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Abstract−− Arterial viscoelasticity can be de-

scribed using stress-relaxation experiments. To fit 
these curves, models with springs and dashpots, 
based on differential equations, were widely studied. 
However, uniaxial tests in arteries show particular 
shapes with an initial steep decay and a slow asymp-
totic relaxation. Recently, fractional order deriva-
tives were used to conceive a new component called 
spring-pot that interpolates between pure elastic and 
viscous behaviors. In this work we modified a stan-
dard linear solid model replacing a dashpot with a 
spring-pot of order α. We tested the fractional model 
in human arterial segments. Results showed an accu-
rate relaxation response during 1-hour with least 
squares errors below 1%. Fractional orders α were 
0.2-0.4, justifying the extra parameter. Moreover, 
the adapted parameters allowed us to predict fre-
quency responses that were similar to reported 
Complex Elastic Moduli in arteries.  Our results in-
dicate that fractional models should be considered as 
real alternatives to model arterial viscoelasticity. 

Keywords −− Viscoelasticy, Stress-relaxation, 
Human arteries, Standard-linear solid, Fractional 
calculus. 

I. INTRODUCTION 
Arteries, like other soft tissues exhibit viscoelastic be-
havior. In this context, the mechanical energy trans-
ferred to them is partly stored in a reversible form (elas-
ticity) while other fraction is dissipated (viscosity). Get-
ting insight into viscoelastic properties of arteries can 
help to identify their biomechanical structure and func-
tion, to study the progression and reversion pathologies 
that might affect them and even to predict their natural 
deterioration with age and the influence of cardiovascu-
lar circulation (Armentano et al., 2006; Fung, 1981).  

Uniaxial stress-relaxation test can be used to study 
arterial wall mechanics. Arterial segments are stretched 
with a loading ramp that stops while true stress is regis-
tered. Measured stress in arteries describes a particular 
curve with a fast steep decrease and a very slow asymp-
totic relaxation (Hardung, 1952; Jager, 2005; Bergel, 
1961). This temporal response to a step deformation in 
arterial segments can also be associated to their fre-
quency response using complex elastic modulus E*.  In 
frequency domain, E* exhibit a fast initial increase from 
static values, progressing to attain a plateau at higher 

frequencies (Westerhof and Noordergraaf, 1970). In that 
sense, arteries are relatively insensitive to strain rate in a 
wide frequency range. 

Models based on ordinary differential equations 
were used to describe stress-relaxation experiments. 
They use mechanical analogies connecting springs and 
dashpots to ultimately represent material viscoelastic 
properties. The parameters of these components are ad-
justed using least-squares algorithms and they are even-
tually associated to some structural or functional proper-
ties of the described material.  

The simplest model that predicts creep and stress-
relaxation is the standard linear solid (SLS) with a par-
allel combination of a Maxwell arrangement (spring and 
dashpot in series) with a spring (Fung, 1981). Its tempo-
ral step response predicts a negative exponential func-
tion. Although this model showed several limitations, it 
was widely used as a conceptual unit to construct more 
complicated arrangements that better describe dynamic 
responses of several materials. Evidently, increasing the 
number of units (order of the model) blurs the concep-
tual meaning of each component.  

Recently, some models based on fractional order dif-
ferential equations were presented to describe cell and 
tissue biomechanics (Djordjevic et al., 2003; Koeller, 
1984; Suki et al., 1994). These equations derive into 
fractional viscoelastic concepts. Briefly, if a spring 
represents a zero order element and a dashpot a first 
order element, a new component called spring-pot can 
be conceived with an intermediate order 1>α>0. Using 
α, the mechanical response can interpolate between 
pure elastic and viscous behaviors. Both temporal re-
laxation and frequency responses of a spring-pot follow 
power-law functions that seem to be naturally adapted 
to fit arterial requirements. 

The aim of this work was to modify an SLS model, 
replacing a dashpot with a spring-pot of order 1>α>0 
defined using fractional derivatives, to describe arterial 
viscoelasticity in-vitro. Uniaxial stress-relaxation was 
registered during 1-hour in human arteries at 2 stress 
levels and the parameters of the proposed model were 
adjusted. Finally, an estimation of the frequency re-
sponse in arteries was presented and discussed.  

II. METHODS 
A. Modeling 
Springs, which represent the elastic component of a 
viscoelastic material, obey Hooke's Law: 
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where σ is the applied stress, E is the Young’s modulus 
of the material and ε is the strain. Dashpots represent the 
viscous component of a viscoelastic material. In these 
elements, the applied stress varies with strain rate: 
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where η is viscosity of the dashpot component. In a SLS 
model, these components are connected as shown in left 
side of Fig. 1, resulting in the following differential 
equation 
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The complex elastic modulus E* is defined as the 
quotient between stress and strain in the frequency 
domain. Applying the Laplace transform to Eq. 1 and 
assuming null initial conditions, E* results 
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where s is the complex Laplace variable. The step tem-
poral response g(t) of this model can be predicted using 
a unit step in strain and calculating the resulting stress 
as: 
 )(.)(.)( 21 tueEtuEtg t τ−+=  (3) 
where τ=η/E2 is the time constant of the exponential 
decay relaxation. Both frequency and step responses of 
the SLS model are shown in Fig 2. 

The fractional order derivative α of a function f(t) 
can be expressed following the classical definition at-
tributed to Rienman and Liouville as 
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where Γ is the Euler gamma function. Accordingly, in 
the Laplace domain, the fractional operator results in 

 )()( sFsLtfD αα ⎯→⎯   (4) 
where null initial conditions were assumed. Thus, a new 
component can be conceived with 
 )(.)( tDt εησ α= . (5) 

This element called spring-pot interpolates between 
a spring (α=0) and a dashpot (α=1). Replacing the 
dashpot with a spring-pot, a modified fractional order 
viscoelastic SLS (FOV-SLS) can be conceived (Fig. 1). 
Following Eq. 1, this new fractional model can be rep-
resented with a fractional order differential equation as 
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Applying the Laplace transform and using Eq. 4, E* 
results 

 

 
Fig. 1. Standard-linear solid model and the fractional order 
viscoelastic model. 
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which is the analogy of Eq. 2. Again, the step response 
g(t) can be calculated as 
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where the time constant is now αητ 1
2 )( E= and αF  is 

the Mittag-Leffler function defined as 
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and its Laplace transform for 01 >> α  is 
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Frequency and step responses of the SLS and the 
modified FOV-SLS models are shown in Fig 2. 

Finally, and as to analyze a FOV model with the 
same number of parameters as the SLS model, we re-
moved the E2 spring in Fig. 1 leaving only one spring 
(E1) in parallel with a spring-pot. This last alternative 
was called FOV-Voigt model. Removing E2 from Eq. 7, 
the simplified g(t) results: 
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where the Mittag-Leffler function present in Eq. 8 was 
reduced to a simple power-law function. 

B. Experimental Validation 
To estimate the 4 parameters of the FOV-SLS model, 
uniaxial stress-relaxation experiments were conducted. 
Ascending aortic segments were harvested from four 
human donors (3 men and 1 women aging 42-51) de-
ceased from causes not related to atherosclerosis. All 
vessel samples were obtained after acquiring the per-
missions required by current legislation and according 
to a protocol established and approved by the Ethics 
Committee of the Hospital Puerta de Hierro in Madrid.  
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Fig. 2. Time and frequency effects of adjusting the fractional 
order model α. Up: Stress-relaxation curves. Down: Complex 
elastic modulus(E*). 

One representative specimen was extracted from 
each donor. Each specimen consisted of a circumferen-
tially oriented T-bone strip of nominally 2mm width and 
10mm length dissected using a custom-made steel cut-
ting block. In-vivo diameter ranged from 24 to 35mm 
and specimen thickness from 2.00 to 2.25mm. Details of 
experimental devices are described elsewhere (Atienza 
et al., 2007). Briefly, two stainless steel fixtures joined 
the arterial segments to the grips of an electromechani-
cal tensile testing machine (Instron 5866) equipped with 
a 10N load cell. Specimens were enclosed in a PMMA 
transparent chamber and submerged in PBS solution 
heated by a thermostatic bath (Unitronic 6320200). The 
temperature of the vessel was 37ºC and controlled to 
0.5ºC by a K-type thermocouple located in the chamber 
and close to the artery (<4mm). The elongation was 
measured by the machine’s transducer, which gives a 
precision of 0.001mm.  

In all cases, three preconditioning cycles preceded 1-
hour relaxation phases at 2 stress levels: LOW 
(0.05MPa) and HIGH (0.1MPa). Stress levels were se-
lected to match in-vivo physiological ranges.  The load-
ing and unloading rates were in all cases fixed to 
0.03mm.s-1. Data from 1-hour stress-relaxation portions 
were registered at a sampling rate of 10Hz and reduced 
to 0.5Hz using a decimation function based on an 

eighth-order lowpass Chebyshev Type I filter (decimate 
Matlab® function).  

Stress was normalized in each experiment to peak 
stress. For the estimation of parameters, we minimized 
the error between model step responses in Eq. 8 and 
measured true stress data. The curve fitting problem was 
solved in the least-square sense using Matlab® function 
based on the Levenberg-Marquardt algorithm. As the 
relaxation function for our FOV-SLS has a weak singu-
larity at t=0, we computed values from the smallest 
positive time based on the sampling rate. Initial condi-
tions for the parameters in all cases were: E1=0.5, E2 
=0.5, η=1, α=0.5.  

To evaluate the quality of fitting, percentage least-
square errors (LSE) relative to the measured values 
were calculated as 
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III. RESULTS 
All viscoelastic parameters are shown in Table 1 and a 
representative stress-relaxation experiment can be ob-
served in Fig. 3. The fractional order of the spring-pot 
resulted in between 0.10 and 0.36. The elastic constant 
E1 was greater than E2 in all cases and (E1+E2) averaged 
~1.05. Least-squares errors were always below 1%. For 
each viscoelastic parameter mean ±SD was calculated. 
A pooled frequency response was calculated using Eq. 
7, normalized to static complex elastic modulus (E*(ω)/ 
E*(0)) and shown in Fig. 4.  A clear power-law re-
sponse can be visualized. 

When the FOV-Voigt alternative model was tested 
using Eq. 10, the three parameters E1,η, α  did not sig-
nificantly differ from the ones presented in Table 1, 
although fractional orders tended to be slightly lower 
and the viscous constants higher. With respect to the 
curve fitting quality, LSE did not vary significantly and 
remained below 1% in all cases.  

 
TABLE I: Adjusted viscoelastic parameters from the FOV-

SLS model after fitting 1-hour stress-relaxation curves. 
Segment Stress 

level 
E1 E2 η α LSE 

(%) 
LOW 0.68 0.39 2.14 0.23 0.15 

PH45 HIGH 0.64 0.49 1.80 0.18 0.20 
LOW 0.56 0.48 5.54 0.11 0.39 

PH56 
HIGH 0.61 0.48 1.54 0.16 0.53 
LOW 0.67 0.38 1.88 0.22 0.30 

PH68 
HIGH 0.62 0.51 1.95 0.36 0.22 
LOW 0.80 0.19 3.76 0.10 0.38 

PH76 
HIGH 0.69 0.33 2.77 0.23 0.24 
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Fig. 3. Stress-relaxation results for LOW and HIGH stress 
levels. Circle dots for measured values and solid line for 
model adaptation.  
 

 
Fig. 4. Complex elastic modulus for pooled results. Solid line 
for mean values and dotted lines for min and max values. 

III. DISCUSSION 
In the present work a classical SLS model was modified 
to describe viscoelasticity in human arteries. A dashpot 
was replaced by a spring-pot that has a fractional order 
derivative in its definition. After adjusting the parame-
ters, modeled stress-relaxation accurately matched ex-
perimental measurements with error below 1%. More-
over, particular properties of relaxations, as the initial 
steep decay and the slow asymptotic descent until stabil-
ity were correctly predicted.  Finally, frequency re-
sponses were estimated and came out similar to actual 
measurements observed in arteries. Our results show 
that fractional models should be considered as a plausi-
ble alternative to describe arterial viscoelasticity. 

The proposed fractional order viscoelastic SLS 
(FOV-SLS) model has an additional parameter with 
respect to classical SLS model approach. The spring-pot 
order range (1>α>0) allows adjusting time and fre-
quency domain responses in an intermediate sense be-
tween pure elastic and viscous behaviors (Fig. 2). This 
extra parameter in the proposed model offers more ver-

satility to fit arterial wall mechanical requirements. In 
fact, if α=1, both models would match.  

However, we found that α values were around 
0.1~0.3, revealing a more pronounced elastic than vis-
cous behavior. Others have found similar fractional or-
ders in aortic valve cusps and pulmonary tissues (Doe-
hring et al., 2005; Suki et al., 1994).  Our results are 
coherent with observed stress-relaxation curves (Fig. 3). 
While the traditional SLS model predicts exponential 
decays, FOV-SLS includes a combination of power-law 
functions represented by the Mittag-Leffler summation 
in Eq. 9. As seen in Fig. 3, the proposed fractional 
model could naturally match 1-hour stress-relaxation 
curves in all specimens with LSE below 1%. This might 
suggest that relaxation curves in arteries are better de-
scribed with power-law rather than exponential func-
tions (Fung, 1981). In fact, fractional order components 
were related to fractal-like structures that might be asso-
ciated to complex collagenous arrangements, present in 
arterial tissues (Doehring et al., 2005). 

The proposed FOV model has 4 parameters while 
the classical SLS model has only 3. To analyze the rele-
vance of this extra free parameter in the fitting quality 
observed in Fig. 3 (and verified in LSE results in Table 
1) we also fitted a FOV-Voigt model removing the 
spring E2 from FOV-SLS arrangement. No perceptible 
differences were seen in curve fitting and LSE values 
remained in all cases below 1%. As can be seen in Eq. 
10, the FOV-Voigt model has a singularity for t=0. 
Measurements and model differences were more pro-
nounced near that initial time evaluation.  However, 
power-law relaxations observed in Fig. 3 were naturally 
represented with t-α functions present in Eq. 10, con-
firming that with only 3 parameters a FOV model might 
show fitting improvements with respect to classical ex-
ponential decay models. 

The main goal of our experiments was to validate 
the relaxation curves in human arterial segments pre-
dicted by the FOV-SLS model. Stress-relaxation test 
include a loading ramp and 1-hour relaxation stages.  
We only used relaxation stages to fit viscoelastic pa-
rameters, although the whole mechanical process partly 
started during the ramp portion of the curve. In that 
sense, the loading ramp was neglected with respect to 1-
hour relaxation times. In fact, biological tissues proved 
to be relatively insensitive to strain rates (Doehring et 
al., 2004), supporting our methodology. 

The frequency response of a material can be ana-
lyzed using the complex elastic modulus E*. Pooling all 
the specimens, we constructed a single frequency re-
sponse to estimate E* (Fig. 4). A clear power-law re-
sponse is evidenced in the range 0-100Hz. This result is 
similar to actual measurements in arteries (Hardung, 
1952). Even though others have tried to generalize 
Voigt models, incorporating several combinations of 
spring-dashpot units (Westerhof and Noordergraaf, 
1970), our approach with only one spring-pot correctly 
matched the frequency morphology in arteries. More-
over, the particular profile of curves in Fig. 4 can also 
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be found using the FOV-Voigt alternative with only 3 
parameters. In time domain, a spring-pot defines a t-α 
relaxation curve while in frequency domain E* incorpo-
rates ωα components. These are both typical responses 
in arteries that now seem to be naturally fitted with frac-
tional models. 

Moreover, the 4 parameters of the FOV-SLS might 
be associated to inherent properties of the observed re-
laxation curves. Observing Fig. 2, E1 and E2 are con-
nected to peak and asymptotic stress values. On the 
other hand, η and α defining the spring-pot, character-
ize the decay shape. The order α is maybe the most 
relevant parameter to be analyzed. If we assume that, in 
arteries, smooth muscle cells can stretch collagenous 
fibres, vascular activation can modify local viscoelastic 
response of the arterial wall (Armentano et al., 2006). 
Then, the fractional order α could be associated to 
smooth muscle activity, modulating viscoelasticity in 
arteries. In-vitro orders in this work tended to show a 
small viscous effect. Further studies should be con-
ducted to validate this hypothesis, activating vascular 
smooth muscle and analyzing the tendencies of the pa-
rameters.  
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