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Abstract— This article studies the heat transport 
in a flow through a saturated rigid porous medium. 
The mechanical model is based on the Continuum 
Theory of Mixtures which considers the fluid and the 
porous matrix as overlapping continuous 
constituents of a binary mixture. A Petrov-Galerkin 
formulation is employed to approximate the 
resulting system of partial differential equations, 
overcoming the classical Galerkin method limitation 
in dealing with advective-dominated flows. The 
employed method is built in order to remain stable 
and accurate even for very high advective-dominated 
flows. Taking advantage of an appropriated upwind 
strategy, the applied finite element method proved to 
generate accurate approximations even for very high 
Péclet regime. Some two-dimensional simulations of 
the advective-diffusive heat transfer in a flow 
through a porous flat channel employing lagrangean 
bilinear and serendipity biquadratic elements have 
been performed attesting the reliability of the 
employed Petrov-Galerkin formulation as well as the 
poor performance of Galerkin one even when mesh 
refining is considered. 

Keywords— Porous media, mixture theory, 
computational heat transfer, finite elements, Petrov-
Galerkin formulation. 

I. INTRODUCTION 
Transport phenomena in porous media play an 
important role in many a field of engineering science, 
such as geomechanics, petroleum and mining industries, 
sintering technologies and biomechanics. Besides, 
interactions among fluids and solids are present in many 
industrial processes and the fluids may be passed over 
packed beds of solid material in order to improve 
processes like heat and mass transfer or chemical 
reactions. Nowadays an increasing attention is being 
devoted to transport in porous media motivated by the 
importance of problems that impact the energy self-
sufficiency and the environmental state. Some practical 
applications like packed-bed heat exchangers, enhanced 
oil recovery processes, storage of nuclear waste 
material, contamination of soils by hazardous wastes 

and pollution movement stimulate the interest attached 
to these phenomena. 

Most of the works dealing with transport in porous 
media describe quantities such as temperature, pressure, 
concentration and the velocity components as 
volumetric averages (Whitaker, 1969); in order to 
describe the phenomena by employing a classical 
continuum mechanics approach. These models 
substitute the balance of linear momentum by Darcy’s 
law with the addition of empirically determined terms – 
Brinkmann and Forchheimer extensions – to account for 
inertia and viscous effects and to satisfy the no-slip 
condition (Vafai and Tien, 1981). Nield (2000) analyzed 
viscous dissipation and nonlinear drag for Darcy, 
Brinkmann and Forchheimer models for incompressible 
fluid flows through porous media. The so-called volume 
averaging technique has already allowed the analysis of 
complex problems. Examples are the multiphase 
transport process with phase change in unsaturated 
porous media (Vafai and Whitaker, 1986), the forced 
convection considering heat sources and a partially 
porous channel (Hadim, 1994) or axial and radial 
dispersion (Adani et al., 1995), the mixed convection 
(Aldouss et al., 1996; Chang and Chang, 1996; Chen et 
al., 1996) as well as variable porosity effects (Vafai, 
1984). Thermally developing forced convection in a 
porous medium was studied by Nield et al. (2003) 
employing a modified Graetz method with Brinkmann 
model, for parallel plate channel and circular tube, both 
with walls at constant heat flux. This work was 
subsequently extended considering walls at constant 
temperature (Nield et al., 2004a), and both boundary 
conditions were considered by Nield et al. (2004b). The 
entropy generation – considering viscous dissipation 
effects (Brinkmann extension) – was analyzed by 
Mahmud and Fraser (2005) who obtained analytical 
expressions for velocity, temperature and Nusselt 
number. Hooman and Ejlali (2007) analyzed thermally 
developing forced convection in a porous matrix 
employing both First and Second Laws of 
Thermodynamics and including Brinkmann (viscous 
dissipation) effects, using the perturbation solution of 
Hooman and Ranjbar-Kani (2004), in order to compute 
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the entropy generation. Brinkmann model was carefully 
analyzed by Al-Hadrami et al. (2003), who derived a 
mathematical theory presenting the correct asymptotic 
behavior for Darcy limit. 

Most works assume the thermal equilibrium 
hypothesis so that the balance of energy may be 
expressed as a single equation, requiring the 
determination of an effective thermal conductivity. The 
thermal nonequilibrium hypothesis, although seldom 
employed, has already been considered by several 
authors, such as Vafai and Sozen (1990), presenting a 
detailed analysis of non isothermal flows through a 
packed bed, Sozen and Vafai (1990), studying a 
condensing gas flow through a packed bed and Nield 
(1998), presenting an analytic solution for the forced 
convection in a saturated porous medium limited by a 
parallel-plane channel and concluding that local thermal 
nonequilibrium reduces Nusselt number. Nield and 
Kuznetsov (1999) presented an analytical solution for 
the forced convection in a saturated porous medium 
limited by a parallel-plane channel – coupling with 
conduction in the plane slabs bounding the channel, and 
discussing boundary conditions. Nield et al. (2002) 
studied the effect of local thermal non-equilibrium on 
the thermal development of forced convection in a 
saturated porous medium limited by a parallel-plane 
channel – by employing the classical Graetz 
methodology combined with the Brinkman model.  

In this article, the heat transfer in a saturated flow 
through a rigid porous medium has been studied by 
employing a local model based on a Continuum Theory 
of Mixtures (Atkin and Craine, 1976; Bedford and 
Drumheller, 1983; Bowen, 1967). This model treats the 
mixture as a superposition of continuous constituents – 
each of them occupying its whole volume. Herein a 
binary mixture is considered, whose constituents stand 
for the fluid and the porous medium; the fluid 
constituent is assumed Newtonian and incompressible, 
while the solid constituent, representing the porous 
matrix, is supposed rigid, homogeneous, isotropic and at 
rest (Martins-Costa et al., 1992; Costa-Mattos et al., 
1995). 

An approach, distinct from the one mentioned in the 
previous item, is used in this work: the Continuum 
Theory of Mixtures – supported by a local theory with 
thermodynamic consistency – which generalizes the 
classical continuum mechanics (Truesdell, 1957; 
Truesdell and Toupin, 1960; Gurtin, 1981). It is 
employed to model flows through porous media in 
which the fluid and the porous matrix are treated as 
superimposed continuous constituents of a binary 
mixture. The mixture theory leads to an apparent 
thermomechanical independence allowing the existence 
of n distinct velocity fields and n distinct temperature 
fields (if the flow is not assumed isothermal), 
simultaneously, at each spatial point, whenever an n-
constituents mixture is considered. In order to provide 
dynamical and thermal interactions, additional terms, 
absent in a Continuum Mechanics description – playing 

the role of momentum and energy sources – are required 
to account for the thermomechanical coupling among 
the constituents in the balance equations. Considering 
the solid constituent, which represents the porous 
matrix, rigid and at rest, it suffices to solve mass and 
momentum conservation equations for the fluid 
constituent of the mixture, while the energy equation 
must be solved for both fluid and solid constituents. 
These equations, combined with constitutive 
assumptions satisfying the material objectivity and the 
Second Law of Thermodynamics, describe the heat 
convection in a porous medium (Martins-Costa et al., 
1992; 1993; Martins-Costa and Saldanha da Gama, 
1994a; 1994b; Costa-Mattos et al., 1995). 

Finite element approximations of incompressible 
flows suffer from two major difficulties (Johnson, 1987; 
Pironneau, 1980). First, finite elements need to 
compatibilize velocity and pressure subspaces satisfying 
the Babŭska-Brezzi mathematical condition (Ciarlet, 
1978). The second one, the instability inherent to central 
discretization schemes, either by Galerkin formulation 
or by central difference stencil, to approximate high 
advective dominated flows (Brooks and Hughes, 1982; 
Patankar, 1980). 

Simple strategies have been proposed that may 
overcome most of the limitations found in the Galerkin 
method when applied to fluid problems (Brooks and 
Hughes, 1982; Hughes et al., 1986; Tezduyar et al., 
1990; Sampaio, 1991; Franca et al., 1992; Franca and 
Frey, 1992). In this article, in order to perform the 
numerical simulations, a Petrov-Galerkin formulation 
for advective-diffusive heat transport in porous media is 
employed. The formulation was built in adding mesh-
dependent terms to the usual Galerkin formulation, 
which are functions of the Euler-Lagrange equations 
evaluated element wise. The perturbation terms are 
designed to enhance stability of the original Galerkin 
formulation. Taking advantage of the design of the 
stability parameter introduced in Franca et al. (1992) for 
the scalar context of advective-diffusive equation, it 
remains stable even for very high advective flows. 

II. MECHANICAL MODELING 
The Continuum Theory of Mixtures, based on principles 
postulated by Fick and Stefan (Atkin and Craine, 1976; 
Bedford and Drumheller, 1983; Bowen, 1967), is a 
convenient framework for modeling multicomponent 
systems whose basic assumption is to regard the mixture 
as a superposition of n > 2 continuous constituents 
(each of them representing a material). These 
constituents are endowed with independent kinematics, 
in order that for any time instant t and position x the 
mixture is occupied by all the n distinct constituents. In 
this section, the kinematics of motion and the axioms of 
balance of mass, momentum and energy for a mixture of 
n chemically non-reacting bodies Bα, α=1, n are 
considered following the definitions stated by Atkin and 
Craine (1976) and Bowen (1967). Each body Bα is a set 
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with the structure prescribed by Noll (Bowen, 1967) and 
a particle in this body is denoted by Pα. 

A configuration of the body Bα is a homeomorphism 
χ of Bα onto a subset of the Euclidean space ε. Its 
motion is a one-parameter family of configurations χt 
where [0, )t∈ ∞ is the time (Fig. 1). The position of the 
particle Bα at the time t is given by 
 ),(χ)(χ tPPt ααα ==x . (1) 

A reference configuration for the body Bα is a fixed 
configuration ζα, which is denoted by 
 )( ααα ζ P=χ . (2) 

It follows from Eqs. (1) and (2) that, 
 ( ) ),(χ),(χ 1 tt αζαααα ζ XXx == − . (3) 

This equation yields the motion of the point Pα in 
terms of its position Xα in the reference configuration ζα. 
The function χζα is called the deformation function of 
the body Bα. From now on both χζα and its inverse χζα-1 

are assumed C² functions of their arguments. 

The region occupied by Bα in the Euclidean space ε 
is a compact set with piecewise smooth boundaries 
defined by 

 { }αααααα BPtPtB ∈= ),(χ),(χ . (4) 

A position in ε may be occupied simultaneously by 
material points from each body as in the Continuum 
Theories of Mixtures (Bowen, 1967). The mixture at a 
given time t, denoted by Bt, is defined by 

 
            (5) 

 
where V (Bt) is a region defined by  

 
                            (6) 

 
As a result of the definition of V (Bt) and the 

requirement that each function χα be a homeomorphism, 
it follows that each point ( )tB∈x V  is occupied by 
exactly n particles, one from each body. The part of Bα 
that is in the mixture Bt at the time t is clearly given 
by tB Bα ∩ . 

A mass density ρα is associated with each 
constituent, representing the average density of the α-
constituent taken over a small volume of the mixture. A 
velocity field uα is also associated to each constituent. 
Its Lagrangean and Eulerian description being given, 
respectively, by 

( ) ( ),     ,     1,t t n
tα α α α α α∂

= = =
∂

u χ X u u x .       (7) 

The above stated kinematic definitions allow the 
existence of n different velocities at a single spatial 
point for any time instant. Figure 1 clarifies the mixture 
movement in which n reference configurations 
correspond to a single current configuration. 

Let Ω be an arbitrary region fixed in space of 
volume V bounded by a surface ∂Ω  of area A on which 
the conservation laws are postulated for each constituent 

of the mixture, taking into account the action it suffers 
from the remaining constituents. In what follows all the 
equations are postulated at the current time t and all 
quantities are functions of x and t. 

 
Figure 1. Mixture theory. 
 
In the absence of chemical reactions the amount of 

any given constituent remains unchanged so that the 
mass of each constituent is preserved. Therefore, 
assuming that n is the unit outward normal to ∂Ω  it can 
be mathematically stated, for α = 1, n 

 
                 (8) 

 
Applying the divergence theorem to Eq. (8) and 

assuming all functions sufficiently regular, since Ω is an 
arbitrary fixed region within the mixture, the local form 
of Eq. (8), the so called continuity equation for each 
constituent (α = 1, n), is obtained 

 
                (9) 

 
Once Eq. (9) is valid for all α-constituents, the mass 

of the mixture as a whole is automatically preserved. 
The conservation of linear momentum is postulated 

in an analogous way to the one employed in classical 
continuum mechanics, by applying the first axiom of 
Euler (Truesdell, 1957) to each constituent of the 
mixture. Besides the body force per unit mass acting on 
each constituent, fα, the surface force effect as well as 
the effect of the remaining constituents of the mixture 
over α must be taken into account. In order to consider 
these two effects the partial stress vector t(x, t; n) – 
defined on ∂Ω  and measured per unit area of ∂Ω , 
playing a role in the mixture theory corresponding to the 
stress vector in continuum mechanics – and an 
interaction force mα applied on the α-constituent by the 
remaining constituents of the mixture are introduced. 
This latter effect represents the momentum transfer due 
to interaction effects such as the allowed relative motion 
of the constituents. It may be regarded as the diffusive 
force acting on the α-constituent by the remaining ones. 
(In the particular case of a fluid flowing through a 
porous medium, the interaction force acting on the 
porous matrix may be physically viewed as analogous to 
the fluid drag on the matrix.) The partial stress vector 
integrated over a surface ∂Ω  stands for the contact 

{ ( ) ( )}
1

,
n

t tB P P t Bα αα
α =

= ∈χU V

( ) { ( )}
1

,
n

tB B tα α
α =

= χIV

0d dV dA
dt α α αρ ρ

Ω ∂Ω
+ ⋅ =∫ ∫ u n

( ) 0
t
α

α α α α
ρ

ρ ρ
∂

+ ∇ + ∇⋅ =
∂

u u
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force on the α-constituent and, since the theorem of 
Cauchy states that the traction vector is linear on the 
outward normal n, t(x, t; n) = σ(x, t)n – in which σ 
represents Cauchy stress tensor, the partial stress tensor 
σa may be defined in a similar way, ta (x, t; n) = σ a (x, 
t)n, so that the conservation of linear momentum for 
each constituent (α = 1, n) may be postulated as 

( )

( )

d dV dA
dt

dV dA

α α α α α

α α α α

ρ ρ

ρ

Ω ∂Ω

Ω ∂Ω

+ ⋅ =

+ +

∫ ∫

∫ ∫

u u u n

f m σ n
        (10) 

Following a procedure analogous to the one used to 
get the local form of the mass conservation equation, the 
linear momentum conservation equation local form for 
each constituent (α = 1, n) is obtained, 

( )
t
α

α α α α α α αρ ρ
∂⎡ ⎤+ ∇ = ∇⋅ + +⎢ ⎥∂⎣ ⎦

u
u u σ m f       (11) 

Assuming the validity of equation (11), a local form 
of conservation equation of linear momentum for the 
whole mixture may be stated as 

1
0n

αα =
=∑ m . 

Although the mixture theory only requires that the 
summation of all partial stress tensors be symmetric, in 
this work each component of the partial stress tensor σα 
is considered as symmetric, automatically satisfying the 
angular momentum conservation equation. 

Let eα represent each constituent internal energy, rα 
its energy generation per unit mass, qα the partial heat 
flux per unit time and unit area - associated to the α-th 
constituent in such a way that qα·n represents the 
conduction heat flux to the above mentioned constituent 
through the surface ∂Ω . Also defining ψa as the 
(internal) energy generation term, which represents the 
energy per unit time and unit volume supplied to the α-
th constituent due to its thermal interaction with the 
remaining constituents of the mixture, the conservation 
of energy for each constituent (α = 1, n) may be 
postulated as 

( )

[ ]

1
2

1
2

d e dV
dt

e dA

dV r dV

dA

α α α α

α α α α α

α α α α α α α

α α α

ρ

ρ

ψ ρ ρ

Ω

∂Ω

Ω Ω

∂Ω

⎡ ⎤+ ⋅ +⎢ ⎥⎣ ⎦
⎡ ⎤+ ⋅ ⋅ =⎢ ⎥⎣ ⎦

+ + + ⋅⎡ ⎤⎣ ⎦

+ ⋅ − ⋅

∫

∫

∫ ∫
∫

u u

u u u n

f m u

t u q n

       (12) 

in which ( )1
2 α α⋅u u  represents the α-th constituent 

kinetic energy per unit mass, α α αρ ⋅f u  and α α⋅m u  

represent, respectively, the power of body forces and 
interaction forces per unit volume and α α⋅t u  stands for 
the power of surface forces per unit area. 

Once again, a procedure analogous to that used 
before, leads to the local form of the energy equation for 
each constituent, for α = 1, n 

( ) ( )e
e r u

t
α

α α α α α α α α αρ ρ ψ
∂⎡ ⎤+ ∇ = −∇⋅ + + ⋅⎢ ⎥∂⎣ ⎦

u q σ ε (13) 

with ε(uα) representing the symmetrical part of uα∇ . 
According to Martins-Costa et al. (1993) the 

conservation of energy for the mixture as a whole, in the 
absence of mass generation and considering σα 
symmetrical, provided that Eq. (13) is verified, may be 
stated as 

1
0n

αα
ψ

=
=∑ . 

For a given material there must exist some relation 
between its dynamic and kinematic states at some 
instant and, in some cases, the material behavior at the 
present instant is also influenced by its kinematic state 
at all instants of its past history. The equations 
expressing the relation between kinematic and dynamic 
variables are called constitutive equations. In the solid-
fluid mixture considered in this work it suffices to solve 
balances of mass and linear momentum for the fluid 
constituent which, in turn, require constitutive 
assumptions for the partial stress tensor σf  and diffusive 
force mf. The partial stress tensor for the fluid 
constituent may be stated as 

  2 ( )f fpϕ η= − +σ I ε u  (14) 
in which uf and pf = φp are the velocity and partial 
pressure fields of the fluid constituent (p being the 
pressure acting on the mixture), respectively, η 
represents a parameter related to the viscosity and ε(uf) 
is the symmetrical part of the fluid constituent velocity 
gradient. Sampaio and Williams (1977) have analyzed 
the case of mixtures of fluids, concluding that the 
parameter η was represented by the product of the fluid 
fraction φ and the viscosity of the base fluid μ. Williams 
(1978) proposed the existence of an always positive 
scalar parameter λ for solid-fluid mixtures - representing 
a fluid flow through a porous matrix. The λ-parameter 
depends on the solid constituent’s parameters only and 
takes into account the porous matrix microstructure. In 
short, 2η λϕ μ=  with μ representing the fluid viscosity. 

Since the porous medium is saturated by the fluid 
and at rest, the interaction force is proportional to uf 
(Williams, 1978; Costa-Mattos et al., 1995). The 
proportionality parameter is obtained by considering a 
limit case in which Darcy’s law assumptions are valid - 
an infinite cross section (rigid, homogeneous and 
isotropic) porous medium saturated by a steady-state 
fluid flow having only the gradient of pressure as 
driving force. In this particular case the following 
equation describes the fluid motion, 

 f
K pϕ
μ

= − ∇u  (15) 

in which K represents the specific permeability of the 
porous medium – a scalar, since the porous matrix is 
assumed isotropic. Thus, the interaction force may be 
expressed by the following constitutive law: 

 ²
f fK

ϕ μ
= −m u  (16) 

The partial heat fluxes for the solid (qs) and the fluid 
(qf) constituents are postulated by making an analogy 
with both Fourier’s law for single continua and the 
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partial heat fluxes for mixtures of n solids considered by 
Saldanha da Gama (1989), as (Martins-Costa et al., 
1992; Martins-Costa and Saldanha da Gama, 1996) 

 
 = (1 )
 =

s S s

f F f

k
k

ϕ θ
ϕ θ

−Λ − ∇
−Λ ∇

q
q

 (17) 

where Λ represents an always positive parameter which 
may depend on both the internal structure and the 
kinematics of the mixture and kS and kF are the solid and 
the fluid thermal conductivity (regarded from a 
Continuum Mechanics viewpoint). 

The energy generation function, ψα, which is an 
internal contribution, represents the energy supply to a 
given constituent, arising from its thermal interaction 
with the remaining constituents of the mixture. The ψα 
function is zero at a given point only if all the 
constituents are at the same temperature at this point 
(Saldanha da Gama, 1989; Martins Costa et al., 1992; 
Martins-Costa and Saldanha da Gama, 1996). The 
coefficients Rsf and Rfs are positive valued parameters 
which depend on both constituent’s thermal properties, 
on the mixture internal structure and on the fluid 
constituent velocity, since the solid constituent is 
supposed to be at rest. In order to satisfy the energy 
balance for the mixture (Martins-Costa et al., 1993), 
which states that in the absence of mass generation and 
assuming the partial stress tensor symmetrical the sum 
ψf +ψs must be zero, it is necessary to ensure that 

   sf fsR R R≡ ≡ , so the internal energy generation may 
be described by 
     ( ) s f s fRψ ψ θ θ− = = −  (18) 

III. FINITE ELEMENT MODELING 
Substituting the constitutive Eqs. (14)-(18) into the 
conservation Eqs. (11) and (13) and assuming low 
velocities and steady-state regime, the following 
boundary-value problem may be obtained for 
incompressible thermal flows through saturated porous 
media: Given functions : ²f Ω→f R , :fr Ω→ R  and 

:sr Ω→ R , find the unknown fields : ²f Ω→u R , 

:p Ω→ R , :fθ Ω→ R  and :sθ Ω → R , such that 

2 ( )              in 

           0           in 

 -    ( )            in 

           ( )                  in 

               on 

       

f f f

f

f f f f f s f

s s s f s

f g g

p
K

r

r

ϕμλϕμ ρ

θ κ θ β θ θ

κ θ θ θ

− ∇ ⋅ + ∇ + = Ω

∇⋅ = Ω

⋅∇ Δ + − = Ω

Δ + − = Ω

= Γ

ε u u f

u

u

u u

                              on                    (19)

                 on  

               on  

      on  

(1 )        on  

f fg g

s sg g

f h

f f fh h

s s sh

h

k q

k q h

θ θ

θ θ

ϕ θ

ϕ θ

= Γ

= Γ

= Γ

−Λ ∇ ⋅ = Γ

−Λ − ∇ ⋅ = Γ

σ n σ

n

n

  

where Γg is the region of the boundary Γ on which 
essential (Dirichlet) conditions are imposed and Γh is 
subjected to the natural (Neumman) ones. Also, uf 
represents the fluid constituent velocity, σf the partial 
stress tensor acting on it (Eq. (14)), ε(uf ) the 
symmetrical part of the f∇u -tensor and ff the 
gravitational body force. The parameter φ is the fluid 
fraction, p is the pressure acting on the mixture, μ is the 
fluid viscosity and K is the porous matrix porosity, both 
regarded from a Continuum Mechanics viewpoint. The 
thermal porous diffusivities κf and κs and coefficient β 
defined, respectively, by 

(1 )
;   ;   f s

f s
f f f f

k kR
c c R
ϕ ϕ

κ β κ
ρ ρ
Λ Λ −

= = =       (20) 

and prescribed energy supplies rf and rs redefined as 

                      ;    f s
f s

f f

r r
r r

c Rρ
= =                     (21) 

Considering the simple geometry depicted in Figure 
2 the hydrodynamic part of the problem has an 
analytical solution as defined in Eq. (15) (for details, see 
Martins-Costa et al., 1992). So, a finite element 
approximation will be constructed for the advective-
diffusive heat transfer boundary-value problem defined 
in Eqs. (19)-(21), based on the following finite 
dimension subspaces, 

( ) ( ) }

{ ( ) ( )

}

1
0

1

  {  ,

,

,    on      ,

h m hK

g
h mK

h ig g

W H P K K C

W H P K

K C i f s

φ φ

φ φ

φ θ

= ∈ Ω ∈ ∈

= ∈ Ω ∈

∈ = Γ =

    (22) 

where Pm denotes a polynomial space of degree m, Ch is 
a partition of Ω  into elements consisting of convex 
quadrilaterals, performed in the usual way (Ciarlet, 
1978), H1(Ω) is the Sobolev space of functions and 1st-
derivatives with square-integrable value in Ω and 

( )1
0H Ω  is the Sobolev space of functions with square-

integrable value and 1st-derivatives in Ω which vanishes 
on Γ. 

In order to approximate the thermal problem of 
system (19)-(21), employing the space definitions (22), 
we have made use of the following Petrov-Galerkin 
formulation: Find the pair ( ,  )  g g

fh sh h hW Wθ θ ∈ × such 
that 

( , ; , ) ( , ),   ( , )fh sh f s f s f s h hB F W Wθ θ φ φ φ φ φ φ= ∈ ×  (23) 
with 

( , ; , ) ( , )

( , ) ( ( ), )

( , ) (( ), )

( ( ),

( )( ))
h

fh sh f s f f f

f f f f s f

s s s s f s

f f f f f sK C

K f f f f K

B

Pe

θ θ φ φ θ φ

κ θ φ β θ θ φ

κ θ φ θ θ φ

θ κ θ β θ θ

τ φ κ φ
∈

= ⋅∇

+ ∇ ∇ + −

+ ∇ ∇ + −

+ ⋅∇ − Δ + −

⋅∇ − Δ

∑

u

u

u

    (24) 

and 
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( , ) ( , ) ( , ) ( , )

( , ) ( , ( )(u - ))
h

f s f f s s fh f h

sh s h f K f f f f KK C

F r r q

q r Pe

φ φ φ φ φ

φ τ φ κ φ
∈

= + +

+ + ⋅∇ Δ∑
 (25) 

in which the fluid constituent velocity uf has an 
analytical solution as defined in Eq. (28) and the 
parameter τ is based upon the stability parameter 
introduced in Franca et al. (1992) for the scalar context 
of the advective-diffusive equation: 
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where Ck is a positive constant independent of Ch. 

Remark 1:  If we drop the mesh-dependent terms from 
the above formulation, i.e. set τ = 0 throughout, then the 
method is reduced to the classical Galerkin method for 
the thermal problem defined in system (19): Find the 
pair ( , ) g g

fh sh h hW Wθ θ ∈ × such that 

  
( , ; , ) ( , ),
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∈ ×
              (32) 

with 
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and 
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Remark 2: Accordingly Franca et al. (1992), the usual 
Péclet grid number (Johnson, 1987) was modified by 
including the parameter mk in eq.(29), to account for the 
degree of interpolation employed. As a consequence 
advective-dominated flow regions are characterized by 
PeK > 1 and diffusive-dominated ones by PeK < 1, 
regardless the element considered. 

 
Figure 2. Flow into a porous channel: Problem statement. 

 
Figure 3.  Fluid constituent velocity profiles:    (a) for Da = 4× 
10-6;   (b) for Da = 4× 10-4. 

IV. NUM ERICAL RESULTS 
In this section, numerical simulations of the thermal 
problem defined in Eqs. (19)-(21) employing the 
Petrov-Galerkin formulation defined by Eqs. (23)-(31) 
are presented. Lagrangean bilinear (Q1) and Serendipity 
biquadratic (Q2S) interpolations have been utilized to 
approximate the temperature fields of fluid and solid 
constituents. All computations performed in this article 
have been carried out at Laboratory of Computational 
and Applied Fluid Mechanics (LAMAC) of Federal 
University of Rio Grande do Sul, making use of the 
finite element code FEM and graphic post-processor 
VIEW - both codes under development in the above 
mentioned Laboratory.  

The studied geometry is illustrated in Fig. 2: a 
newtonian fluid flows through a horizontal porous 
channel limited by impermeable and isothermal flat 
plates. Considering the classical no-slip condition on the 
impermeable .at plates, 

   0    for 0 ,    / 2 f x L y H= < < = ±u         (35) 

 
Figure 4. Temperature distributions for low Péclet numbers 
with Q1 elements: Elevation plots. (a) fluid constituent (mesh 
10x10); (b) solid constituent (mesh 10x10); (c) fluid 
constituent (mesh 50x50); (d) solid constituent (mesh 50x50); 
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(e) fluid constituent (mesh 100x100); (f) solid constituent 
(mesh 100x100). 

 
Figure 5. Temperature distributions for low Péclet flow with 
Q1 elements: Contours. (a) fluid constituent (mesh 10x10); (b) 
solid constituent (mesh 10x10); (c) fluid constituent (mesh 
50x50); (d) solid constituent (mesh 50x50); (e) fluid 
constituent (mesh 100x100); (f) solid constituent (mesh 
100x100). 

 
an analytical velocity profile has been obtained for the 
fluid constituent (Martins-Costa et al., 1992) by solving 
the hydrodynamic problem associated to Eqs. (19)-(21), 
giving rise to 

cosh
( ) 1

/ 2cosh
f f x

y
K p Ky

Hx
K

λρ
μϕ

λ

⎡ ⎤
⎢ ⎥∂⎡ ⎤= − −⎢ ⎥⎢ ⎥∂⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

u f        (36) 

with -H/2 < y <H/2, in which uf and ffx represent, 
respectively, the x-component of uf and the gravitational 
body field ff . 

 
Figure 6. Temperature distributions for high Péclet flow with 
Q1 elements: Elevation plots. (a) fluid constituent (mesh 
10x10); (b) solid constituent (mesh 10x10); (c) fluid 
constituent (mesh 50x50); (d) solid constituent (mesh 50x50); 
(e) fluid constituent (mesh 100x100); (f) solid constituent 
(mesh 100x100). 

 
Figure 7. Temperature distributions for high Péclet flow with 
Q1 elements: Contours. (a) fluid constituent (mesh 10x10); (b) 
solid constituent (mesh 10x10); (c) fluid constituent (mesh 
50x50); (d) solid constituent (mesh 50x50); (e) fluid 
constituent (mesh 100x100); (f) solid constituent (mesh 
100x100). 

At this point it is interesting to mention that for the 
limiting case in which H →∞ , the velocity given by 
Eq.(36) approaches the one obtained from the classical 
Darcy’s law, given by  

            fDarcy fx
K pv

x
ρ

μϕ
∂⎡ ⎤= −⎢ ⎥∂⎣ ⎦

                    (37) 

The almost flat velocity profile depicted in Fig. 3 
was obtained from Eq. (28), approaching the classical 
Darcy’s law velocity expression (Bejan, 1987) as the 
channel width H →∞ . Figure 3 compares velocity 
profiles for two distinct values of Darcy number – 
relating the porous matrix permeability to the channel 
width (Da = K/H2), namely Da = 4 × 10-4 and Da= 4 × 
10-6, showing that the velocity profile could be 
described by the classical Darcy’s law for small Darcy 
numbers. 

 
Figure 8. Temperature distributions for very high Péclet flow 
with Q1 elements: Elevation plots.(a) fluid constituent (mesh 
10x10); (b) solid constituent (mesh 10x10); (c) fluid 
constituent (mesh 50x50); (d) solid constituent (mesh 50x50); 
(e) fluid constituent (mesh 100x100); (f) solid constituent 
(mesh 100x100). 
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Figure 9. Temperature distributions for very high Péclet flow 
with Q1 elements: Contours.(a) fluid constituent (mesh 
10x10); (b) solid constituent (mesh 10x10); (c) fluid 
constituent (mesh 50x50); (d) solid constituent (mesh 50x50); 
(e) fluid constituent (mesh 100x100); (f) solid constituent 
(mesh 100x100). 

 
Figure 10. Temperature distributions for a 10x10 mesh with 
Q2S elements: Elevation plots.(a) fluid constituent (low Péclet 
number); (b) solid constituent (low Péclet number); (c) fluid 
constituent (high Péclet number); (d) solid constituent (high 
Péclet number); (e) fluid constituent (very high Péclet 
number); (f) solid constituent (very high Péclet number). 

 
Figure 11. Temperature distributions for a 10x10 mesh with 
Q2S elements: Contours.(a) fluid constituent (low Péclet 
number); (b) solid constituent (low Péclet number); (c) fluid 
constituent (high Péclet number); (d) solid constituent (high 
Péclet number); (e) fluid constituent (very high Péclet 
number); (f) solid constituent (very high Péclet number). 

A flat porous channel of aspect ratio L/H = 2 (with L 
denoting its length and H its width), thermal porous 
diffusivities κf = 100, 10-3 and 10-7 for the fluid 
constituent and κs = 101 for the solid one and the β-
coefficient assuming the value β = 10-2 has been simula-
ted, considering the following boundary conditions 

1 0 ,  / 2
0   0,  / 2 / 2

1 or n=0 ,  / 2 / 2

i

i

i i

x L y H
x H y H
x L H y H

θ
θ

θ θ

= < < =±⎧
⎪ = = − < <⎨
⎪ = ∇ ⋅ = − < <⎩

      (38) 

where n is the unit outward normal vector. 

 
Figure 12. Galerkin method employing Q2S elements with 
Dirichlet conditions at the outlet: Elevation plots. (a) fluid 
constituent (b) solid constituent 

 
Figure 13. Petrov-Galerkin method employing Q2S elements 
with Dirichlet conditions at the outlet: Elevation plots. (a) 
fluid constituent (b) solid constituent 

Taking the centerline velocity as the characteristic 
flow velocity and fixing the channel width as H = 0.5, 
the following porous Péclet numbers are obtained: 

-1

2

6

 1,  Pe (0) / 5 10 ;

  10 -3,  Pe 5 10 ;

  10 - 7,  Pe 5 10 .

I

F F F
II

F
III

F

for v H

for

for

κ κ

κ

κ

= = = ×

= = ×

= = ×







 

Figures 4 to 9 illustrate the Petrov-Galerkin 
approximation defined in Eq. (23)-(31) for three 
different meshes (10x10, 50x50 and 100x100) 
employing lagrangean bilinear elements (Q1) for a large 
range of Péclet flows. (The channel geometry was fixed 
at L/H = 2.). The first flow, depicted in Fig. 4 and 5, has 
a porous thermal diffusivity κF = 1 providing a diffusive 
dominated flow; in Fig. 6 and 7, a high advective 
dominated one is illustrated, namely κF = 10-3, while in 
Fig. 8 and 9 a very high advective flow is shown, since 
κF is equal to 10-7. In all situations the employed Petrov-
Galerkin method has approximated stably θf and θs 
temperature fields even for the sharpest ones, namely, 
for θf field with κF = 10-3 and κF = 10-7. In the former, 
shown in Fig. 6 and 7, a global smooth pattern with 
small oscillations localized in the boundary layers at 
channel walls may be noticed; in the latter, an excellent 
resolution is achieved without oscillations even in for 
very thin thermal boundary layers as those generated in 
Fig. 8 and 9. 

Figures 10 and 11 illustrate the Petrov-Galerkin 
approximation with a 10x10 serendipity biquadratic 
(Q2S) elements, considering all the flows described in 
the last paragraph – namely diffusive, high advective 
and very high advective ones. It is worth to be noticed 
that even for a poor mesh with only 10x10 elements, the 
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method defined by Eqs. (23)-(31) was able to obtain an 
excellent resolution inside and outside the boundary 
layers. 

In Fig. 12 and 13 elevation plots for κF = 10-3 are 
shown employing the Galerkin and the Petrov-Galerkin 
methods defined, respectively, in Eqs. (32)-(34) and 
(23)-(31), with a Dirichlet outflow boundary condition. 
Since the flow is parallel to the mesh, one might 
conjecture that the Galerkin formulation might work, 
which was not confirmed herein, while the Petrov-
Galerkin one points out an excellent pattern with only 
small oscillations near the channel exit. Galerkin 
method poor performance is due to the outflow 
condition employed that creates an outflow boundary 
layer, which wholly contaminates Galerkin 
approximation for the fluid constituent. 

Eventually, it is of worth to be marked that all θf and 
θs distributions shown are plainly smooth indicating that 
the numerical method employed was capable of 
generating stable and accurate temperature approxi-
mations even for high Péclet flows, 103 < PeK < 107. 

V. FINAL REMARKS 
In this work a mechanical modeling for a non-classical 
approach for the heat transfer in a flow through a porous 
channel has been presented. This model, which is based 
on the continuum theory of mixtures, generates a 
hydrodynamic problem analogous to the steady-state 
Stokes problem (considering the geometry depicted in 
Fig. 2) – except for the momentum source term – which 
is used as input for the thermal problem. The latter is a 
boundary value problem consisting of two coupled 
partial equations, one describing the fluid constituent 
energy balance and the other the solid one. (The 
coupling term is an energy source term.) A Petrov-
Galerkin formulation has been employed to approximate 
the variational equations describing the non-isothermal 
advective flow. 

For low Péclet regime, the results have pointed out 
thermal equilibrium between both constituents, an 
expected behavior since the energy source term β(θf -θs) 
is not overwhelmed by the advective one in the fluid 
energy balance equation. For high and very high Péclet 
flows, stabilization strategies proved to be essential, 
being able to capture accurately smooth thermal 
boundary-layers near the channel walls (for high Péclet  
flows) and, for very high Péclet flows, the Petrov-
Galerkin formulation simulated a quasi-hyperbolic exact 
solution. At length, when classical Galerkin and Petrov-
Galerkin formulations are subjected to Dirichlet outflow 
boundary conditions, it can be clearly noticed the 
Galerkin fails drastically to simulate advective-
dominated regime flows.  
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