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Abstract−− This contribution focuses on the 
analysis of the role of Joule heating on the hydrody-
namics of systems where buoyancy is an important 
driving force. Typical examples are electrokinetic 
applications for soil cleaning and macromolecules 
separation. In particular, the region of interest for 
this study is the zone near vertical-rectangular elec-
trodes. The analysis is conducted for boundary layer 
flows due to natural convection as a result of heat 
generation caused by the applied electrical field. A 
numerical solution of the differential model equa-
tions yields the temperature profile, the boundary 
layer thickness, and the component of the velocity 
field along the axial and transversal directions of the 
electrode. Effects of the heat generation on tempera-
ture, velocity profiles and boundary layer thickness 
are simulated and discussed. The results of the 
analysis allow a better assessment of the role of Joule 
heating on the hydrodynamics of the system near the 
electrode.  

Keywords−− Hydrodynamics, Joule heating, 
Boundary Layer, Numerical Solution, Modeling Ap-
proach. 

I. INTRODUCTION AND MOTIVATION 
Joule heat generation, due to the electrical resistivity of 
the media, is a common feature of many processes when 
an applied electrical field is present. Examples of these 
applications includes electrokinetic soil remediation and 
electrophoretic separation. These promising technolo-
gies are in need of more understanding of the different 
fundamental flows and driving forces controlling the 
process during operation (Acar et al., 1995; Masliyah, 
1994). Different arrangements, of the same technology, 
tend to favor different and specific mechanisms that 
usually drive the mass transfer and/or the hydrodynam-
ics of the system. Moreover, the intrinsic complexity of 
the associated transport mechanisms in these applica-
tions inhibits the scaling of conceptual designs to field 
practices (Virkutyte et al., 2002; Ho et al. 2002). There-
fore, in this contribution we focus on the analysis of the 
effect of Joule heating generation on the flow situation 
found in the hydrodynamic boundary layer near the 
electrode region. For example, in an electrokinetic cell 
there are two main regions of interest; they are the 
treatment zone and the electrodes zone (Oyanader, 
2004). The treatment region has received some attention 

(Oyanader et al., 2003; Oyanader, 2004; Oyanader et 
al., 2005a, Oyanader et al., 2005b) but the region near 
electrodes is less studied in the literature. This last one 
becomes the focus of attention in technological applica-
tions where the location of the chemical reaction and/or 
the point of fluid extraction are near the electrodes. 
Electrokinetic remediation methodologies, in which this 
particular zone is a key for technology success, are for 
example cation selective membrane, ceramic casting, 
electrochemical ion exchange and specific cases of La-
sagna process (Acar et al., 1995). As a consequence, 
knowing the hydrodynamics of the system in such an 
important region is highly desired. Furthermore, it is 
useful to know the relative effect of the transport 
mechanisms that come into play when greater differen-
tial potentials are applied. Among these mechanisms 
are: the convective and buoyancy forces not yet fully 
studied in the literature. 

In general, misconceptions about the ability of elec-
trical based field applications in yielding good results 
under particular field conditions are the consequences of 
little fundamental research on the engineering science 
part of systems. Several variables are reported as con-
trolling removal or separation efficiency. To some re-
searchers, water content as well as pH is believed to be 
responsible for process efficiency (Virkutyte et al., 
2002; Yeung et al., 1997). In particular, this is the case 
of ceramic casting where, in a controlled volume of con-
taminated soil, buffer solution is added to ensure a con-
stant value of water content and pH. However, there is 
another important controlling variable; this is the Joule 
heating effect which is equally responsible for affecting 
removal efficiency, although not necessarily well under-
stood (Oyanader et al., 2003; Oyanader, 2004; Oy-
anader et al., 2005a; Oyanader et al., 2005b; Yeung et 
al., 1997, Erdmann et al., 2005).  

Currently in the literature, there is a lack of agree-
ment as to how the Joule heating phenomenon would 
affect the process behavior. For example, several au-
thors have reported the development of high tempera-
ture on electrokinetic processes of soil remediation dur-
ing operation. One of them, further reports that the elec-
troosmotic mechanism seems to be affected when tem-
perature rises and as a result low process efficiency is 
obtained (Yeung et al., 1997). Conversely, increase of 
temperature is reported to be beneficial to the fluiddy-
namics of hydrocarbons-containing fluids in that their 
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viscosity is reduced (Chilingar et al., 1997). To intro-
duce even more conflicting ideas, overheating is recog-
nized as an operational phenomenon that has to be 
avoided (Ho et al., 1997; Chilingar et al., 1997; Lange-
man, 1993). And finally, it has been concluded that one 
of the disadvantages of electrokinetic remediation is that 
the increase of temperature decreases the efficiency of 
the process (Virkutyte et al., 2002). Therefore, it is im-
portant to explain, the role of temperature (and its rela-
tion to Joule heating) on the hydrodynamic flows inside 
the boundary layer near the electrode region. This 
would allow practitioners to: 1) understanding the proc-
ess behavior, 2) achieving new technological develop-
ment, 3) identifying optimal operating condition, and, 
perhaps, 4) identifying cost efficient processes. In con-
sequence, this investigation will focus on specialized 
cases of boundary layer flows, with low Reynolds num-
ber, in vertical and rectangular electrodes. Furthermore, 
a numerical scheme has been used to solve the final 
differential equation modeling the boundary layer thick-
ness and velocity profiles. 

II. MODEL FORMULATION 
For the region near rectangular electrodes, the hydrody-
namic problem described above suggests that the best 
modeling approach is a boundary layer analysis. 
Turnbull (1969) discussed the effects of an electric field 
across the flow of a fluid but neglected any form of heat 
generation (source term). The addition of the Joule heat-
ing generation term leads to a unique situation where 
the coupling between energy and momentum equations 
needs careful attention. The differential model resulting 
from these equations will be studied with the Von Kar-
man boundary layer approximation to obtain a two-
ordinary differential equation model that will be solved 
numerically with appropriate boundary conditions. The 
methodology is particularly useful to investigate the 
flow problem and find important information about the 
hydrodynamic behavior near the electrode surface. In 
the section below, the geometry and schematic of the 
system are described and the model equation formu-
lated. 

A. System Description 
The system represented in Fig. 1 is a two-dimensional 
system since no variation in the z-direction has been 
assumed. The vertical axis of the device coincides with 
the x-direction while the y-direction is horizontal. A 
vertical plate with a temperature T0 is placed in a fluid 
with a temperature T∞ which remains as the temperature 
of the fluid away from the plate during the analysis. 
Because of the differences in the temperature T0 and T∞, 
there are changes in velocity and they are confined to a 
thin boundary layer at the immersed plate. These 
changes are caused by the variation in the density of the 
fluid, which is caused by the temperature difference 
between the wall and the fluid. Thus, there is a motion 
caused by free convection within the boundary layer 
adjacent to the vertical wall. A voltage difference is 
assumed and applied across the fluid creating a uniform 

electric field in the y-direction. This type of electric 
field provides, for example, a driving force that causes 
electrophoresis to occur at a given rate and in a cell or 
the electro-mechanism in an electrokinetic remediation. 
A heat source, Q, is located within this layer due to the 
Joule heating effect caused by the electro-resistivity of 
the media. This heat generation could modify the tem-
perature differences inside the boundary layer of the 
fluid near the vertical wall and, therefore, could influ-
ence the driving force for the hydrodynamics of the sys-
tem. The heat source, Q, is maintained at a uniform 
value inside the boundary layer thickness. The equations 
for the mathematical boundary layer model will be de-
rived and their assumptions, discussed in the sections 
below. In particular, this task will be performed in the 
sections 2.A and 2.B. 

 
Figure 1: Sketch of a control volume and main variables asso-
ciated with the boundary layer flow in a flat electrode geome-
try used in the analysis. 

B. Equations of Energy and Motion 
In terms of the energy conservation, Squire (1938) and 
Turnbull (1969) assumed that the velocity of the fluid 
and the current carried by the fluid were small enough 
so that the heat they generate was considered negligible. 
In the present article, this assumption will be relaxed to 
include the heat generation term in the conservation of 
energy equation (Bird et al., 1960), this is 

Q)Tk(
Dt
DTCp +∇⋅•∇=⋅ρ ,        (1) 

where D is used to indicate the Lagrangian derivative, ρ 
the fluid density, Cp the specific heat, and k the thermal 
conductivity of the fluid. 

Using dimensionless variables, i.e. transforming 
from x,y coordinate system to a dimensionless ξ, η sys-
tem, the following single expressions are introduced: 
Characteristic Length1 

                                                           
1 The choice of the characteristic parameters is motivated 

by the relevant literature on buoyancy driven flows. (Gebhart 
et al. , 1988) 



M. A. OYANADER, P. E. ARCE 

149 

( )

3/1

0
2

0

2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−⋅⋅⋅
=

∞TTg
L

βρ
μ .   (2) 

Thermal Velocity 

L
1α

L
1

Cρ
kv

p
T =

⋅
= .     (3) 

where μ is the fluid viscosity, β the coefficient of vol-
ume expansion (Bird et al., 1960) and α the thermal 
diffusivity. By using the parameters identified previ-
ously and assuming steady-state conditions, the follow-
ing non-dimensional differential equation is obtained for 
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This form of the energy equation is obtained under the 
steady-state boundary layer approximation and the fact 
that conduction is assumed important only in the trans-
versal direction for the system shown in Fig. 1. The fol-
lowing additional definition of dimensionless variables 
applies 
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Further simplification of the problem assumes that all 
physical properties of the fluid, except for density, are 
independent of temperature. In addition, the density will 
be assumed constant except in the gravitational term 
which is the usual Boussinesq approximation (Whitaker, 
1991). Furthermore, the continuity equation is given by 
the usual form for incompressible flow situation 
(Whitaker, 1991; Bird et al., 1960), thus, 0v =•∇ , writ-
ten for the planar geometry reduces to:  
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for the case of incompressible flow. 
The Navier-Stokes equation (Whitaker, 1991) will 

be assumed applicable since only Newtonian fluids will 
be considered in the analysis, this is 

gρvμp
Dt
Dvρ 2 ⋅+∇⋅+−∇= ,    (8a) 

where the gravity is assumed constant and it is indicated 
by g, p is used to denote the pressure, and μ, the fluid 
viscosity. For this analysis, it is assumed that the elec-
trical field does not affect the hydrodynamic field. The 

density ρ, as a function of temperature, is given by (Bird 
et al., 1960) 

[ ])TT(10 ∞−⋅−⋅= βρρ  ,    (8b) 

where ρ0 is the density at a given reference temperature 
for the system and β is the same as defined after Eq. 3.  

Based on the discussion given in section one above, 
the variation in temperature is confined to the boundary 
layer adjacent to the surface wall, for example, of the 
electrode of an electrokinetic remediation cell. This 
situation occurs, when the temperature and velocity pro-
files in a system show appreciable gradients across the 
system in the neighborhood of the surface. Under these 
conditions, energy, and momentum transport equations 
can be applied in the "boundary layer" near the wall 
domain. Therefore, the usual boundary layer approxima-
tions will be made in the momentum, energy, and conti-
nuity equations to build the differential mathematical 
models. In order to obtain the boundary layer equations, 
they are formally integrated with respect to "y" across 
the boundary layer thickness, δ. Momentum and energy 
boundary layer thicknesses are assumed to be equal. For 
cases without generation, this assumption works well 
when the Prandtl number is equal to one (Whitaker, 
1991).The final result (after the integration is per-
formed) yields two first-order differential equations. In 
the section below, the mathematical boundary layer 
model associated with the system under study is de-
rived. For such a purpose, components of the Navier-
Stokers equations (Bird et al., 1960) in the x and y di-
rections of the system are written for a Cartesian system 
of coordinates as 
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where the following definition of dimensionless num-
bers applies 
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Equation 9 (a-b) show the driving force term given by 
Eq. 8, i.e., the free-convective term, caused by the tem-
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perature difference between the vertical wall and the 
fluid. 

Note that axial component contains the density 
variation because the coordinate "x" is in the vertical 
direction of the system. As previously mentioned the 
motion of the fluid is only two-dimensional, hence the 
z-component of the momentum equation is irrelevant.  

By applying the methodology described above, to 
Eqs. 9b and 10b with the modifications herein proposed, 
the differential equations for boundary layer approxima-
tions will be derived for the energy and momentum 
equations. Therefore, the partial derivative of Eqs. 9b 
and 10b, with respect to orthogonal coordinates, can be 
combined and reduced using Eq. 7b to yield 
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Equation 12 can be simplified further if the order of 
magnitude of the derivative with respect to transversal 
coordinate is assumed to be much larger than the one of 
the derivative with respect to axial (Whitaker, 1991), i.e.  
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This assumption is justified since the width of the 
boundary layer, δ, is much smaller than any characteris-
tic dimension in the x-direction. In addition, the magni-
tude of the velocity component, vx, is considered to be 
much larger than the one of the other velocity compo-
nent, vy. Next, by combining Eqs. (12) and (13), the 
following equation can be written  
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Now, by integrating Eq. 14 with respect to the trans-
versal coordinate (some terms by parts), and by using 
Eq. 7b, the following equation is derived  
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where C(ξ) is an integration constant. In order to com-
pute C(ξ), the boundary condition used is located at the 
surface wall of the electrode. At this position, the mag-
nitude of the velocity profile is zero and the temperature 
of the fluid is uniform and given by T0. Therefore,  

2Re
Gr)(C =ξ .                                  (16)  

Equation (16) shows that actually C(ξ) is independent of 
the axial coordinate. Finally, the momentum equation 
for the boundary layer with free convection terms is 
given by  
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Equations (4) and (17) need boundary conditions to be 
solved. However, since the Von Karman integral ap-
proximation will be used in this approach, the analysis 
of the boundary conditions is delayed for a later stage of 
this article. The next step in the analyses of the system 
is to apply the Von Karman integral approximation to 
Eqs. (4) and (17) to invert the partial differential equa-
tion system, first, to an integro-differential model and, 
then into a two-equation ordinary differential model. 
This task is accomplished in the section below. 

C. Derivation of Von Karman Integral Approxima-
tion 
The integral approximation for boundary layer was 
originally developed by Von Karman (Whitaker, 1991). 
The method was subsequently used by Squire (1938) for 
the analysis of the buoyancy-driven boundary layer ad-
jacent to a heated isothermal vertical surface. In order to 
apply such a methodology, Eqs. (4) and (17) are inte-
grated over the transversal variable (y or η, see Fig. 1) 
from the plate (i.e., y = 0, η=0) to the edge of the 
boundary layer, (i.e., y = δ, η= δ+). The conditions for 
the velocity and temperature fields involved in these 
integrals are 

vx
+ = vy

+ = 0  at   η = 0, δ+ 
θ  = 1  at  η  = 0 

 θ  = 0   at   η  = δ+ .     (18)  
By integrating the equation of energy (4 above) and 
considering that 2φ  is constant in the transversal direc-
tion, across the boundary layer thickness, the following 
integro-differential equation may be derived 

++ ⋅+∂⋅
∂
∂

=∂⋅⋅
∂
∂

∫∫
++

δη
η
θηθv

ξ
2

δ

0
2

2δ

0
y φ .  (19)  

By using the ideas of the integral approximation of the 
momentum equation, the integration of Eq. (17) above 
yields  
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which is the integral approximation for the energy-
momentum equation with a uniform heat generation 
(due to the Joule effect) across the domain of the sys-
tem.  

The result of applying the Von Karman integral ap-
proximation is the two-equations model, Eqs. (19) and 
(20), that features the hydrodynamic velocity profile as 
well as the temperature profile inside the free- convec-
tion boundary layer at the electrode vertical wall. This 
model will be solved by the approach introduced by 
Squire (1938) and followed by Turnbull (1969). The 
methodology requires approximate expressions for the 
velocity profile, vx

+, and for the temperature profile, θ, 
as functions of the variables. In the analysis by 
Turnbull, vx

+ was obtained from a free convective based 
problem in the absence of an electric field. This ap-
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proximation was initially proposed by Squire and it will 
be followed in this study. Therefore, the proposed di-
mensionless velocity profile is given by  

2

x δ
η1

δ
ηUv ⎟

⎠
⎞

⎜
⎝
⎛ −⋅⋅= ++

++ ,                   (21)  

where U+ is the dimensionless velocity amplitude in the 
ξ-direction (x-direction) and δ+ the dimensionless 
boundary layer thickness, both obtained using the ther-
mal velocity and characteristic length defined previ-
ously in section 2.B, above. 

This particular form of velocity profile is used be-
cause, in the system under analysis, no fluid is entering 
the system since the driving force is provided by the 
temperature difference between the plate and the fluid.  

For temperature the following profile will be used 
in this study to describe temperature variations in the 
boundary layer domain (Squire, 1938) 
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Both, the velocity and temperature profiles are a func-
tion of the heat generation throughout the thickness of 
the boundary layer, δ. Also note that in both cases (i.e., 
for the velocity and for the temperature profiles) a sec-
ond-order polynomial is assumed. Moreover, U+ and δ+ 
are both functions of ξ (x non-dimensional) and are to 
be obtained from the governing integral-differential 
equations characteristic of this methodology (Turnbull, 
1969). In consequence, after the proper substitution and 
integration is performed, the methodology yields the 
following two first-order differential equations 
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These equations can be solved either numerically or 
analytically. The analytical solution has been developed 
the by authors using as boundary condition the region of 
the bulk fluid of the system. A comparison of results, 
between these two different approaches, has been par-
tially documented elsewhere (see Oyanader, 2004). This 
work, however, concentrates on the numerical solution. 
Therefore, further algebraic development of Eqs. (23) 
and (24) yields the following differential system 
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(25b) 
δ+= 0     at     ξ = 0                  (25c) 

U+= 0     at     ξ = 0                 (25d)  
This model system, represented by Eqs. (25a-d), is 
solved using conventional numerical methods. For sim-
plicity reasons, the results reported in the next section 

were obtained using Euler method, some times called 
Heun’s method (Kreyzing, 1999). The step size, re-
quired by the method, was selected very small in order 
to avoid inaccuracy and imprecision. 

III. DISCUSSION AND ILLUSTRATIVE 
RESULTS 

This section includes graphical illustrations for the solu-
tions of the differential equations derived in section 2 of 
this paper. These illustrations are useful in gaining a 
deeper understanding of the system behavior and the 
role played by the Joule heating generation on the main 
variables of the system. Therefore, plots for boundary 
layer thickness, temperature profiles, and for the com-
ponents of the velocity field will be the focus of the 
discussion. In order to produce illustrative results for the 
system, a reference fluid must be identified and, in this 
case, the physical properties of water have been chosen 
for such a purpose. This is necessary to calculate rea-
sonable values of dimensionless numbers, Reynolds and 
Grashof, required by Eqs. (25a) and (25b). In addition, 
these equations also required a value for the source gen-
eration term, φ 2, for their solution. This particular re-
quirement gives the opportunity to study the role of the 
heating effect being analyzed in this work. In conse-
quence, a valid range of physical values must be de-
fined. Positive values of φ 2 indicate heat generation, and 
therefore, the following range has been chosen  

50 2 ≤≤ φ .                                (26) 
From the previous range and for analysis purposes, four 
φ 2 values have been selected as φ 2 = 0, φ 2 = 1.5, φ 2 = 
3.0, and φ 2 = 5.0.  The φ 2= 0 has been included as a 
reference value for the case of no Joule heating effect. 
On the other hand, the φ 2= 5.0 has been selected as a 
maximum considering that such a value produces an 
increase in the slope of the boundary layer near the ori-
gin of four times (300%) the values for the case of no 
Joule heating effect. The other two have been selected 
within the range. With the set of validφ 2, temperature 
profiles, boundary layer thickness, and velocity profiles 
have been illustrated and they are presented next. 

 
Figure 2: Dimensionless temperature profiles (inside the 
boundary layer) for various values of the heat generation 
source term and for the η-direction (ξ =0.042). 
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Figure 2 shows a parametric representation of the in-
fluence of Joule heating generation on temperature pro-
files inside the boundary layer domain. Furthermore, the 
figure shows that the range of acceptable φ 2 values pro-
duces a family of exponential decay type curves. In par-
ticular, this figure illustrates temperature variation as a 
function of the transversal direction of the boundary 
layer (η) for a given value of axial direction, (ξ=0.042). 
For all given values of φ 2 the temperature at the surface 
of the electrode remain at the value of θ =1. Specifi-
cally, for a value of φ 2 equal to 5.0 the temperature has 
a variation between the values of θ = 1, at the electrode 
surface, and a value of θ = 0, i.e. fluid temperature, at η 
approximately equal to 40. A decrease in φ 2 values 
from 5.0 to 3 yields a reduction on the η value from 40 
to 25 in order to reach the same fluid temperature. From 
a cross sectional analysis on η=10, the figure predicts 
that this 40% reduction in φ 2 value will cause a reduc-
tion of approximately 35% in temperature values. Fur-
ther reduction in φ 2 values from 3.0 to 1.5 produces a 
decrease on the η value from 25 to 17 as to both obtain 
the fluid temperature. A similar trend, as the one previ-
ously reported, is observed on this 50% reduction in φ 2 
that will cause a reduction of approximately 52% in 
temperature values. Therefore, the system temperature 
shows high sensitivity to the Joule heating effect. 

Figure 3 displays temperature variation along the 
axial coordinate ξ for a given position of η (η=3). A 
single identifiable trend along the axial coordinate, ξ, is 
clearly observed. For each value of φ 2 chosen within its 
range the temperature profiles describe an inverse expo-
nential function of different amplitudes, respectively. 
The higher the value of φ 2 the wider is the amplitude of 
the curve. Additionally, near the electrode region (ξ < 
0.03, approximately) steep variations in temperature 
values are developed in all cases to reach different pla-
teau values beyond ξ = 0.04, approximately, with an 
incipient transition in between. This just described tem-
perature behavior has been also identified elsewhere on 
an analytical solution approach of this differential 
boundary layer model. 

Figure 4 illustrates the effect of Joule heating on the 
dimensionless boundary layer thickness along the axial 
coordinate, ξ, for different values of the source genera-
tion term, φ 2. In terms of the same φ 2 values, there are 
two trends observed: the first is described by φ 2 ap-
proximately less than 3 and the second by greater val-
ues. In the first case the boundary layer thickness fol-
lows a similar qualitative behavior as the temperature 
described in Fig. 3, above. In other words, a single iden-
tifiable region, described as an inverse exponential func-
tion, is also observed in the variation of the dimen-
sionless boundary layer thickness, δ+, for low φ 2 values. 
In addition, steady slope variations of δ+ are observed 
for ξ values  approximately greater than 0.01 while a 
steeper variation of δ+ develops near the electrode ori-
gin, this is for ξ values smaller than 0.01. Finally, for 
the second trend, at high φ 2  values, the general varia-

tion in the boundary layer thickness, δ+, is a straight line 
where the exponential type of curve trend is completely 
missing. 

Figure 5 shows the development of different dimen-
sionless axial velocity profiles, induced by Joule heating  

 

 

Figure 3: Dimensionless temperature profiles (inside the 
boundary layer) for various values of the heat generation 
source term and for the ξ-direction (η =3).  

Figure 4: Dimensionless boundary layer thickness for 
different values of the heat generation source term. 

Figure 5: Dimensionless total velocity profiles showing 
the effect of the heat generation inside the boundary 
layer for the η-direction (ξ =0.042). 
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generation, along the transversal axes, η, inside the 
boundary layer domain, for a given position in the axial 
direction, (ξ=0.042). Additionally, the figure exhibits 
for all the selected φ 2 values a family of curves that 
mimic a parabolic type of curve (as proposed by the 
Von Karman model) with a slowly decaying end at the 
region far away from the electrode. On the other hand, 
for all selected φ 2 values the dimensionless axial veloci-
ties at the surface of the electrode stay at the value of 
vx

+ = 0.  This is in agreement with the non-slip bound-
ary condition of zero velocity at the electrode surface. 
Particularly, for a value of φ 2 equal to 5.0 the dimen-
sionless axial velocity has a maximum of vx

+ = 2.14 at 
approximately η=14, this is 1.4 times the value that cor-
responds to the η point for the no Joule heating effect 
(η=4) and it represents a 44% increase in velocity from 
the no heating effect case. The same analysis with 2φ  
value of 3.0 generates a maximum velocity of vx

+ = 1.86 
at η=9, this is a 25% increase in the velocity from the 
maximum for the no Joule heating effect case. For the 
case of φ 2 equal to 1.5, the value of η at the maximum 
velocity is 50% larger than the case of no Joule heating 
effect and the point represents an increase of 12% on the 
velocity magnitude. From this analysis, clearly the sen-
sitivity of the system to the Joule heating effect is rea-
sonably high and practical cases without accounting for 
Joule heating generation will occur in a significant error 
in velocity predictions. 

Figure 6 depicts dimensionless axial velocity pro-
files variation along the axial coordinate ξ for a given 
position of η (η=3). The general trend indicates that 
higher φ 2  values, first, increase velocity profiles toward 
individual maxima and, later, reduce the magnitude of 
velocity for any ξ value beyond these maxima. On the 
other hand, the φ 2 = 0 value, no heat generation case, 
describes a parabolic type of curve reaching a maximum 
velocity without decay beyond this point. In particular,  
 

 

velocity profiles affected by heat generation are greater 
than the expected without Joule heating effect along the 
axial coordinate ξ until they reach a point of equality. 
Beyond this point all the velocity profiles are smaller 
than the corresponding without heating effect.  A cross 
sectional analysis of the axial velocity on  ξ = 0.04  for 
φ 2 =1.5, φ 2 = 3.0, and φ 2 = 5.0 values yields velocities 
decay of 7%, 19%, and 36% respectively with respect to 
the value for the case of no Joule heating generation. 

 
IV. SUMMARY AND CONCLUDING REMARKS 

An analysis has been performed for natural convection 
boundary layer flows with Joule heating generation. 
These flows are of relevance in applications such as in 
electrokinetic remediation and electrophoretic separa-
tion processes. The integral approximation approach 
originally proposed by Von Karman was used to invert 
the boundary layer model in order to derive a simpler, 
two first order, differential equation model. The addi-
tion of the Joule heating generation term and the chang-
ing of the Dirichlet boundary conditions (to wall condi-
tion instead of fluid) lead to important modifications 
whose solution is not trivial. The assumption that the 
heat generation follows a similarity type of function 
(Oyanader, 2004) does not yield an analytical solution 
and therefore a numerical solution is required. In other 
words, the source generation term, φ 2, shows a constant 
value along  ξ, the axial- coordinate of the system which 
is not obtained when a similarity solution is assumed 
(see Oyanader et al., 2007). As part of the solution ap-
proach, dimensionless ordinary integro-differential 
equations have been derived. These equations have been 
solved using dimensionless temperature and velocity 
profiles that are functions of ξ and η, dimensionless 
coordinates. The numerical solution has been illustrated 
by using the physical properties of aqueous solutions. 
The effect of heat generation on temperature and veloc-
ity profiles, as well as on the boundary layer thickness, 
has been discussed.  A major finding is that Joule heat-
ing generation affects considerably the value of the 
temperature, the boundary layer thickness and both ve-
locities components of the hydrodynamic field inside 
the boundary layer. These findings could be used advan-
tageously in processes such as in electrokinetic remedia-
tion and/or electrophoretic separation depending upon 
the experimental conditions and transport properties of 
the system. For example, the increase in the velocity 
magnitudes may lead to important mixing conditions 
near the electrode surface that for relatively small cells 
will decrease the treatment efficiency of the process. On 
the other hand, the increase in the velocity magnitude 
may, actually helps to transport species in the direction 
of the flow and, therefore, increase the overall effi-
ciency of the process for larger cells. The results here 
should be taken as basic trends since, for example, elec-
tro-osmosis flows have been neglected. Their presence 
may, actually, modify some of the conclusions reported 
here. This analysis, however, will be presented else-
where. 

Figure 6: Dimensionless total velocity profiles showing 
the effect of the heat generation inside the boundary layer 
for the ξ-direction (η =3). 
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