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ABSTRACT

Electric signal processing has evolved to manage
rapid information transfer in neuronal networks
and muscular contraction in multicellular organisms
and controls the most sophisticated man-built
devices. Using a synthetic biology approach to
assemble electronic parts with genetic control
units engineered into mammalian cells, we designed
an electric power-adjustable transcription control
circuit able to integrate the intensity of a direct cur-
rent over time, to translate the amplitude or fre-
quency of an alternating current into an adjustable
genetic readout or to modulate the beating
frequency of primary heart cells. Successful minia-
turization of the electro-genetic devices may pave
the way for the design of novel hybrid electro-
genetic implants assembled from electronic and
genetic parts.

INTRODUCTION

Recent advances in synthetic biology have led to the
design of engineered cells emulating basic computational
functions known from semiconductor-based electronic
circuits (1-3). Synthetic gene networks implanted into
living systems were able to perform tight regulation of
gene expression (4), fundamental logic Boolean operations
(5), establish epigenetic long-term memory (6,7), provide
band-detect filter characteristics (2,8) and hysteretic
signal-insulating qualities (9), program time-delayed (2)
or oscillating (10) gene expression and process multi-
channel information within cells (11) and populations (8)
as well as among different species (8,12,13). Although elec-
tronic and cell engineers are using similar circuit architec-
tures and standardized parts (2,3) to assemble complex
computing units with potentially compatible signal pro-
cessing capacities, the design of electro-genetic interfaces
managing mutual information processing between gene

transcription in mammalian cells and electronic processing
units has not yet gathered momentum. Interestingly, direct
electricity-based gene expression has not been evolved as a
major control theme or remains to be discovered. Previous
work on electro-genetic devices mainly relied on non-
specific effects of electric fields on the entire transcriptome
of Escherichia coli cells (14) or on the use of electrically
triggered light (15-17) to indirectly activate gene expres-
sion. In contrast to such non-specific modulation of gene
expression showing genome-wide pleiotropic impact, syn-
thetic biologists have successfully engineered mammalian
transcription switches that enable reversible and adjust-
able activation or repression of specific trangenes in
response to external stimuli, such as antibiotics (18-20),
quorum-sensing molecules (21,22), (gaseous) metabolites
(23-26) or cultivation temperature (27,28). All of these
transcription control circuits capitalize on a generic
design consisting of a synthetic transactivator (a fusion
between a heterologous transcriptional repressor and a
mammalian transactivation domain) which specifically
binds and activates a chimeric promoter (assembled by a
placing repressor-specific operator 5 of a minimal pro-
moter) in an inducer-responsive manner. Such a standard
configuration offers optimal functional compatibility
among these transcription circuits and provides a toolbox
of individual transgene control modalities for assembly of
complex higher order mammalian transcription networks
(2,4,9,29,30).

We have designed synthetic electro-genetic devices,
which enable electricity-induced expression of specific
transgenes in mammalian cells as well as mammalian
cell-based control of microelectronic circuits.

MATERIALS AND METHODS
Mammalian cell culture

AiRCHO-SEAP (26) transgenic for acetaldehyde-inducible
expression of human placental secreted alkaline
phosphatase (SEAP) was cultivated in HTS medium
(Cell Culture Technology, Gravesano, Switzerland)
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supplemented with 5% (v/v) fetal calf serum (FCS, PAN
Biotech GmbH, Aidenbach, Germany, cat. no. 3302, lot
no. P251110), 100 U/ml penicillin, 100 pg/ml streptomy-
cin, 1pg/ml puromycin and 400 ng/ml G418 sulfate in a
humidified atmosphere containing 5% CO,. All expres-
sion studies were done in triplicate using 125000
AlRCHO-SEAP cells seeded into 2cm?® cell culture
dishes. Neonatal rat ventricular cardiomyocytes were iso-
lated from newborn rat hearts (Wistar rats; Elevage
Janvier, Le Genest Saint Isle, France) as described
before (31). NRCs were cultivated in 67% (v/v)
Dulbecco’s Modified Eagle Medium (DMEM) (Invi-
trogen), 17% (v/v) M-199 EBSS (Amimed, Allschwil,
Switzerland), 10% (v/v) horse serum (Invitrogen, cat.
no. 16050-122, lot. 336379), 5% (v/v) FCS and 50 pg/ml
gentamycin (Sigma, St Louis, MO, USA, cat. no. G1914).

Lentiviral vectors

Lentivectors pCD20 and pCD22, enabling acetaldehyde-
responsive expression of human bone morphogenetic pro-
tein 2 (BMP-2), have been described previously (32). In
brief, pCD20 (5LTR-origy4o-cPPT-RRE-P51r-bmp-2-
3'LTR Ay3) encodes the bmp-2 gene under control of the
acetaldehyde-responsive promoter Pajg and pCD22
(5/LTR-orisv40-cPPT-RRE-PhEF1a-alcR-3’LTRAU3)
encodes constitutive expression of the acetaldehyde-
dependent transactivator AlcR (26). pBP253 (5LTR-
Orisv40-CPPT-RRE-PhEF1u-bmp-2-3/LTRAU3) is the con-
trol lentivector for constitutive bmp-2 expression (32).
Vesicular stomatitis virus-pseudotyped lentiviral particles
were produced and titrated as described before (33).
Abbreviations: cPPT, central polypurine tract; LTR,
long-terminal repeat; origy4p, simian virus 40-derived
origin of replication; Pygri4, human elongation factor lo
promoter; RRE, rev-response element.

Standard input device

A custom-designed electrolysis chamber (Febikon
Labortechnik, Wermelskirchen, Germany, cat. no.
E-pb0) containing 250ml 150 mM succinic acid supple-
mented with 1% (v/v) ethanol was used as standard
input device. The chamber was placed in an airtight 3.61
polypropylene box (Migros, Zurich, Switzerland) contain-
ing a humidified atmosphere with 5% CO,. In a typical
experimental set-up, a direct current (DC) source
(PowerPac HC, Bio-Rad, Hercules, CA, USA) or an alter-
nating current (AC) generator (Lapp & Co., Zurich,
Switzerland, model Th) were used to power the standard
input interface for 1h, which was then incubated for 23 h
before SEAP expression was profiled using the output
interface. Acetaldehyde and ethanol were quantified
using Gastec tubes (206).

At high currents Joule heating (Q[J]= U[V]x I[A] x {[s])
of the cellular processing unit (CPU) was observed, corre-
sponding to a temperature increase of 49 K at 500 mA
(28.5V) assuming a specific heat capacity of ¢ = 4.18kJ
kg "K' for the buffer. Acetaldehyde concentrations up
to 150 p.p.m. do not compromise cell viability and SEAP
production (26).
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Miniaturized input device

Modified PVDF-based hollow fibers (I mm inner dia-
meter, 25mm long; Spectrum Laboratories, Rancho
Dominguez, CA, USA, cat. no. M138615) were filled
with 16.7pl of a 1.7% (w/v) agarose-based hydrogel con-
taining 125 mM succinic acid and 17% (v/v) ethanol. Both
ends were equipped with platinum electrodes (diameter
I mm), sealed and connected to a DC power source.

Output device

SEAP activity was converted into an electric signal using
a coupled enzymatic—optic device. SEAP-containing
cell culture supernatant was incubated for Smin with
p-nitrophenylphosphate as described previously (34) and
the resulting p-nitrophenolate was quantified optically
at 405nm using a Novaspec II photometer (Pharmacia,
Freiburg, Germany) equipped with an output port pro-
viding an electric signal (millivolts) proportional to
absorbance.

Complementary metal-oxide semiconductor high-density
microelectrode arrays

High-density microelectrode arrays (HD-MEA) consist of
11016 metal electrodes and 126 channels, each of which
contains recording and stimulation electronics for bidirec-
tional communication with electrogenic cells. The HD-
MEAs were manufactured as described previously
(32,35). The arrays were coated with 20 pg/ml laminin
for 3h prior to seeding 105 neonatal rat cardiomyocytes
(NRCs) in 1 ml medium. After incubation for 24 h, the
cells were transduced with 106 pCD20/pCD22- or
pBP253-derived lentiviral particles engineered for acetal-
dehyde-inducible or constitutive BMP-2 expression,
respectively. After 24 h of transduction, the medium was
exchanged and the cell-containing HD-MEAs were con-
nected to the input interface which was set to different
power levels for 1h. The cell-containing HD-MEAs were
then incubated for 48 h at 37°C before NRC beating was
recorded for 20s. The error bars represent the standard
deviation from three readings.

RESULTS AND DISCUSSION

The generic electro-genetic input device enabling electronic
transcription control in engineered mammalian cells was
designed by linking electrochemical oxidation of ethanol
to acetaldehyde with acetaldehyde-inducible transgene
expression (26). Electrochemical oxidation of ethanol was
performed using a platinum anode and cathode in an elec-
trolysis chamber containing 1% (v/v) ethanol. Acidic pH
was chosen to favour higher acetaldehyde production
compared to basic pH at which the major oxidation end
product is acetic acid (36). For acidification of the electro-
lyte, we replaced the standard perchloric acid (37) that is
electrolysed to toxic chlorine with non-volatile and bio-
compatible succinic acid. As central cellular processing
unit (CPU), we used Chinese hamster ovary (CHO-K1)-
derived cells engineered for constitutive expression of
the Aspergillus nidulans-derived acetaldehyde-dependent
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transactivator AlcR which binds and activates the acetal-
dehyde-inducible promoter PAr in the presence of acetal-
dehyde and so triggers expression of the human placental
SEAP (26). SEAP production was scored by an enzy-
matic—optical process, consisting of a photodiode convert-
ing SEAP-catalysed dephosphorylation of p-nitrophenyl-
phosphate to coloured p-nitrophenolate into a dose-
dependent electric signal thereby providing a standard
gene-electronic output device (Figure la). Input and
output devices could either be operated as standalone elec-
tronic-cell interfaces or be sequentially linked to use engi-
neered mammalian cells as CPUs plugged into an
integrated electronic circuit.

When input devices and CPUs were operated with
DC <30mA no significant SEAP production could be
observed. Between 30 mA and 140 mA there was a direct
correlation between input current, acetaldehyde produc-
tion and transgene expression (Figure 1b and c). Between
140 mA and 200 mA DC SEAP expression reached a pla-
teau since acetaldehyde-inducible transgene expression
became saturated although the input device continued to
produce increasing acetaldehyde levels. Beyond 200 mA
DC SEAP production decreased as a consequence of
a current-induced temperature increase, which steadily
reduced CPU viability (Figure 1b; Materials and
Methods section). Such thermal destruction is a character-
istic the electro-genetic device shares with any electronic
circuitry.

The photodiode-based output device was shown to pro-
vide electric signals, which were proportional to SEAP
production in a range of 0-30 U/l (corresponding to an
output signal of 0-1000 mV), which enabled full coverage
of the transgene expression dynamics of mammalian cells
(Figure 1b and d). Consolidating the dose-response char-
acteristics of input and output devices as well as the CPU,
the entire synthetic electro-genetic circuitry shows an over-
all dynamic range of 30—140 mA for the input current and
0.7-10mV for the output signal.

A mammalian cell-based integrator

Within its linear operation range (30mA DC <input
current < 140mA DC, see above), the electro-genectic
device functions as a cell-based electronic integrator
mimetic since electrochemical acetaldehyde production is
a direct function of the exposure time and the intensity of
the current. For validation of the integrator characteristics,
the electro-genetic device was connected for different peri-
ods of time to currents with varying intensities, while the
overall amount of electron flux was kept constant (/ x ¢t =
constant). The observation that acetaldehyde levels as well
as the electric output were identical for all time profiles,
suggests that the device has the capacity to process elec-
tronic signals in an integrator-like manner (Figure 2a).

A mammalian cell-based amplitude-modulation (AM)
detector

The CPU’s electronic signal integration capacity is not
limited to DC but can also be operated to score the ampli-
tude of an AC power source. Upon connection of the
CPU to an AC of 50Hz, the resulting acetaldehyde
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Figure 1. Synthetic mammalian cell-based electro-genetic device.
(a) Circuit diagram of the electro-genetic device. DC applied to the
input device results in the electrochemical conversion of ethanol into
acetaldehyde, which enables the acetaldehyde-dependent transactivator
AlcR to bind and induce transcription from its cognate promoter Pajg
which triggers transcription of the human placental SEAP. SEAP sub-
sequently catalyses the production of coloured p-nitrophenolate, which
is quantified photometrically at 405 nm by a photodiode and converted
into an electric output signal. AlcR, acetaldehyde-inducible transactiva-
tor; pA, polyadenylation signal, Pajr, AlcR-responsive promoter;
Py tr, murine stem cell virus 5 long terminal repeat-derived promoter.
(b) Characterization of the CPU. The CPU was connected to DC of
different intensities for 1 h, and the resulting acetaldehyde concentration
as well as the electric output signal were quantified after 24h.
(¢) Correlation between DC input and corresponding voltage.
(d) Characterization of the output interface. SEAP activity was plotted
against the electric signal measured by the output interface.
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production as well as the electric signal generated by the
output interface were monitored and were shown to
directly correlate with the amplitude of the electric input
signal thereby confirming the ability of the electro-genetic
device to function as an AM detector (Figure 2b).

A cell-based frequency modulation detector

The efficacy of AC-based electrolysis is frequency
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phenomena at the electrodes occur and re-oxidation/
re-reduction of the reaction products further decrease
the electrochemical production of acetaldehyde in a
frequency-dependent manner (Figure 2c). In order to
characterize the ability of the electro-genetic device to
detect the frequency of an AC and to convert it into a
DC output signal, the input interface of the electro-genetic
device was connected to AC with constant amplitude
(50mA) and increasing frequencies (50—10 000 Hz). With
increasing AC frequencies, decreasing acetaldehyde pro-
duction was dose-dependently translated into decreasing
SEAP expression, which converted into a linear electric
signal by the enzymatic—optical output interface thereby
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Figure 2. Electro-genetic circuits. (a) Mammalian cell-based integrator.
The CPU was connected to DC of different intensities and for various
periods of time; the product of time and current intensity was kept
constant (¢ x I = constant). The resulting acetaldehyde levels and elec-
tric output signals were scored after 24h. (b) Mammalian cell-based
AM detector. The CPU was connected to an AC of 50 Hz and different
intensities for 1 h and the acetaldehyde levels as well as the electric
output current were quantified after 24h. (¢) Mammalian cell-based
FM detector. The CPU was connected to an AC of 50 mA and different
frequencies for 1h and the acetaldehyde levels as well as the electric
output current were quantified after 48 h.
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Figure 3. Mammalian cell-based frequency generator. (a) Circuit dia-
gram of the cell-based frequency generator. DC power converts ethanol
into acetaldehyde, which dose-dependently triggers expression of the
BMP-2 in engineered rat cardiomyocytes (AjrRINRC-BMP-2) and
increases the contraction frequency (tachycardia). (b) The beating fre-
quency of cardiomyocytes is recorded as a function of the input current
and acetaldehyde concentration using a CMOS-based HD-MEA. NC:
negative control, mock-transduced cardiomyocytes; PC: positive con-
trol, cells transduced for constitutive BMP-2 expression. (¢) HD-
MEA-based analysis of the electrogenic behaviour of NRCs engineered
for electro-inducible acetaldehyde-responsive BMP-2 expression. The
dataset shown as example was recorded at a direct input current of
S0mA corresponding to a beating frequency of 2.1 Hz. Detailed acti-
vation map illustrating the average signal shape of the 121 selected
electrodes during 10s. Average signal shape over all 121 channels.
Raster plot showing a dot for each contraction on each channel over
time. Inter-burst interval or inter-beat interval used to calculate the
average beating frequency and beating frequency variation. (d) Zoom-
in of two selected bursts/beats on different electrodes. (e) Long signal
trace showing the synchronized contraction frequency on five selected
electrodes or channels.
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validating the electro-genetic device as a frequency mod-
ulation (FM) detector (Figure 2c).

A cell-based frequency generator

Electric signals linked to complex intracellular signalling
cascades are well-known to manage muscular contraction
in specialized mammalian cells (38). For example, cardiac
ventricular contraction frequency of NRCs is modulated
by BMP-2 that induces receptor-mediated activation of
the myocyte-specific enhancer factor 2A via phosphatidy-
linositol 3-kinase in a dose-dependent manner (39). By
transducing NRCs cultivated on complementary metal-
oxide semiconductor (CMOS)-based HD-MEAs with len-
tiviral particles (32) engineered for -electro-inducible
acetaldehyde-responsive expression of BMP-2, we were
able to convert DC into an oscillating electronic signal
with a defined frequency (Figure 3a). Challenging this
cell-based frequency generator with increasing input cur-
rent resulted in elevated BMP-2 expression which stimu-
lated NRCs to beat at higher frequency as scored by the
HD-MEA (Figure 3b—e).
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Miniaturization of the input interface

Akin to electronic equipment, which is continuously min-
iaturized, we have reduced the size of the initial electro-
genetic input device by a factor of 15000 (electrolyte
volume: 16.7 pl versus 250 ml). To achieve this reduction
factor, we have cast a 17% (v/v) ethanol-containing
hydrogel into a PVDF-based hollow fiber membrane
which was powered via two platinum electrodes
(Figure 4a). Application of an electric input between
IpA and 4pA (5-15V) produced a dose-dependent
output signal when linked to a miniaturized CPU
(mCPU) (Figure 4b). As with electronic devices, miniatur-
ization of the electro-genetic control device reduced power
consumption to achieve maximum transgene expression
levels by 30 000-fold (60 uW, compared to 1.8 W of a stan-
dard CPU).

Although microelectronic devices are dominating our
daily life and control most of the analytical instruments
advancing life science research, our molecular understand-
ing of how electricity impacts biological function remains
largely limited to specialized electrogenic cells such as
nerve and muscle cells and appropriate applications such
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Figure 3. Continued.
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Figure 3. Continued.

as the pacemaker. The electro-genetic device described
here provides a first example of modulating transgene
expression in response to an electric current by coupling
an electricity-triggered electrochemical reaction to a syn-
thetic gene network engineered into mammalian cells.
Such electro-genetic devices may define novel interfaces
between microelectronic and biological transcription
circuits and such electro-genetic information crosstalk
may one day control therapeutic transgene expression or

process disease signals of prosthetic implant devices
thereby harnessing the full potential of progress in elec-
tronics sectors for human therapy.
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