 to 256 min] were used to train the feedforward neural 
and from the interval [256 to 400 min] to validate the 
neural model. The network inputs were Q2(t), pH(t) and 
the network output was d[pH(t)]/dt. The derivatives of 
the pH were calculated numerically by finite difference 
schemes of the filtered pH values. 
 However, the structure determination of the neural 
network still remains. It is well known that large neural 

networks often have large number of redundancies that 
increase the network complexity without significantly 
increasing the mapping accuracy. In this paper we used 
the algorithm proposed by Henrique et al. (2000) to 
determine the network structure. This algorithm is able 
to identify and eliminate redundant and insignificant 
network parameters in an efficient fashion. It is based 
on an orthogonal least-squares pruning method. Results 
obtained by us and by those authors indicated that the 
algorithm is very efficient and accurately determines 
redundant and insignificant network parameters 
allowing parsimonious feedforward neural network 
(FNN) models. Statistical criteria used by Henrique et 
al. (2000) confirmed that pruned NN models are more 
accurate than full models for predicting data not used in 
the training phase. An extensive study about neural 
networks is beyond of the aim of this paper. But 
additional results about real applications can be found in 
Henrique et al. (2000). In the present case, a neural 
network with five nonlinear hidden neurons (hyperbolic 
tangent activation function) and one linear output 
neuron was selected by using the algorithm proposed by 
Henrique et al. (2000) and trained until convergence 
using the Levenberg-Marquardt method. 
 Figure 6 shows the experimental input/output and 
the one step/fifteen step ahead prediction performed by 
the neural model. This figure reveals the neural model 
yielded acceptable results as for one step ahead as for 
fifteen ahead predictions. Figure 7 shows a statistical 
analysis of the modeling errors. The mean and standard 
deviation of the one step ahead prediction error are 
2.0671e-04 and 0.0398 respectively in training phase 
and -0.0029 and 0.0422 respectively in the validation 
phase. For the fifteen ahead prediction the mean and 
standard deviation of the error are -0.0018 and 0.2215 
respectively in training phase and -0.0291 and 0.2293 
respectively in the validation phase. These results 
support the hypothesis that the modeling errors are 
normally distributed with zero mean and with finite 
standard deviation (white noise). Therefore, the neural 
network is sufficiently accurate for using in a MPC 
strategy. Next section will show the closed loop results. 
 We have used a neural network to model the system 
because the physical model did not yield acceptable 
predictions. The Figures 4, 6 and 7 confirm this result. 
In addition, when we use the physical model in the 
MPC formulation we have an additional problem 
because the state Wa(t) is unmeasured experimentally. 
In this case it would be needed to design a state 
estimator for Wa(t). In the neural network modeling 
fashion we do not have this problem because we can 
always model the system in an input-output fashion. As 
a consequence, state estimator is not needed. In the 
proposed MIMO formulation we have used the vector C 
as a unitary vector (C = [1 … 1]T). In the pH application 
C is a scalar value equal to one. Only the input/output 
information from system is sufficiently to model and to 
control the system experimentally. No further 
information about the state is required. 
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Figure 6: Neural network model response. a). system output 
and one step ahead prediction. b). one step ahead prediction 
error. c). system output and fifteen step ahead prediction. d). 
fifteen step ahead prediction error. 

V. CLOSED LOOP RESULTS 
In order to illustrate the advantage of proposed 
technique over classical PID and MPC technique, a 
digital PID and a classical constrained predictive 
controller (Eq. 41-44) were implemented experimentally 
and compared to the proposed controller (Eq. 35-40) for 
servo and regulator problems (unmeasured 
perturbation). The neural model developed was used in 
both MPC controllers. All controllers were first tuned 
by simulation tests using the NN model to represent the 
experimental plant. In following a fine field tuning were 
performed for all three controllers using preliminary 
parameters in order to get the best controller parameters 

experimentally adjusted (fine tuning). The tuned PID 
parameters are t = 10 s, Kc = 0.5 s/mL, I = 90 s and D

= 0 s. For classical MPC the tuned parameters are t = 
10 s, M = 10, P = 20, Q = 1, R = 150, | Q2 max| = 1 
mL/s, Q2 max = 30 mL/s and Q2 min = 5 mL/s. For 
proposed MPC the tuned parameters are t = 10 s, 
K=5e-03 s-1, M = 10, P = 20, R = 150, S = 100, | Q2 max|
= 1 mL/s, Q2 max = 30 mL/s, Q2 min = 5 mL/s. Figure 8 
shows results of the controllers in servo problem. 
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Figure 7: Probability density function (pdf) of the prediction 
errors: a). One step ahead prediction error of the training data; 
b). One step ahead prediction error of the validation data; c). 
Fifteen step ahead prediction error of the training data; d). 
Fifteen step ahead error of the validation data. 

 Results from this figure reveal that the proposed 
MPC yielded an almost symmetric response for setpoint 
changes. This result is a consequence of the system 
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reference which was put as an equality constraint in the 
quadratic programming of the control problem. As a 
consequence of this the closed loop response of the real 
system is basically a first order response. Therefore, 
controller retuning was not needed when new operation 
points are required. On the other hand, the Fig. 8 shows 
also that the PID and classical MPC performance are 
acceptable for system operation at low and high pH 
values, but the responses deteriorated considerably for 
system operation around of pH = 7. In order to improve 
the PID and classical MPC closed loop responses 
around pH = 7 a new set of the controller parameters is 
needed. However, if these new set of the controller 
parameters was used it would deteriorate the closed loop 
response for low and high pH values (around 4 and 10). 
Consequently, a different set of the controller 
parameters must be required for good performance at 
different operational conditions. This is clearly not a 
desirable situation in any application since it greatly 
increases the maintenance needs of the controller. 
Figure 8 shows also that the control actions for the three 
controllers. This figure reveals that the PID yielded 
more aggressive control moves than MPC approaches. 
The more conservative control moves obtained by MPC 
approaches are because of the presence of hard 
constraints in the manipulated variable. 
 On the other hand, it can be possible to get 

commercially available pH controllers based on known 
titration curve that can have performed as good as the 
proposed controller. But the aim this paper is to present 
a general control methodology that can be applied to 
any dynamic system not only for pH system with known 
titration curve. This actual dynamic system served only 
as practical example of a hard control system. By the 
way, the known titration curve was not used to design 
the proposed MPC controller. 
 Next, the capacity of unmeasured perturbation 
rejection of the controllers was tested. Acid flowrate 
was chosen as system load and the controller parameters 
were kept the same for all controllers. The run was 
started with Q1 = 12 mL/s. It was changed to Q1 = 13.5 
mL/s at instant t = 40 min, to Q1 = 12 mL/s at instant t = 
80 min, to Q1 = 10.5 mL/s at instant t = 120 min and to 
Q1 = 12 mL/s at instant t = 160 min. After t = 160 min 
the acid flowrate was kept in its initial value Q1 = 12 
mL/s. The initial condition of the system is pH =7. In 
this region the magnitude of the change in Q1 are too 
severe because of the high value of the system static 
gain. Figure 9 shows the controller performances for 
load changes. This figure reveals that the PID controller 
yielded unstable response, very oscillatory with 
increasing amplitudes. The MPC approaches yielded 
stable and acceptable responses around of the operation  

0 25 50 75 100 125 150 175 200
time (min)

3

5

7

9

11

pH

Setpoint
PID

 (a) 
0 25 50 75 100 125 150 175 200

time (min)

9

10

11

12

13

14

Q
2

(m
L/

s)

PID

(b) 

0 25 50 75 100 125 150 175 200
time (min)

3

5

7

9

11

pH

Setpoint
MPC

(c)
0 25 50 75 100 125 150 175 200

time (min)

9

10

11

12

13

14

Q
2

(m
L/

s)

Classical MPC

(d) 

0 25 50 75 100 125 150 175 200
time (mim)

3

5

7

9

11

pH

Setpoi nt

Proposed MPC

Reference system

(e)
0 25 50 75 100 125 150 175 200

time (mim)

9

10

11

12

13

14

Q
2

(m
L/

s)

Proposed MPC

(f) 
Figure 8: Closed loop responses (input and output) for setpoint changes: a) and b). PID; c). and d). Classical MPC; e). and f).
Proposed MPC.
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point (pH = 7). These behaviors are remarkable because 
the NN network was only trained to Q1 = 12 mL/s. Due 
to high sensibility of the static gain of the system around 
of pH =7 (see Fig. 3) these changes in Q1 have a drastic 
impact in accuracy of the NN model. In spite of this fact 
the MPCs controlled the system in a stable fashion. The 
PID control moves were very aggressive and the MPC 
control moves were acceptable and no violation of the 
limits occurred.

VI. CONCLUSION 
This paper introduces a MPC strategy based on a 
continuously linearized neural model obtained from 
actual input/output data. The closed loop output of the 
system behaviors as a first order system because of the 
equality constraint added to the quadratic programming 
involved. As a result, controller retuning for different 
operating regions is not necessary. This is clearly a 
desirable situation in any practical application since it 
decreases the maintenance needs of the controller. The 
proposed MPC has one more tuning parameter than the 
classical MPCs. However this parameter is easily tuned 
because it has physical meaning. It is the reciprocal of 
the closed loop time constant for SISO system. This 

parameter controls how fast or how slow will be the 
closed loop response. 
 The proposed control algorithm was developed and 
implemented experimentally. Results of a pH 
neutralization process showed the proposed controller 
was clearly superior to the PID and the classical MPC 
for servo and regulator problem. The proposed method 
retains the computational simplicity while providing 
some desirable features from model predictive control, 
such as constraint handling, incorporating future 
setpoint changes, penalizing large control move 
increments by selecting appropriate weighting 
parameters in the objective function. It was also verified 
the proposed technique yielded promising results in a 
real control problem confirming its good potential for 
practical implementation due to low computational 
requirements, good closed loop performance as well as 
transparent controller tuning. 
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Figure 9: Closed loop responses (input and output) for load changes: a) and b). PID; c). and d). Classical MPC; e). and f). 
Proposed MPC. 
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