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Abstract We present mathematical transformations

which allow us to calculate the spin dynamics of an ultra-

small nanoscale molecular magnet consisting of a dimer

system of classical (high) Heisenberg spins. We derive

exact analytic expressions (in integral form) for the time-

dependent spin autocorrelation function and several other

quantities. The properties of the time-dependent spin

autocorrelation function in terms of various coupling

parameters and temperature are discussed in detail.
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Recent succesful efforts in synthesizing solid lattices of

weakly coupled molecular clusters containing few strongly

interacting spins has opened up the possibility of experi-

mentally studying magnetism at the nano scale [1]. Due to

the presence of organic ligands which wrap the molecular

clusters, the inter-cluster magnetic interaction is vanish-

ingly small when compared to intra-cluster interactions,

therefore the properties of the bulk sample reflect the

properties of independent individual nanoscale molecular

clusters. The magnetic ions in each molecular cluster can

be generally arranged in different ways, giving rise to

structures of very high symmetry (for example rings) and/

or of lower symmetry presenting other important features.

In some cases, the positions of the magnetic ions in the

cluster define a nearly planar ring structure within the host

lattice, for instance the Fe6 molecule is one of this type [2].

Here, the six Fe3+ ions have spin S = 5/2 and are coupled

by nearest-neighbor antiferromagnetic exchange interac-

tions. Other nanoscale molecular clusters consist of para-

magnetic ions whose positions define a three-dimensional

structure. Examples of this type are the molecules Fe4 and

Cr4, which feature four Fe3+ ions [3] (S = 5/2) and four

Cr3+ ions [4] (S = 3/2), respectively, which occupy the

vertices of a tetrahedron embedded in the host lattice.

Smaller clusters are the irregular triangle molecule [5]

known as Fe3 which incorporates three Fe3+ ions with spin

S = 5/2 and the dimer [6] system, Fe2 consisting of two

Fe3+ ions with spin S = 5/2.

Low nuclearity complexes, such as Fe2 and Fe3, are

likely to represent the ‘‘molecular’’ nanoscale bricks for

the formation of high-nuclearity molecular clusters.

Therefore, their characterization is an essential step for

broader studies targeting larger systems [7]. Because of

the high spin value of the Fe3+ ions, it turns out that the

measured magnetic susceptibility and other related quan-

tities can be reproduced to very high accuracy [8] by

using the classical Heisenberg model which incorporates

interaction between classical unit vectors. Only for very

low temperatures need one consider the quantum char-

acter of the Fe3+ spins.

The spin dynamics of these nanoscale magnetic clusters

is of particular interest since it can directly be probed by

different experimental methods such as nuclear magnetic

resonance (NMR) [9]. In view of the importance of

knowing the dynamical behavior of spin–spin correlation
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functions it is most desirable to find model systems which

can be solved exactly. This way one can test the regimes of

validity of various experimental results and theoretical

approximation schemes. Among the variety of spin–spin

correlation functions, the time-dependent spin autocorre-

lation function is closely linked with spin dynamics,

therefore, it is natural to focus on this quantity. Earlier

studies have numerically investigated the time-dependent

spin autocorrelation function of many-spin systems such as

a classical Heisenberg model with nearest-neighbor ex-

change interaction between spins [10]. The goal of these

simulations was the study of the expected power-law decay

of the long-time spin autocorrelation function for many-

spin systems at infinite temperature [11].

In this work, we focus on the spin dynamics of ultra-

small, nanoscale, molecular magnets of classical (high)

Heisenberg spins. In particular, we give exact expressions

(in integral form) for the time-dependent spin autocorrela-

tion function at arbitrary temperature for a dimer system of

classical (high) spins that interact with both exchange and

biquadratic exchange interaction. The mathematical diffi-

culty to solve exactly the equations of motion and to per-

form the phase–space average for interacting spins makes

an exact analytical calculation of the time-dependent spin

autocorrelation function very challenging, even for the ul-

tra-small system considered here. To overcome these

mathematical difficulties we introduce a method which

simplifies the calculation of various quantities through the

introduction of suitably chosen auxiliary time-independent

variables into an extended phase–space integration [12, 13].

The present analytic results, although derived for the dimer

system of spins [14], can provide useful benchmarks for

assesing numerical methods that calculate the time-depen-

dent spin dynamics of other magnetic high-spin systems.

The Hamiltonian of a dimer system of spins with ex-

change and biquadratic interaction is written as

HðtÞ ¼ J~S1ðtÞ~S2ðtÞ þ K ~S1ðtÞ~S2ðtÞ
h i2

; ð1Þ

where J, K represent, respectively, the exchange, biquadratic

exchange interaction and ~SiðtÞ are time-dependent classical

spin vectors of unit length (i = 1,2). The orientation of the

classical unit vectors~SiðtÞ at a moment of time, t, is specified by

polar and azimuthal angles, hi(t) and /i(t), which, respectively,

extend from 0 to p and 0 to 2p. The exchange interaction

between a pair of spins can be either antiferromagnetic (AF),

J = |J| > 0, or ferromagnetic (F), J = –|J| < 0. The biquadratic

exchange interaction, K, can be positive, zero or negative.

At an arbitrary temperature, T, the time-dependent spin

autocorrelation function, CTðtÞ ¼ h~Sið0Þ~SiðtÞi , is evaluated

as a phase space average over all possible initial time

orientations of the spins:

CTðtÞ ¼
R

d~S1ð0Þ
R

d~S2ð0Þ exp �bHð0Þ½ �~Sið0Þ~SiðtÞ
ZðTÞ ; ð2Þ

where i = 1 or 2 is a selected spin index,

d~Sjð0Þ ¼ dhjð0Þ sin½hjð0Þ�dujð0Þ is the initial time solid

angle element appropriate for the j-th spin, b = 1/(kB T),

and kB is Boltzmann’s constant. The denominator of

Eq. 2 represents the partition function, ZðTÞ ¼
R

d~S1ð0ÞR
d~S2ð0Þ exp �bHð0Þ½ �, where H(0) is the initial time

Hamiltonian of the spin system. In order to evaluate the

time-dependent spin autocorrelation function we need first

to solve the equations of motions for the spins and then

perform the angular average over all possible initial time

spin orientations in the phase space.

The dynamics (equations of motion) of classical spins is

determined from

d

dt
~SiðtÞ ¼ �~SiðtÞ �

@HðtÞ
@~SiðtÞ

; ð3Þ

where the set of solutions, f~SiðtÞg depends on the initial

orientation of the spins, f~Sið0Þg.
The calculation of CT(t) follows several steps: (i) solve

the equations of motion for the spins to obtain ~SiðtÞ; (ii)

calculate the partition function Z(T); and (iii) compute the

integrals appearing in the numerator of Eq. 2.

By applying Eq. 3 to each spin of the dimer, it is not

difficult to note that the total spin, ~SðtÞ ¼ ~S1ðtÞ þ ~S2ðtÞ, is a

constant of motion, ~SðtÞ ¼ ~Sð0Þ ¼ ~S , and as a result we

can rewrite Eq. 3 as

d

dt
~SiðtÞ ¼ �½J þ KðS2 � 2Þ�~SiðtÞ � ~S; ð4Þ

where ~S represents the constant total spin.

The above differential equations for spins can be exactly

solved in a new coordinate system (x¢ y¢ z¢) in which the

constant vector ~S lies parallel to the z¢ axis. Let us denote

(ai,bi) to be the polar and azimuthal angles of spin ~Sið0Þ
with respect to the new coordinate system in which the

direction of ~S defines the z¢ (polar) axis. It follows that

S cosðaiÞ ¼ ~Sið0Þ~S. The solution of Eq. 4 for each spin

component of ~SiðtÞ depends on the sign of [J + K (S2–2)].

Irrespective of the sign of [J + K (S2–2)], we find that the

quantity ~Sið0Þ~SiðtÞ is given by the expression

~Sið0Þ~SiðtÞ ¼ sin2ðaiÞ cos xðSÞt½ � þ cos2ðaiÞ; ð5Þ

where x(S) = |J + K (S2–2)| S denotes a precession fre-

quency, and 0 � S ¼ j~Sj � 2 . Note that ~Sið0Þ~SiðtÞ does not

depend on the i-th spin azimuthal angle bi.

In as much as the spins are equivalent, without loss of

generality we fix i = 1 and concentrate on the calculation
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of CTðtÞ ¼ h~S1ð0Þ~S1ðtÞi. From the definition of the total

spin variable, ~S ¼ ~S1ð0Þ þ ~S2ð0Þ, recalling that S cosða1Þ ¼
~S1ð0Þ~S, we easily find that 1þ ~S1ð0Þ~S2ð0Þ ¼ S cosða1Þ.
Since the product ~S1ð0Þ~S2ð0Þ is expressable in terms of the

total spin as ~S1ð0Þ~S2ð0Þ ¼ S2=2� 1, it follows that

cosða1Þ ¼ S=2, and it depends only on the total spin

magnitude. Through these simple mathematical transfor-

mations we reach the first goal to express ~S1ð0Þ~S1ðtÞ as

~S1ð0Þ~S1ðtÞ ¼ Fðt; SÞ ¼ 1� S2

4

� �
cos xðSÞt½ � þ S2

4
: ð6Þ

In the same way, the Hamiltonian can be written in terms

of the total spin variable as

HðtÞ ¼ Hð0Þ ¼ J

2
S2 � 2
� �

þ K

4
S2 � 2
� �2 ð7Þ

and is a constant of motion.

By expressing all relevant quantities in terms of the total

spin variable which is a constant of motion, we now apply

our calculation method whose success is based on the

observation that the values of all multi-dimensional inte-

grals, for example Z(T), are left unchanged if multiplied by

unity written as

Z
d3S

Z
d3q

ð2pÞ3
exp i~q ~S� ~S1ð0Þ � ~S2ð0Þ

� �h i
¼ 1: ð8Þ

Note that the above identity originates from the well known

formula,
R

d3Sdð3Þ ~S� ~S1ð0Þ � ~S2ð0Þ
h i

¼ 1, that applies to

three-dimensional Dirac delta functions. Subsequent

calculations are straightforward given that both H(0) and
~S1ð0Þ~S1ðtÞ appearing in Eq. 2 can be expressed solely in

terms of S. As a result, the integrations over individual spin

variables pose no problems. For the partition function, we

obtain

ZðTÞ¼ð4pÞ2
Z 2

0

dSDðSÞexp �bJ

2
S2�2
� �

�bK

4
S2�2
� �2

� �
;

ð9Þ

where DðSÞ¼4pS2
R

d3q

ð2pÞ3 expði~q~SÞ sinq=qð Þ2 can be

calculated analytically and is

DðSÞ ¼
S=2 0\S\2

S=4 S ¼ 2

0 S[2

8<
: ð10Þ

The vanishing of D(S) for S > 2 reflects the constraint that

the total spin cannot exceed 2. Note that for K ” 0, the

partition function becomes ZðTÞ ¼ ð4pÞ2 sinhðbJÞ
bJ . In the

most general case, J „ 0 and K „ 0, the integral in

Eq. 9 can be expressed analytically in terms of error

functions. From the perspective of numerical calculations,

the above one-dimensional integral form is better suited.

The integral appearing in the numerator of Eq. 2 is

generally very difficult to calculate. However, using the

method illustrated above, integration is simplified, and one

obtains

CTðtÞ ¼
ð4pÞ2

ZðTÞ

Z 2

0

dS DðSÞ exp

�
� bJ

2
ðS2 � 2Þ � bK

4
:

ðS2 � 2Þ2
�

Fðt; SÞ:

ð11Þ

The integrals appearing in Eq. 11 can be carried out ana-

lytically. The final result can be written in a closed form in

terms of error functions. The expressions are quite lengthy

and cumbersome. Because of such undesired complexity,

the one-dimensional integral representation in Eq. 11 not

only suffices, but is preferable for all practical needs. The

preceding formula for CT(t) represents the exact expression

(in integral form) for the time-dependent spin autocorre-

lation function of a dimer system of classical spins with

exchange and biquadratic exchange interaction at an arbi-

trary temperature.

Depending on the magnitude and sign of the coupling

constants, J and K, the quantity CT(t) approaches a unique

non-zero value at infinite time (t fi ¥) given by

CTðt!1Þ ¼
1

2
1þ

R 1

�1
dx x expð�bJx� bKx2ÞR 1

�1
dx expð�bJx� bKx2Þ

" #
; ð12Þ

where the auxiliary variable, x = (S2–2)/2 was introduced

to facilitate calculations. The final expression is rather

lengthy and can be expressed in terms of error functions.

For vanishing biquadratic exchange interaction (K ” 0),

the infinite-time limit of the spin autocorrelation function is

CTðt!1Þ ¼
1

2
1� LðbJÞ½ � for K � 0; ð13Þ

where LðzÞ ¼ cothðzÞ � 1=z is Langeven’s function.

Let us now study in detail the time dependence of

CT(t) for two extreme cases: very low temperature (we

choose a typical value, kB T/|J| = 0.1) and very high tem-

perature (T fi ¥).

Figures 1–4 display the time-dependent spin autocor-

relation function for the classical dimer of spins with

exchange and biquadratic exchange interaction as a

function of |J| t at kB T/|J| = 0.1. In Figs. 1 and 2 we

consider an AF exchange interaction, J = |J| > 0, and,

respectively, non-negative K = |K| ‡ 0 and non-positive
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K = –|K| £ 0. The AF case of J = |J| > 0 and K = |K| ‡ 0

shown in Fig. 1 is rather interesting. One notes that CT(t)

dramatically changes its time dependence from a smooth

function to a strongly oscillatory function of |J| t when

|K|/|J| increases and becomes larger or of the order of

unity.

In Figs. 3 and 4 we consider an F exchange interaction,

J = –|J| < 0, and, respectively, non-negative K = |K| ‡ 0
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Fig. 1 Time-dependent spin autocorrelation function, CT(t) for the

classical dimer of spins with exchange and biquadratic exchange

interaction at a very low temperature, kB T/|J| = 0.1. Given an AF

exchange interaction between spins, J = |J| > 0, we consider several

non-negative values of the biquadratic exchange interation, K = |K| ‡
0. Note how CT(t) changes from a very smooth function of |J| t for

small values of |K|/|J|, to a strongly oscillatory function of |J| t as |K|/

|J| becomes comparable or greater than unity
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Fig. 2 Time-dependent spin autocorrelation function, CT(t) for the

classical dimer of spins with exchange and biquadratic exchange

interaction at a very low temperature, kB T/|J| = 0.1. Given an AF

exchange interaction between spins, J = |J| > 0, we consider several

non-positive values of the biquadratic exchange interation K = –|K| £
0. Note that there are no relevant qualitative changes on the

dependence of CT(t) as a function of |J| t as |K|/|J| varies. Qualitatively

speaking, CT(t) remains a smooth function of |J| t with a minimum

that deepens and occurs sooner as |K|/|J| increases

0 10 20 30 40 50 60 70 80 90 100
|J|*t

0.8

0.9

1.0

1.1

C
(t

)

J<0 K=0 |K|/|J|=0.0
J<0 K>0 |K|/|J|=0.1
J<0 K>0 |K|/|J|=0.3
J<0 K>0 |K|/|J|=0.5

Fig. 3 Time-dependent spin autocorrelation function, CT(t), for the

classical dimer of spins with exchange and biquadratic exchange

interaction at a very low temperature, kB T/|J| = 0.1. Several non-

negative values of the biquadratic exchange interaction, K = |K| ‡ 0,

are considered for a given F exchange interaction, J = –|J| < 0. When

|K|/|J| increases from 0.0 to 0.1, the oscillations of CT(t) amplify, but

for larger values of |K|/|J| the function gradually transforms into a

smooth function of |J| t with fast decaying oscillations
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Fig. 4 Time-dependent spin autocorrelation function, CT(t), for the

classical dimer of spins with exchange and biquadratic exchange

interaction at a very low temperature, kB T/|J| = 0.1. Several non-

positive values of the biquadratic exchange interaction, K = –|K| £ 0,

are considered for a given F exchange interaction, J = –|J| < 0. Note

that CT(t) approaches its long-time asymptotic limit value (that is

larger for larger values of |K|/|J|) with less pronounced oscillations as

|K|/|J| increases
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and non-positive K = –|K| £ 0. Contrary to what is seen in

Fig. 1, the case described in Fig. 3 for J = –|J| < 0 and

K = |K| ‡ 0 shows a very different behavior, in the sense

that the strong oscillatory dependence of CT(t) as function

of |J| t is supressed when |K|/|J| increases.

At infinite temperature (T fi ¥) and arbitrary time, the

time-dependent spin autocorrelation may be expressed as

CT!1ðtÞ ¼
Z 2

0

dSDðSÞFðt; SÞ: ð14Þ

Using Eq. 6 and Eq. 10 one can rewrite CT fi ¥(t) in a

suitable form as

CT!1ðtÞ ¼
1

2
þ
Z 1

0

dx x cos 2jJ þ 2Kð1� 2xÞj
ffiffiffiffiffiffiffiffiffiffiffi
1� x
p

t
� �

;

ð15Þ

where x = 1–S2/4 is a dummy variable introduced to sim-

plify the final expression. One notes that, at infinite tem-

perature (T fi ¥) and arbitrary time, the expression for

CT(t) remains unchanged when the two coupling constants,

J and K simultaneosly reverse sign to –J and –K. A

simultaneous sign change of the two couplings J and K

leaves the same expression for CT fi ¥(t) since as seen in

Eq. 15 both J and K occur under the absolute value sign.

Figs. 5 and 6 show CT(t) as a function of |J| t for infinite

temperature (T fi ¥).

Let us now consider the case of an AF exchange inter-

action, J = |J| > 0, and non-negative, K = |K| ‡ 0, and

non-positive, K = –|K| £ 0, biquadratic exchange. The

situation shown in Fig. 5 for J = |J| > 0 and K = |K| ‡ 0 is

of particular interest since one observes the appearance of

large and very slowly decaying oscillations on the spin

autocorrelation function as |K|/|J| becomes of the order of

unity. For a vanishing biquadratic exchange interaction,

K ” 0, one has the special case of a dimer with only

exchange interaction, and in this case x(S) = |J| S.

Figure 7 shows CT(t) when K ” 0 for several tempera-

tures and for both AF and F exchange interactions. One

clearly notes that for low temperatures the spin autocor-

relation function is dominated by the lowest frequency

(S � 0) when we have AF coupling and by the highest

frequency (S � 2) for the F case. This very different

behavior of the time-dependent spin autocorrelation func-

tion at low temperatures is better illustrated in Figs. 8 and 9

where one notes that, for the same temperature, there is a

strong oscillatory dependence on |J| t for an F exchange

interaction, while such dependence is very smooth for an

AF exchange coupling.

For zero biquadratic exchange interaction (K ” 0) and at

infinite temperature, T fi ¥, one calculates the spin

autocorrelation function directly from Eq. 15 and obtains

CT!1ðtÞ ¼
1

2
þ 3

2

sinð2jJjtÞ
ðjJjtÞ3

þ 3

4

cosð2jJjtÞ � 1

ðjJjtÞ4
�

1

2

2 cosð2jJjtÞ þ 1

ðjJjtÞ2
for K � 0;

ð16Þ
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Fig. 5 Time-dependent spin autocorrelation function, CT(t), for the

classical dimer of spins with exchange and biquadratic exchange

interaction at infinite temperature, T fi ¥. For an AF exchange

interaction, J = |J| > 0, several non-negative values of the biquadratic

exchange interation, K = |K| ‡ 0, are considered. Depending on the

value of |K|/|J|, different behaviors of CT fi ¥(t) as a function of |J| t
arise. Note that when |K|/|J| becomes comparable to unity, ‘‘large’’

oscillations occur on CT fi ¥(t) that otherwise are not present for

smaller values of |K|/|J|
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Fig. 6 Time-dependent spin autocorrelation function, CT(t), for the

classical dimer of spins with exchange and biquadratic exchange

interaction at infinite temperature, T fi ¥. For an AF exchange

interaction, J = |J| > 0, several non-positive values of the biquadratic

exchange interation K = –|K| £ 0 are considered. Note that CT fi ¥(t)
has a stronger oscillatory dependence on |J| t as |K|/|J| increases
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a result that coincides with the formula derived by Muller

[15]. We observe that CT fi ¥(t) first goes through a deep

minimum and then approaches its long-time asymptotic

value, CT fi ¥(t fi ¥) = 1/2. Such value remains the

same whether we have K ” 0 or K „ 0.

In conclusion, we studied the spin dynamics and

time-dependent spin autocorrelation function for a nano-

scale molecular magnet consisting of a dimer system of

Heisenberg spins interacting with exchange and biqua-

dratic exchange interaction. By using a method which

introduces the total spin variable into the defining expres-

sion of the time-dependent spin autocorrelation function,

we obtain the exact analytic expression (in integral form)

for this quantity at an arbitrary temperature. The results

elucidate the spin dynamics of nanoscale molecular mag-

nets consisting of dimer systems of magnetic ions with

high (classical) spin values (for instance, Fe3+ ions). Such

is the iron(III) S = 5/2 dimer (in short Fe2) described by

the spin Hamiltonian H ¼ J~S1
~S2 where J ~ 22 K is an AF

exchange coupling constant. Experimental studies of Fe2

dimer at room temperature show that the measured proton

nuclear spin-lattice relaxation rate, T 1
–1 is frequency inde-

pendent [6]. This result is consistent with the behavior of

the spin autocorrelation function, CT(t), for an AF coupling

J > 0 and K ” 0 as shown in Fig. 7 (three lower curves). An

initial fast decay of CT(t) followed by a much slower decay

at long time generates a narrow Lorentzian-type peak in the

spectral density (which is basically defined as a Fourier

transform of spin autocorrelation function) a feature that is

in agreement with the above experimental work. The

mathematical method we employed can be extended to

certain other larger high-spin nanoscale magnetic clusters

with more complicated geometries such as rings and/or

polyhedra that are described by a spin Hamiltonian of the

form HðtÞ ¼ J
PN

i\j
~SiðtÞ~SjðtÞ , where N is the total number

of spins in the magnetic nano-cluster. One can always

express such a spin Hamiltonian in terms of the total

spin ~SðtÞ ¼
PN

i¼1
~SiðtÞ ¼ ~S , which is a constant of motion

and then proceed to calculate spin–spin correlation and
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Fig. 7 Time-dependent spin autocorrelation function, CT(t), for the

classical dimer of spins with AF/F exchange interaction and no

biquadratic exchange (K ” 0) as a function of |J| t at some arbitrary

temperatures. In the T fi ¥ limit, CT fi ¥(t) is the same irrespective

of the sign of J

0 10 20 30 40 50 60 70 80 90 100
|J|*t

0.90

0.95

1.00

1.05

C
(t

)

J<0 K=0 kB*T/|J|=0.05
J<0 K=0 kB*T/|J|=0.10

Fig. 8 Time-dependent spin autocorrelation function, CT(t), for the

classical dimer of spins with only exchange interaction and no

biquadratic exchange interaction (K ” 0) for very low temperatures

and for an F exchange interaction, J = –|J| < 0. CT(t) approaches its

long-time asymptotic temperature-dependent value very slowly with

many slowly decaying oscillations around that value
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Fig. 9 Time-dependent spin autocorrelation function, CT(t), for the

classical dimer of spins with only exchange interaction and no

biquadratic exchange interaction (K ” 0) for very low temperatures

and for an AF exchange interaction, J = |J| > 0. Contrary to the F

case, CT(t) is a very smooth function of |J| t and approaches its long-

time asymptotic temperature-dependent value much faster
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autocorrelation functions by following the method outlined

in this work.
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