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ABSTRACT

Combining our full-length cDNA method and
the massively parallel sequencing technology,
we developed a simple method to collect precise
positional information of transcriptional start
sites (TSSs) together with digital information of
the gene-expression levels in a high throughput
manner. We applied this method to observe gene-
expression changes in a colon cancer cell line
cultured in normoxic and hypoxic conditions. We
generated more than 100 million 36-base TSS-tag
sequences and revealed comprehensive features
of hypoxia responsive alterations in the transcrip-
tional landscape of the human genome. The fea-
tures include presence of inducible ‘hot regions’ in
54 genomic regions, 220 novel hypoxia inducible
promoters that may drive non-protein-coding tran-
scripts, 191 hypoxia responsive alternative promo-
ters and detailed views of 120 novel as well as
known hypoxia responsive genes. We further ana-
lyzed hypoxic response of different cells using addi-
tional 60 million TSS-tags and found that the degree
of the gene-expression changes were different
among cell lines, possibly reflecting cellular robust-
ness against hypoxia. The novel dynamic figure of
the human gene transcriptome will deepen our
understanding of the transcriptional program of
the human genome as well as bringing new insights
into the biology of cancer cells in hypoxia.

INTRODUCTION

Aberrantly growing cancer cells in solid tumors frequently
encounter a shortage of blood flow, which leads to insuf-
ficient oxygen supply. Tumor cells adapt themselves
to such hypoxic microenvironment by shifting their
ATP production metabolism from oxidative phosphoryla-
tion to anaerobic glycolysis, and by enhancing glucose
intake. Tumor cells also induce angiogenesis to acquire
additional blood supplies. Such adaptations are supposed
to be essential in survival as well as malignant transfor-
mation of tumor cells in vivo (1,2). During this series of
events, transcriptional regulation plays a pivotal role.
It has been well documented that hypoxia inhibits protea-
somal degradation of o subunits of hypoxia inducible fac-
tors (HIFlo and HIF2a). Stabilized subunits translocate
from the cytoplasm into the nucleus and form a hetero-
dimer complex with HIF1f. HIF complexes transactivate
various downstream genes, such as the genes encoding
glycolytic enzymes, glucose transporters, the enzymes era-
dicating organic acids and VEGF which induces angiogen-
esis. However, the specific function of each isoform of the
subunits remains unclear. Meanwhile, ‘HIF-independent’
regulation of hypoxia-inducible genes has also been docu-
mented (3,4). Thus, the current view of hypoxic versatility
in transcriptome programs in cancer cells is still far from
comprehensive. A bird’s eye view on what range of genes
are induced in what manner still remains mostly elusive.
Although some genome-wide expression profiles using
microarrays have been reported, they represent mere col-
lective information of the fold inductions of the individual
genes (5-9). In this regards, we believed that information
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about exact positions of transcriptional start sites (TSSs)
and absolute levels of the transcriptions starting from
them would lead to more comprehensive understandings.

Several methods based on ¢cDNA analysis have been
developed for large-scale identification of TSSs (10-13).
We have also developed a method to selectively replace
the cap structure of the mRNA with a synthetic oligo,
which we named the oligo-capping method (11). By
sequencing 1.8 million ¢cDNAs isolated from oligo-cap
cDNA libraries from various kinds of human cells and
tissues (14), we have collected the positional information
of the TSS and analyzed putative proximal promoter
regions (15,16). We, as well as another research group
in RIKEN, have further improved the efficacy of this
approach by combining the cap-selection method with
the SAGE method (17,18). In these methods, 5'-ends of
full-length ¢cDNAs were concatenated, so that 10-15
20-base long 5-end tag sequences could be identified by
single-pass sequencing. By intensive analysis of CAGE-tag
libraries in humans and mice, the FANTOM consortium
reported a first glimpse of the transcription landscape of
mammalian genomes (19,20). However, such an overview
of the TSSs has been obtained from collective analysis of
various cell types and tissues, for each of which the data
coverage still remains scarce. Therefore, it does not repre-
sent the actual transcriptional landscape in any given cell
type. Besides, it has been suggested recently that mamma-
lian genes seem to utilize multiple alternative promoters
very frequently, which enable a single locus to encode
functionally distinct proteins, thereby serving as a molec-
ular basis for realizing multifaceted use of a limited
number of human genes (21,22). Nonetheless, the depth
of the analysis has not reached the level of these alterna-
tive promoters, whose expression levels are often low and
limited to particular cell types or cellular environments.

Recently developed massively parallel sequencing tech-
nologies have provided a potential mean to further
improve the throughput of TSS identification. For exam-
ple, Illumina GA sequencer (23) can sequence 10-30 mil-
lion sequences per run. Although the read length which
this sequencer can generate is short (currently up to 36
bases), it is sufficient to uniquely determine the precise
positions of TSS. By combining oligo-capping method
with the Illumina GA technology, we developed a simple
method to collect information of the TSS together with
the digital data of the expression levels of the transcripts.
Here we show this approach enabled us to see the genome
wide transcriptional landscape in response to hypoxia in
a human colorectal cancer cell line.

MATERIALS AND METHODS
Cell culture and RNA interference

Human cell line, DLD-1 cells, was purchased from
American Type Culture Collection (ATCC number:
CCL-221). Cells were maintained in Dulbecco’s modified
Eagle’s medium (DMEM) (Invitrogen) supplemented with
10% fetal calf serum, 4.5g/l glucose, and antibiotics.
RNA interference was accomplished by transfecting
DLD-1 cells with the specific siRNA. HIFIA and

EPAS1 (HIF2A)-targeting siRNA pool and non-silencing
siRNA pool were purchased from Dharmacon. Short
oligo-RNAs were transfected using Dharmafect 1 trans-
fection reagent (Dharmacon) as recommended by the
manufacturer. For constructing other TSS-libraries,
HEK?293, MCF7 and TIG3 cells (ATCC number: CRL-
1573, ATCC number: HTB-22 and Japan Cell Resource
Bank number: JCRB0506, respectively) were cultured in
standard conditions and were subjected to the hypoxic
shocks in a similar manner.

Oligo-capping and massively parallel sequencing by
Ilumina GA Sequencer

Six million DLD-1 cells were seeded 24 h before transfec-
tion. The cells transfected with HIF-targeting and control
siRINA were cultured in 21% O, and 5% CO, at 37°C for
24 h followed by incubation in 21% O, or 1% O, and 5%
CO, for 24h. Cells were harvested and RNA was
extracted using RNeasy (Qiagen). Two hundred micro-
gram of the obtained total RNA was subjected to
oligo-capping with some modifications from the original
protocol; namely after the successive treatment of the
RNA with 2.5U BAP (TaKaRa) at 37°C for 1h and
40U TAP (Ambion) at 37°C for lh, the BAP-TAP-
treated RNAs were ligated with 1.2pg of RNA oligo
(5-AAUGAUACGGCGACCACCGAGAUCUACACU
CUUUCCCUACACGACGCUCUUCCGAUCUGG-3)
using 250 U T4 RNA ligase (TaKaRa) at 20°C for 3 h.
After the DNase I treatment (TaKaRa), polyA-containing
RNA was selected using oligo-dT powder (Collaborative).
First strand cDNA was synthesized from 10 pmol of
random hexamer primer (5-CAAGCAGAAGACGGCA
TACGANNNNNNC-3)  using Super Script II
(Invitrogen) by incubating at 12°C for 1h and at 42°C
overnight. Template RNA was degraded by alkarine treat-
ment. For PCR, one-fifth of the first strand cDNAs were
used as the PCR template. Gene Amp PCR Kkits
(PerkinElmer) were used with the PCR primers 5-AAT
GATACGGCGACCACCGAG-3 and 5-CAAGCAGA
AGACGGCATACGA-3" under the following reaction
conditions: 15 cycles of 94°C for 1min, 56°C for 1 min
and 72°C for 2 min. The PCR fragments were size fractio-
nated by 12% polyacrylamide gel electrophoresis and the
fraction of 150-250bp was recovered. The quality and
quantity of the obtained single-stranded first strand
cDNAs were assessed, again, using BioAnalyzer (Agilent).

One nanogram of the size fractionated cDNA was used
for the sequencing reactions with the Illumina GA.
15000-20000 clusters were generated per ‘tile’ and 36
cycles of the sequencing reactions were performed accord-
ing to the manufacturer’s instructions.

Data processing

The obtained sequences were mapped onto human geno-
mic sequences (hgl8 as of UCSC Genome Browser; http://
genome.ucsc.edu/) using the sequence alignment program
Eland. Unmapped or redundantly mapped sequences
were removed from the dataset. For uniquely mapped
sequences, relative positions to RefSeq genes were calcu-
lated based on the respective genomic coordinates.



Genomic coordinates of exons and other information of
the RefSeq transcripts are as described in hgl8 as of
UCSC Genome Browser. GO (as of June 14th, 2007)
and KEGG (Release 42) terms were associated with
RefSeq genes by using loc2go (as of June 14th, 2007)
using NCBI Entrez Gene database (http://www.ncbi.
nlm.nih.gov/sites/entrez?db=gene). For each RefSeq
gene, a RefSeq region was defined as the region from
S0kb upstream of the most upstream 5-end exon to
the most downstream 3’-end exon. TSS-tags were further
clustered into 500-bp bins to generate TSS clusters (TSCs).
Details and rationalization of the procedure is described in
the ref. (15). For the expression analysis at the gene levels,
TSS-tag counts of TSCs belonging to the corresponding
RefSeq regions were totalled. For the expression analyses
at the alternative promoter level, intergenic and antisense
transcripts, the TSS-tags belonging to the corresponding
TSCs were counted. In either case, TSS-tag counts were
divided by the total number of uniquely and perfectly
(with no mismatch) mapped TSS-tag to calculate TSS-
tag ppm (parts per million). For the analysis of intergenic
TSCs, overlap between the TSCs and miRNA and
snoRNA, from miRBase (http://microrna.sanger.ac.uk/
sequences/index.shtml) and snoRNABase (http://www-
snorna.biotoul.fr/index.php), respectively, were examined.

Validation analysis

Real-time RT-PCRs were performed using 7900HT (ABI)
following the standard protocol. PCR primer sequences
are shown in the Supplementary Table 10. For the RT—
PCR, 1 ng of the first strand cDNAs, which were synthe-
sized by random hexamer primer, was used. In the case of
plasmids, 1 pg of the DNA, quantified by O.D., was used,
instead. The primer sets were first tested by amplifying the
plasmid DNA and the primer sets giving less that 35 Ct
cycles were used. The absolute copy number of each tran-
script in the cDNA population was calculated based on
the Ct value of the corresponding plasmid (as 29°M4CY),
Based on the quantitative data, correlation with the digital
expressions (TSS-tag counts) was calculated by linear
regression. Validation analysis of the fold induction was
similarly performed without the plasmid control. RNA
independently isolated from the DLD-1 cells cultured in
similar hypoxia (1% O,) and normoxia (21% O,) condi-
tions were used. The samples were normalized according
to the total amount of the first strand cDNAs and were
subjected to the real-time RT-PCR.

For the individual oligo-cap RACE, similarly isolated
total RNAs were oligo-capped with the RNA oligo (5-AG
CAUCGAGUCGGCCUUGUUGGCCUACUGG-3') by
the standard protocol. After the DNasel treatment, the
first strand cDNA was synthesized using random hexamer
primers. One nanogram of the first strand cDNA was used
for the PCR using the 5'-end primer 5-AGCATCGAGTC
GGCCTTGTTG-3" and the gene-specific 3’-end primers
used for the real-time RT-PCR.

For validation experiments using microarray, RNAs
were isolated from the DLD-1 cells cultured in similar
hypoxia (1% O,) and normoxia (21% O,) conditions.
The RNAs were further processed according to the
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manufacturer’s instructions Using the Agilent Human
Gene Expression Array G4112F platform.

For the microarray analysis, for each of the total RNA
preparations (from 1% and 21% O, conditions), 700 ng of
total RNA was used for the labeling according to the
manufacturer’s instruction. The normalization was done
at the sample preparation step. The following signal inten-
sity processing was performed using GeneSpring (Agilent)
with default parameters. The cut-offs used in this study
was either 5-fold or 2.5-fold (Figure 2B). The experiments
were repeated twice with the labeling dye exchanged.

For the comparison with the previous microarray stu-
dies, we retrieved the records from the GEO database
(http://www.ncbi.nlm.nih.gov/geo/) [a: GDS2758-61 (7);
b: GDS1209 (8); c¢: GDS2018 (6); d: GDS1779 (9), for
the GEO accession numbers and references, respectively].
We examined the original papers and prepared the list of
the ‘hypoxia induced genes’ from cach of the datasets.
Using these datasets, the overlap between the genes iden-
tified as ‘hypoxia induced’ by this study and the previous
studies was examined.

RESULTS
Construction of a TSS-tag library

By combining the oligo-capping method with a massively
parallel sequencing technology, Illumina GA sequencer,
we developed a simple method to collect TSS information
together with a quantitative analysis of the expression
levels of the transcripts (digital expression profile) in an
extremely high-throughput manner (Figure 1). First, the
primer sequence necessary for the sequencing was directly
introduced at the 5-ends of capped transcripts by repla-
cing the cap structure with a cap-replacing RNA oligo
(11). Then, cDNA was synthesized using random hexam-
ers, amplified with 15 cycles of PCR and directly intro-
duced into the sequencer without cloning (for the detailed
protocol, see Materials and Methods section). The 36-base
long tags corresponding to the 5'-ends of transcripts were
generated by the sequencer at the rate of 10-30 million
TSS-tags per run. This simple procedure eliminates
laborious cloning step and allows us to easily monitor
the genome-wide positions of TSSs. Furthermore, the
number of TSS-tags corresponds to the number of tran-
scripts within the cell starting from that site, since each
transcript has only one cap structure.

Validation of the TSS-tag library

We first validated whether the TSS-tags collected by this
method correctly indicate the positions of the TSSs and
whether the counts of the TSS-tags represent the expres-
sion levels of the transcripts in vivo. For this purpose, we
constructed a TSS-tag library from human embryonic
kidney 293 (HEK293) cells. In total, we generated 10401
151 TSS-tags which were uniquely and perfectly (with no
mismatch) mapped to the human genome (hg 18; UCSC
Genome Browser). We compared the mapped position of
the TSS-tags with 18001 protein-coding RefSeq gene
models. Genomic coordinates of exons and other informa-
tion of the RefSeq transcripts are as described in hgl8
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Figure 1. Scheme of 5-end sequencing using the Illumina GA Sequencer. Adaptors containing necessary sequence for the Illumina GA sequencer

are represented as grey boxes. For further information, see Supplementary Data. Gppp: cap structure. AAA: polyA.

as of UCSC Genome Browser (for the version informa-
tion, see Materials and Methods section). As shown in
Figure 2A, 8647513 (83%) of the TSS-tags were mapped
within the RefSeq regions. Among them, 2255507 (26%)
and 4647102 (54%) of the TSS-tags were mapped
upstream and inside regions of the first exons, respectively.
739319 (9%) of the TSS-tags were mapped to intronic
regions of the RefSeq gene models, which may correspond
to the TSSs of unknown alternative promoters, because
there should be rare chance that they are derived from
broken-down products of the mRNAs [for further discus-
sion, see (15)]. Also, these numbers resemble the results
from our previous analysis using 1.8 million 5'-ESTs (15).
We observed no significant difference in the size of repre-
sentative mRNAs between the TSS-library and the
HEK?293 oligo-cap cDNA library, which was constructed
using random primers (data now shown).

Many of the TSS-tags which were mapped outside of
the RefSeq regions overlapped with cDNAs in our cDNA
collection (14). In particular, at least 1374 TSS-tag sites
(mapped positions of the TSS-tags) overlapped with the
5'-ends of the 5'ESTs (also see Supplementary Figure 1 for
further details). Of these, 80 TSS-tag sites overlapped with
our completely sequenced cDNAs. For the latter cases,
average length of the representative cDNAs was 2323 bp.
Of these, 55 (70%) cDNAs were spliced and, in 53 (66%)
cDNAs, the longest protein-coding region was less
than 100 amino acids (300 bp). Therefore, many of those
intergenic TSS-tag should represent so-called mRNA-like
non-protein-coding transcripts (14,24,25). We further
compared the TSS-tag sites with the 5-end data from
the RNA-Seq analysis (26) and the CAGE analysis (19),
which have been the only two studies that produced
comparable amount of the TSS information. Among the
TSS-tag sites in our dataset, 1456 sites overlapped with
the 5’ extension’ data of the RNA-Seq analysis, of
which 1105 sites also overlapped with the CAGE data.
Although biological functions of many of those transcripts

still remain elusive, the TSS-tags correctly represented the
TSSs of previously identified transcripts.

We also wished to directly demonstrate the correct iden-
tification of the TSSs by luciferase reporter gene assays of
the upstream regions of the TSS-tag sites and by real-time
(quantitative) RT-PCR assays. In our previous study, we
reported systematic luciferase assays in HEK 293 cells (27).
Among our TSS-tag dataset, luciferase data was available
for the upstream regions (1 kb-upstream) of 359 TSS-tag
sites. As shown in Figure 2B, distribution of the promoter
activities for the 359 TSS-tag sites was clearly distinct
from that of randomly isolated genomic fragments.
Especially we observed clear promoter activities even for
14 TSS-tag sites with which no 5" exons of the RefSeq gene
models overlapped and for six additional TSS-tag sites
which were located more than 50kb apart from any of
the RefSeq genes.

We then validated whether real-time RT-PCR primers
targeted at the TSS-tags sites with no RefSeq gene support
could detect transcripts, and to what extent the quantita-
tive data are correlated with the TSS-tag counts. For the
purpose of quantifications, we selected TSS-tag sites which
overlapped with the 5-ends of cDNA clones in our cDNA
collection. We performed real-time RT-PCR using imme-
diately downstream sequences of the TSS-tags for the
5’-end PCR primers (Figure 2C and D). We observed
clear real-time RT-PCR signals for 80 TSS-tag sites
within the RefSeq regions but outside of the 5'-ends of
RefSeq gene models, and for 25 TSS-tag sites mapped
outside of the RefSeq regions (overall success rate was
78%). We also performed independent oligo-cap RACE
analysis and, for 21 TSS-tag sites (out of 25 cases
attempted), we confirmed amplification of the cDNA frag-
ments of the expected lengths. We further quantified the
absolute expression levels of those 105 (80 + 25) TSS-tag
sites by using the individually isolated and quantified
cDNA plasmids as controls. As shown in Figure 2C, we
observed that the correlation of the absolute expression



Nucleic Acids Research, 2009, Vol. 37, No.7 2253

A

B Upstream (26%)
® First exon (54 %)

Later exon (11%)
¥ Intron (9%)

H RefSeq region (83%)

H [ntergenic region (17 %)

B Relative Luciferase Activity 10000
R=0.88
1000 (n=105)
’——‘ . tag counts (ppm)
Fold Activity . 100
(log10) il \—4
10
Average of H + o
random genomic o ¢ - 0001 01 of 1 0 100 1000 10000
fragments . ;
Total_TSS Novel_TSS 0.1 Real time RT-PCR
> A
& N ¥ ®
Q’b\b‘\\ 9?\‘: @/6}5:\\ q‘s\\:\
D es; yS 8{3203 S ®@z°s e%“&*
\ @0 K = [ §®
Tag RACE Tag RACE Tag RACE Tag RACE Primers
M 1)) WO WO®OO®WO WG ®E @E  Rase
500bp
100bp

Figure 2. Validation analyses of the TSS-tag library. (A) Mapped positions of the TSS-tags relative to the RefSeq genes were evaluated. Population
of the TSS-tags mapped at the corresponding positions indicated by the color bars in the margin is shown. The right circle graph shows the
composition of the blue section in the left circle graph. (B) Distribution of the luciferase activities of the upstream 1kb regions of the TSSs (n = 351;
right). Luciferase activities of upstream regions of the TSS-tags that were not supported by any RefSeq gene models are calculated separately (n = 20;
left). Luciferase activities were normalized against the average luciferase activity of randomly isolated 1 kb genomic fragments (n = 251). For further
details, see the reference (27). (C) Correlation between the TSS-tag counts and the copy number estimated by real-time RT-PCR normalized by
individual plasmids (n = 105). Each value is the average of three experiments. Sequences of the used primers and quantitative data are presented in
Supplementary Table 10. R: correlation-coefficient calculated by linear regression. Note that, because the graph is written in log scale and the
y intersect is not 0, the liner regression line is curved where the x value is small. (D) Examples of the real-time RT-PCR and independent oligo-cap
RACE analyses. Experimental conditions are shown in the margin. For details, see Materials and methods section. For the primer, ‘Tag’ indicates
the PCR primer targeted to the overlapping region of the TSS-tag and ‘RACE’ indicates the PCR primer targeted to the cap-replacing oligo. APID:

alternative promoter ID. M: molecular marker.

levels calculated by the TSS-tag counts and the real-time
RT-PCR are generally well-correlated, although we also
observed deviations in some cases (also see Discussion
section).

Based on these results, we concluded that our TSS-tag
library analysis should be reliable and useful for identify-
ing both the TSS positions and their corresponding
expression levels.

Application of the TSS-tag library for the analysis of
hypoxia responses in a colon cancer cell line

Taking advantage of this new method, we wished to reveal
the dynamic nature of the human gene transcriptome in a
focused cell type with particular environmental perturba-
tions. We performed genome-wide analysis of the altera-
tions in both promoter usage and expression levels of the
transcripts invoked by hypoxia. In a human colon cancer
cell line, DLD-1 cells, expression of a well known hypoxia-
induced gene, VEGF, is induced under hypoxic culture
condition as well as in xenografted tumor tissues in vivo
(4). We cultured DLD-1 cells under hypoxic and normoxic

conditions with and without transfection of siRNAs tar-
geted to HIF1A or HIF2A. This experimental design is
the same as the previous studies of other groups (5,7).
We generated 15-19 million 36-base TSS-tags per condi-
tion (Table 1). A summary of the sequence quality is
shown in Supplementary Table 1.

Overall mapping patterns were similar to the case of the
HEK?293 library (Table 1). For example, in the case of the
‘hypoxia with non-targeted RNAIi’ library, 14001295
(73%) out of total 19213284 TSS-tags were mapped in
the RefSeq regions. Of these, 4310405 (31%), 7384 800
(53%) and 1459 600 (10%) TSS-tags were mapped to the
upstream, first exon and intron regions, respectively.
Therefore, we estimated at least 84-94% of the TSS-tags
represent the real TSSs in this case, too. For the purposes
of the following analyses, the TSS-tags were further
clustered into 500-bp bins to generate TSS clusters
(TSCs) (15). In case of ‘hypoxia with non-targeted
RNAI’ library, a total of 19213284 TSS-tags constituted
2610785 unique TSS-tags. These unique TSS-tags were
further clustered into 1428455 TSCs. Of these TSCs,
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Table 1. Statistics of the TSS-tags generated from DLD-1 cells

Relative to RefSeq regions

Relative to exons of RefSeq gene models

#total mapped #NM_associated Upstream First exon Other exon Intron

tag tag (%) (%) (%) (%) (%)
Hypoxia non-targeted RNAI 19213284 14001295 (73) 4310405 (31) 7384800 (53) 846490 (6) 1459600 (10)
Hypoxia with HIFIA RNAi 17995370 13758453 (76) 4116100 (30) 6995301 (51) 1303571 (9) 1343481 (10)
Hypoxia with HIF2A RNAi 17047001 14304678 (84) 4547387 (32) 8045603 (56) 830696 (6) 880992 (6)
Normoxia with non-targeted RNAi 17878365 14194520 (79) 3850858 (27) 8449751 (60) 820989 (6) 1072922 (8)
Normoxia with HIFIA RNAi 15190726 12628363 (83) 3554553 (28) 7469575 (59) 822034 (7) 782201 (6)
Normoxia HIF2A RNAIi 17175662 14117263 (82) 3702462 (26) 8810503 (62) 685561 (5) 918737 (7)
Total 104500408 83004572 (79) 24081765 (29) 47155533 (57) 5309341 (6) 6457933 (8)

Mapped positions of the TSS-tags were counted relative to RefSeq regions and relative to exons of RefSeq gene models, when mapped inside of the

RefSeq regions.

477936 (33%) were mapped to the RefSeq regions. The
rest were mapped to intergenic regions (709 997; 50%) or
to anti-sense regions of the RefSeq genes (240 522; 17%).
Although the numbers of the TSCs, especially in the latter
two TSC groups, are high, many of the TSS-tag counts
within these TSC were usually one or two, possibly repre-
senting noise-level transcriptions in the cell (see
Supplementary Figure 1; overlap with the 5EST data
is also shown there).

Genome-wide distribution of hypoxia responsive transcripts

We normalized TSS-tag counts of TSCs to tags per million
(ppm). In order to avoid noise level signals and possible
experimental errors, we focused on TSCs for which TSS-
tag ppm increased by at least 5-fold, having more than
1 ppm TSS-tags. One ppm corresponds to 15-20 indepen-
dent TSS-tags per TSC depending on the dataset. By the
conservative criteria of >1ppm and >5-fold, most of the
intergenic TSCs were removed. Some of the transcripts of
previously identified ‘hypoxic responsive genes’ were also
removed. We tentatively employed these very conservative
criteria, considering that this is the first analysis taking
the TSS-tag approach. However, further detailed analyses
and re-evaluation of the data should be necessary on very
rarely expressed intergenic transcripts, although some of
them might be the system noise of the transcription
machinery. For the number of ‘hypoxia-induced’ TSCs
with different parameters, see Supplementary Table 2.

In order to validate the calculated fold inductions, we
performed real-time RT-PCR analysis. For this purpose,
RNAs were independently isolated from the DLD-1 cells
cultured in similar hypoxia (1% O,) and normoxia (21%
0O,) conditions. From this analysis, again, we observed
that the expression information obtained using this
method was well-correlated with the results obtained
using real-time RT-PCR (Figure 3A). We then performed
microarray analysis and compared the obtained data with
the digital expression data using independently prepared
RNAs. As shown in Figure 3B, the hypoxia responsive
genes detected in microarrays were mostly detected so in
the digital expression profiling, too. At the same time, we
identified additional putative hypoxia responsive tran-
scripts (TSSs) by the new approach possibly owing to

the improved sensitivity and coverage of the analysis
(see below).

We also compared the results of digital gene-expression
data with the previous microarray studies. We first
searched for the data focusing on hypoxia responses of
human cells in GEO database (28). Then, we examined
the original papers and retrieved a list of the genes
which were identified as ‘hypoxia responsive genes’ in
the corresponding study. We examined overlap of the
‘hypoxia induced genes’ identified from the previous stu-
dies and from this study. As shown in Figure 3C, 11 genes,
which were reported as hypoxia responsive genes in at
least two of the previous studies (6-9), were detected so
in our tag-based approach.

Using the digital-expression data, we identified 9870
hypoxia-induced TSCs in total. Among them, 6366
(64%) were mapped to RefSeq regions on the sense
strand (for the full list of the induced TSCs, see
Supplementary Table 12). The rest were mapped to inter-
genic regions or anti-sense of the RefSeq regions. Gene-
rich chromosomes 17 and 19 had the largest number of
both genic and intergenic hypoxia-induced TSCs per genic
and intergenic base of the chromosomes (Supplementary
Table 3).

We found some genomic regions in which hypoxia-
induced TSCs particularly clustered. We identified 54
genomic regions in which seven or more hypoxia-induced
TSCs clustered in a 100-kb window (Figure 4A). In
these regions, transcription was activated on hypoxia
from both inter (Figure 4B) and intra (Figures 4C and
4D) genic regions. Furthermore, transcription activation
in the genic regions shown in Figure 4C occurred regard-
less of their exon—intron structure (lower panel; also see
Supplementary Figure 6). We also noticed distal regions
of the chromosomes frequently have such ‘hot regions’
(Figure 4A; also see Supplementary Table 4). There
might be cross-talk between transcription activation in
these regions and chromatin remodeling accompanied by
telomere elongation (29), which is a hallmark of cancer
progression. We further searched for RefSeq regions
with multiple induced TSCs. Of 6366 RefSeq regions
that contained at least one hypoxia-induced TSC, 131
regions had five or more hypoxia-induced TSCs, reflecting
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Figure 3. Validation analyses of the fold induction. (A) Correlation between the fold changes observed using digital-expression information (vertical
axis) and real-time RT-PCR (horizontal axis). In total, 57 genes out of 63 total glycolysis related genes, from which we obtained meaningful data,
were used for the validation. Each value is the average of three experiments. Sequences of the used primers are shown in Supplementary Table 10. R:
correlation-coefficient calculated by linear regression. (B) Validation experiments by the microarray analysis. Overlap of the microarray results and
digital gene-expression profiling is shown in the bottom margin. The numbers in the parentheses indicate the number of genes induced by more than
1.5-fold (upper) and 2.5-fold (lower), although they were not detected as ‘induced’ by the criteria of 2.5-fold induction (upper) and 5-fold induction
(lower). The statistical significance of the overlap by calculating hypergenometric distribution was P < SE-67 for 2.5-fold change and P <3E-15 for
S-fold change. (C) Comparison with data from previous studies. For the comparison with previous microarray studies, the overlap between the genes
identified as ‘hypoxia induced’ by this study and the previous studies was evaluated. The ‘hypoxia responsive genes’ in the previous studies were as of

those described in the corresponding papers.

the presence of multiple hypoxia-induced transcriptions
start in a single gene. Collective transcriptional induc-
tion events as represented in Figure 4 should not be
extremely rare.

Putative hypoxia responsive non-protein-coding transcripts

Among the 9870 hypoxia-induced TSCs, 3504 were
located at least S0kb away from any protein-coding
genes in the same strand, thus they seemed driving non-
protein-coding transcripts (25,30) (also see the legend for
Supplementary Figure 1). We first searched for hypoxia-
induced TSCs located in the proximal regions of pre-
viously reported intergenic miRNAs using miRBase (31).
We found only two such cases; TSCs 7kb upstream
of hsa-mir-612 and 1kb upstream of hsa-mir-675 were
up-regulated by 18-fold and 8.7-fold, respectively. The
latter TSC actually corresponded to the TSS of the H19
non-coding RNA, which is consistent with the recent find-
ing that H19 RNA is induced in hepatocellular carcinoma
cells upon hypoxia (32,33). Similarly, we examined over-
lap of the intergenic TSCs with another class of non-
coding RNAs, namely snoRNAs (34). We searched
snoRNABase (35) and identified five TSCs which were
located within 2 kb of regions which contained altogether

nine snoRNAs (see Supplementary Table 5A). Most of
them were reported to be involved in maturation of ribo-
somal RNAs, indicating a possibility that general transla-
tional machinery might be altered in response to hypoxia.

Although TSS-tag numbers were low for most of the
newly found hypoxia-induced intergenic putative non-
protein coding transcripts (Supplementary Figure 1),
there were still a number of cases where expression and
induction levels were at similar levels to the above two
cases (33ppm and 175ppm for hsa-mir-612 and 675,
respectively). There were 220 TSCs with TSS-tags of
>10ppm (10ppm corresponds about three copies per
cell, assuming 3 x 10° transcripts within a cell; also see
Supplementary Table 5B). Indeed, among those 220
TSCs, four overlapped with our completely sequenced
cDNAs (Supplementary Table 5C), whose average
length was 1974 bp and, for all of which the longest poten-
tial open reading frame was less than 150 amino acids
(450 bp). It is also noteworthy that the number 220 is
in the similar range of the number of hypoxia-induced
protein coding genes (see below).

In order to further characterize these hypoxia-
responsive TSCs, we analyzed the correlation of their
fold inductions against the most proximal protein-coding
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discriminate the transcript products of AP3 from those of other upstream promoters. Results of the independent oligo-cap RACE analysis for
each of the APs are also shown in Supplementary Figure 6.



genes. For this, we used the 220 hypoxia-induced inter-
genic TSCs with TSS-tags of >10ppm. We found that,
in 28 cases, the nearest genes were also up-regulated
by >2.5-fold, while down-regulation by >2.5-fold was
observed only in five cases. The TSS-tag count level of
the intergenic TSCs correlated with that of the nearest
protein-coding genes (upper panels in Supplementary
Figure 2). When other intergenic TSCs were also consid-
ered as the nearest TSCs, this correlation became even
more significant. A similar tendency for co-elevation
of proximal transcriptions was also observed for
hypoxia-responsive TSCs which were mapped to antisense
positions of RefSeq genes. Among 124 hypoxia-induced
antisense TSCs with >10ppm TSS-tags, the correspond-
ing protein-coding transcripts were also up- and down-
regulated by more than 2.5-fold in 24 cases and two
cases, respectively. Again, the TSS-tag counts of putative
non-coding transcripts and the corresponding antisense
protein-coding transcripts were at similar levels (lower
panels in Supplementary Figure 2).

Alternative hypoxia responsive promoters

Among 6366 hypoxia-induced TSCs, which were located
within RefSeq genes, 441 TCS had TSS-tags >10ppm.
Among them, 191 had expression levels of particular indi-
vidual alternative promoters significantly altered (>5-fold
when the individual TSCs were evaluated) while the total
gene-expression levels were not changed (<5-fold when
the TSCs belonging the corresponding genes were
totalled). A list of the promoters is shown in
Supplementary Table 6. Figure 5 shows a typical but bio-
logically interesting case in which alternative promoters
were employed differentially between hypoxic and nor-
moxic conditions. In the p53 tumor suppressor gene
family, usage of alternative promoters has been reported
for the p73 and p63 genes. In these genes, the upstream
promoters encode functional transcriptional activator
(TA) proteins and the downstream promoters encode
non-functional silencers (DN) (36). We observed clear dif-
ferential usages of these alternative promoters. In particu-
lar, in both of the p63 and p73 genes, the upstream (TA)
promoters were down-regulated by hypoxia, while the
downstream (DN) promoters were up-regulated. These
results were consistent with the previous report that
TAp63 down-regulates and DNp63 up-regulates VEGF
expression (36). We observed that TSS-tag counts of the
VEGF gene were induced by 9-fold by hypoxia. In addi-
tion to its pivotal roles in regulating cell cycle and apop-
tosis, p53 is also reported to be involved in modulating the
balance between the respiratory and glycolysis pathways
by controlling the expression levels of several downstream
effectors, including COX complex mitochondrial respira-
tory genes (37). In this study, 60% reduction of TSS-tag
counts for the COX complex assembly gene, the SCO2
gene, was observed. In DLD-1 cells, we observed neither
differential usage of the alternative promoters nor overall
gene-expression change in the p53 gene itself. It has been
reported that the protein-coding sequence of p53 is
mutated and the p53 protein product is non-functional
in DLD-1 cells. p63 and p73, which share a well-conserved

Nucleic Acids Research, 2009, Vol. 37, No.7 2257

DNA-binding domain with p53, may complementarily
regulate downstream target genes of p53. A drastic shift
of the p63 and p73 usage from TA to DN supposedly
contributes to adaptation of cancer cells to hypoxia.

HIF cascade in hypoxia responsive genes

There were 120 protein-coding genes whose expression
levels were induced >5-fold and >10ppm by hypoxia.
These are the putative ‘hypoxia-induced genes’ selected
using the strict criteria (a list of the genes and their anno-
tations are shown in Supplementary Table 7; note that
some of the previously identified hypoxia induced genes
are not included there because the either fold induction
was below 5 or expression level was below 10 ppm). We
examined whether any of the gene groups were enriched in
these ‘hypoxia induced genes’ for particular Gene
Ontology categories (38) or KEGG (39) pathways. We
found that ‘glycolysis’ related genes were particularly
enriched (P <0.002 and P <0.0008 for GO and KEGG
categories, respectively, by calculating hypergeometric dis-
tributions). We also examined the fold induction of all
of the genes belonging to this gene category. We found
that distribution of the fold inductions were statistically
significantly deviated compared to other gene groups
(Figure 6; P<0.06 and P <0.002 for GO and KEGG
categories, respectively, by Wilcoxon signed rank test;
also see Supplementary Figure 3 and Supplementary
Table 11). Interestingly, while the genes encoding enzymes
which enhance glycolysis were ubiquitously up-regulated
under hypoxia, only FBP, which codes for glycolysis-
suppressing fructose-1,6-bisphosphatase, was strikingly
down-regulated. On the other hand, genes encoding
the enzymes involved in the Complex I of oxidative phos-
phorylation in mitochondria were down-regulated
(Supplementary Figure 4). Although it is a well-known
fact that the glycolysis pathway is activated in response
to hypoxia, shifting metabolism from oxygen-requiring
oxidative  phosphorylation to  oxygen-independent
glycolysis to obtain ATP (40), this is the first report to
quantitatively measure gene expression changes (or
system-perturbation of a particular gene network) in
terms of the absolute copy number for each gene
component.

We then compared changes in TSS-tag counts by trans-
fecting siRNAs targeting HIF1A and HIF2A to evaluate
dependency of hypoxia-induced gene-expression levels on
HIF transcription factors. Expression of both HIF1A and
HIF2A was suppressed by about 70% according to the
TSS-tag counts and real-time RT-PCR analysis (Supple-
mentary Table 8; also see Supplementary Figure 7).
Among the 120 hypoxia-induced genes, 15 genes were
identified with mRNA levels reduced by 80% by RNAI
of HIF1A. Meanwhile, HIF2A RNAI caused reduction of
mRNA levels of 36 genes. We also examined the sequences
of the regions proximal to their TSSs (1 kb upstream to
200 bases downstream) and found clear consensus
sequences of the HIF1 and HIF2-binding sites (41) in 11
(79%) and 31 (86%) cases, respectively (a list of the genes
is shown in Supplementary Table 9). Although further
compilation of the experimental data is obviously essential



2258 Nucleic Acids Research, 2009, Vol. 37, No. 7

A

p73 (NM_005427)

(TSS tag ggum) TA

AP1

3539000 3569000 3579000 358

NM_005427

p63 (NM_003722)
(TSS tag count)
12

AP1 AP2 AP3

290790000/190840000 19085000¢ 190940C00 130993000 191840030

NM_003722

p53 (NM_000546)

(TSS-tag count)
20

r \
70

60

50

40 +

30

20

10
oAl

7565000 7560000 7555000 75500(

NM_000546

Il Normoxia (21% 0,
M Hypoxia (1% O,)

TA: Transcriptionally Active Form
DN: Transcriptionally Negative Form

(genome position)

Promoter Transcript

fold: hypoxia/normoxia

fold: hypoxia/normoxia

1D type (TSS—-tag count) (realtime RT-PCR)
p73 AP1 TA 0.4 0.6
AP2 TA 0.8 1.0
AP3 DN >6 3.2
p63 AP1-3 TA <0.1 0.06
AP4 DN >6 13.3
p53 AP1 TA 0.5 0.7
AP3 TA 1.5 1.3
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Table 10.

before concluding they are actually direct binding sites of
the HIF1 and HIF2, they should be the first targets for
exploring the transcriptional network mediated by HIF1
and HIF2.

Interestingly, all of the 15 ‘HIF1A-dependent’ genes
were also suppressed by HIF2A RNAi. On the
other hand, only one-third (12 out of 36 genes) of
‘HIF2A-dependent’ genes were suppressed by HIFIA
reduction. Under hypoxia, the total number of TSS-tags

corresponding to HIF1A was increased by 1.5-fold,
and HIF2A RNAIi reduced the HIF1A-expression level
by 60%. Meanwhile, HIF2A expression was not signifi-
cantly increased by hypoxia, and HIFIA RNAi did
not reduce the HIF2A-expression level. These results
suggest that HIF2A may regulate hypoxia-induced
HIF1A expression. Thus, the effect of hypoxia-activated
HIF2A appears to be transmitted to downstream
hypoxia-responsive genes not only directly but also
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Figure 6. Hypoxia-invoked response of the glycolysis gene network. Expression of glycolysis-enhancing enzymes (masked with pale pink) was
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hypoxia-induced genes (>10 p.p.m., >5-fold induction), many of the genes belonging to this pathway are not directly included in the list, though they
showed inductions at least to some extent.

indirectly via HIFIA in DLD-1 cells. Previous studies
have assumed pivotal roles for HIF1A; while the roles
of HIF2A remain mostly uncharacterized, perhaps
because of its low expression level (42). The total
TSS-tag number of HIF1A was about 4-fold larger

than that of HIF2A in this study. In contrast to
previous estimates, the high sensitivity of our
method may have revealed that the hitherto-supposed
‘minor’ HIF2A plays a dominant role in the hypoxia
response.
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Table 2. Statistics of the TSS-tags generated from other cell lines

Relative to RefSeq regions Relative to exons of RefSeq gene models

#total mapped #NM_associated Upstream First exon Other exon Intron

tag tag (%) (%) (%) (%) (%)
MCF7 1% 02 7950745 7259512 (91) 2221013 (31) 3859864 (53) 589298 (8) 589337 (8)
MCEF7 21% 02 14189873 12955252 (91) 3828159 (30) 6974356 (54) 989360 (8) 1163377 (9)
HEK?293 1% 02 10886858 10233645 (94) 3216794 (31) 5764173 (56) 786235 (8) 466443 (5)
HEK?293 21% 02 8303754 7766894 (94) 2343996 (30) 4516688 (58) 593494 (8) 312716 (4)
TIG3 1% 02 9043423 8273656 (91) 1993830 (24) 4977677 (60) 799727 (10) 502422 (6)
TIG3 21% 02 9501473 8686047 (91) 2159571 (25) 5300938 (61) 657096 (8) 568442 (7)

As is the case in Table 1, mapped positions of the TSS-tags were counted relative to RefSeq regions and relative to exons of RefSeq gene models,
when mapped inside of the RefSeq regions.

Table 3. The number of ‘hypoxia responsive’ genes identified from indicated cell lines; overlap with the ‘hypoxia responsive’ genes in DLD-1 is
shown in the second line (Panel A); for the ‘glycolysis pathway’ genes (shown in Figure 6), average fold change (first line) and the TSS-tag counts in
p-p-m. in hypoxic conditions (second line) were calculated (Panel B)

Panel A

MCF7 HEK?293 TIG3
>5-fold induction (>10p.p.m.) 86 24 9
Overlap with DLDI 27 3 4
Panel B

DLD-1 MCF7 HEK?293 TIG3
Average fold change 3.6 3.5(P=0.92) 1.2 (P = 7.6¢-6) 2.0 (P=0.11)
Average p.p.m. in 1% O2 922.9 657.8 (P =0.33) 209.9 (P = 7.6e-7) 542.7 (P = 3.8¢-3)
Panel C

MCF7 HEK293 TIG3
‘Hot region’ 37 8 9
Overlap with DLDI 3 1 0

Statistical significances of the difference compared with the cases in DLD-1, which were calculated by paired Wilcoxon test, are shown in the
parentheses.

Hypoxia responses in different cell lines (Figure 6) and observed significant difference in the expres-
sion changes between the cell types in this pathway. For the
genes belonging to the glycolysis pathway, gene-expression
changes in HEK 293 cells and TIG3 cells were smaller than
in DLD-1 cells in terms of fold inductions as well as abso-
lute gene-expression levels, while those of MCF7 cells were
almost at the level of DLD-1 cells (Table 3B).

We could also identify ‘hot regions’ in these cell lines
(Table 3C). However, the number of ‘hot regions’ was
different between the cell types. Particularly, there were
far more ‘hot regions’ in DLD-1 and MCF7 cells than
in TIG3 and HEK293 cells. Interestingly, three of the
‘hot regions’ overlapped between DLD-1 cells and
MCEF7 cells (Supplementary Table 4A), and should thus
be prioritized for further functional characterizations.

In order to further investigate the biological relevance
of the cellular responses to hypoxia observed in DLD-1,
we performed similar analysis using three different cell
types; MCF7, HEK293 and TIG3 cells. These cells are
breast cancer epithelial cells, non-cancerous immortalized
embryonic kidney epithelial cells and normal (primary)
embryonic lung fibroblasts, respectively. We constructed
a series of TSS-tag libraries from these cells cultured under
21% and 1% O,. From each of the libraries, 8—15 million
TSS-tags were generated. Overall qualities of the TSS-
libraries were similar to those of the DLD-I libraries
(Table 2).

Using these new TSS-libraries, we examined gene-
expression changes invoked by hypoxia in the different
cells. The numbers of ‘hypoxia responsive’ genes (as is
the case of the DLD-1: >5-fold induction; >10 ppm) sig-

nificantly differed between the cell types (Table 3A). DISCUSSION

Eighty-six genes were ‘hypoxic induced’ in MCF7 cells,
while far less genes were induced in HEK293 cells and
TIG3 cells. Many of the hypoxia responsive genes in
MCE7 cells overlapped with those in DLD-1 cells, while
the overlaps in the other cell lines were very scarce.
Particularly, we focused on the ‘glycolysis pathway’

We have described a simple method to massively collect
positional information of TSSs together with digital infor-
mation of the expression levels of the transcripts. By this
approach, time, costs and efforts necessary for laborious
cDNA cloning and sequencing steps could be greatly
reduced. Most part of the technical difficulties to construct



a full-length cDNA library or a 5 SAGE or CAGE library
could be skipped. Although other cap selection methods,
such as the cap-trapper (10) and Smart system (43), can
be also applied for massively parallel sequencing systems,
our oligo-capping method has a clear advantage. Among
those similar methods, only oligo-capping includes a step
to replace the cap structure with synthetic oligo, in which
sequence necessary for massively parallel sequencing
can be embedded. Therefore, the protocol presented here
should be applicable for any other massive sequencing
technologies.

This approach has several advantages compared to the
current expression profiling methods. Compared with
microarray-based or real-time PCR-based approaches,
our method does not need any probes or PCR primers,
which should be designed based on presumed transcript
sequences, and thus prevent the detection of novel tran-
scripts with these previous methods. Also, while the pre-
vious methods are designed to detect relative change in
expression of the same transcript between two states,
absolute quantification of the transcripts could be enabled
only by our method. Compared with the recent RNA-Seq
method (26,44,45), our method has two major advantages
and one clear disadvantage. Advantages are: (i) exact
positional information of the TSS can be obtained; (ii)
throughput of the expression analysis is better because
our method does not sequence internal part of transcripts.
A disadvantage is that our method cannot detect the spli-
cing pattern of the exons.

A series of validation analyses showed that the data
from our new method is quite reliable (Figures 2 and 3).
However, in some cases, we also noticed that there were
some discrepancies (Figures 2B and 3A). Because we did
not use redundantly mapped TSS-tags, we may have
incorrectly assigned small number of TSS-tag counts,
when a real TSS is located within repetitive sequence ele-
ments. Conversely, the expression level could have been
overestimated, when a small population (but a large
number) of TSS-tags deviated from a huge TSS cluster
by sequence errors, which would be mapped elsewhere
otherwise, were uniquely mapped at the corresponding
gene region. Careful evaluation is crucial especially when
the redundantly mapped tags would be rescued (46).
In either case, confirmation analysis on individual genes
should be essential, as was the case with microarray ana-
lysis in its early days.

Taking advantages of our new method, we revealed
genome-wide changes of the transcriptional landscape in
response to hypoxia for the first time. (All the sequence
data and the cluster data will be made freely available
from our web site (DBTSS: http://dbtss.hgc.jp/) and
from NCBI Short Read Archives (http://www.ncbi.nlm.
nih.gov/Traces/sra/sra.cgi?) under the accession number
of SRA003625. Visualization of some of the results for
each gene is also available there (for example, see
Supplementary Figure 5). In our analysis, we identified
‘hot regions’ where hypoxia-induced promoters are
enriched in particular genomic regions, as well as ‘hot’
genes which have many hypoxia-responsive alternative
promoters. It is possible that hypoxia-invoked chromo-
somal changes came to allow access of transcriptional
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factors in a somewhat global manner. Consistently,
some of the transcriptions from proximal regions, occa-
sionally including transcriptions of putative non-protein-
coding transcripts, seemed to be under similar regulation
(Supplementary Figure 3), with the extreme cases being
the above-mentioned ‘hot regions’. These observations
could be explained if the surrounding chromosome con-
text, which shapes the transcriptional landscape proxi-
mally, is shared between the TSCs of non-protein-coding
transcripts and the TSCs of RefSeq transcripts.

It is noteworthy that some of such ‘hot regions’ were
also identified from different cell types of distinct cancer
origin, though number and frequencies of them were dif-
ferent. It should be important to further analyze cells of
other mammalian species under hypoxia to see whether
these ‘hot regions’ or ‘hot’ genes are evolutionarily con-
served. Genome-wide high-throughput methods to moni-
tor DNA binding of proteins (42), DNA and histone
modifications (47,48) and DNase I hyper sensitive sites
(49) or combination of them (50), will be needed for
directly analyzing chromosomal structural changes.

It should be also noteworthy that the gene-expression
changes were somewhat similar between DLD-1 and
MCEF7 cells, though they were distinct from HEK293
and TIG3 cells. Both DLD-1 and MCF7 cells were derived
from solid tumour, which may have originally grown
in hypoxic conditions. The enhanced gene-expression
changes observed in DLD-1 and MCF7 should explain
the distinct biology of the cells in response to hypoxia.

Indeed, various new types of analyses have been
enabled by the hereby described method, in which detec-
tion of TSS positions and digital-expression information
can be obtained without a prior knowledge of transcript
structures. Although this is only the first step towards
monitoring dynamic behavior of the human transcrip-
tome, our new method and its application will supply a
unique tool for thorough understanding of the dynamic
nature of the transcriptional program encoded by the
human genome.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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