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ABSTRACT

Natural antisense transcripts (NATs) are important
regulators of gene expression. Recently, a link
between antisense transcription and the formation
of endo-siRNAs has emerged. We investigated
the Dbi-directionally transcribed Na/phosphate
cotransporter gene (S/c34a1) under the aspect of
endo-siRNA processing. Mouse Sic34a1 produces
an antisense transcript that represents an alterna-
tive splice product of the Pfn3 gene located
downstream of Sic34a1. The antisense transcript
is prominently found in testis and in kidney.
Co-expression of in vitro synthesized sense/
antisense transcripts in Xenopus oocytes indicated
processing of the overlapping transcripts into endo-
siBRNAs in the nucleus. Truncation experiments
revealed that an overlap of at least 29 base-pairs
is required to induce processing. We detected
endo-siRNAs in mouse tissues that co express
Sic34a1 sense/antisense transcripts by northern
blotting. The orientation of endo-siRNAs was
tissue specific in mouse kidney and testis. In
kidney where the Na/phosphate cotransporter fulfils
its physiological function endo-siRNAs complemen-
tary to the NAT were detected, in testis both
orientations were found. Considering the wide
spread expression of NATs and the gene silencing
potential of endo-siRNAs we hypothesized a
genome-wide link between antisense transcription
and monoallelic expression. Significant correlation
between random imprinting and antisense tran-
scription could indeed be established. Our findings
suggest a novel, more general role for NATs in gene
regulation.

INTRODUCTION

Natural antisense transcripts (NATs) represent a wide-
spread phenomenon observed in all organisms (1).
Sense-antisense transcript pairs comprise conventionally
a protein coding sense mRNA, generally higher and
more widely expressed and better characterized than the
corresponding NAT, and a regulatory, often non coding
antisense transcript (2). In prokaryotes NATs control
plasmid copy numbers whereas NATs are involved
in viral defense and stress responses in plants (3,4).
In higher vertebrates, especially mouse and human, the
biological role of NATSs is controversial (5-7). There is
clear evidence that NATs play an essential role in the
epigenetic silencing of mono allelically expressed gene
clusters such as parentally imprinted genes, immuno-
globulin genes or odorant receptor genes (8,9). However,
the total number of NATs exceeds those with an estab-
lished function by more than an order of magnitude (10).
This raises the question whether the myriad of uncharac-
terized NATs represent specific regulators for the related
individual genes or whether a general regulatory concept
for NATSs remains to be established (11). There is increas-
ing evidence that indeed both scenarios apply. The impact
of NATs on the physiological regulation of the corre-
sponding sense transcript and the encoded protein has
been demonstrated for Msx1, B secretase and both thyroid
and erythropoietin receptors to name just a few examples
(12-15). This approach to gene regulation by NATs has
been comprehensively reviewed by Beiter er al. (1).
Recently, a more general role of NATs in quality control
of transcripts has been suggested (11).

Initial efforts to investigate the expression of NATs on
a genome wide basis selected for spliced and/or poly-
adenylated transcripts in order to exclude wrongly
oriented ESTs (16,17). The total number of antisense tran-
scripts varied from study to study due to experimental
differences; however, they all agreed on the fact that
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sense-antisense transcript pairs with exonic complemen-
tarity are under represented on the X-chromosome as
compared to autosomes. If transcript pairs with exonic
complementarity were excluded from the analysis, the
remaining sense transcript/NATs pairs were found to be
distributed evenly throughout the genome (16,18). These
hallmarks suggest that a significant group of NATs expe-
rience similar evolutionary constraints. The regulatory
process related to this special group of NATs most
likely relies on complementary RNA sequences (7,11).

Recently, a link between NATSs expression and the for-
mation of endogenous short interfering RNAs (endo-
siRNAs) has been established. Both large scale sequencing
and investigations into specific bi-directionally transcribed
genes identified endo-siRNAs that matched the comple-
mentary regions of sense transcript/NAT pairs (19-21).
In all cases, the orientation of the single-stranded endo-
siRNAs was non-random. Watanabe e? al. detected sense
oriented endo-siRNAs (complementary to the NAT) in
mouse oocytes (21). Carlile et al. reported a switch from
antisense oriented to sense oriented siRNAs in zebrafish
embryonic development between 48 and 72h post fertil-
ization (19).

We took an integrative approach with the aim of
extrapolating the findings from a single bi-directionally
transcribed gene, Slc34al/Pfn3, to a more general concept
of gene regulation by NATs. Importantly, we could con-
firm the production of NATs-related endo-siRNAs and
the non-random selection of endo-siRNA strands. Based
on these findings we hypothesized and confirmed a general
link between NATs and random monoallelic expression.

MATERIALS AND METHODS
Animals

BALB/c mice were bred in-house. Young male and female
animals were killed by cervical dislocation according to
the home office schedule 1 procedure. Tissues of interest
were quickly removed, rinsed in ice cold PBS and frozen in
liquid nitrogen. Frogs were obtained from the African
Xenopus Facility (South Africa). Xenopus were anaesthe-
tized by immersion into ice-cold tricaine solution (Sigma)
and killed by decapitation before the removal of the
oocytes according to registered procedures. The oocytes
were surgically removed, rinsed in ORII solution (NaCl
82.5mM, KCl 2mM, MgCl, 1mM, HEPES pH 74,
SmM) followed by collagenase treatment (2mg/ml in
ORII) to remove the follicular cell layer. Oocytes were
stored in modified Barth’s solution (NaCl 88§ mM, KCl
ImM, MgSO,; 0.82mM, CaCl, 0.41mM, Ca(NO;),
0.33mM, HEPES/Tris pH 7.5, 10mM, NaHCO;
2.4mM) at 18°C. The care and use of all experimental
animals was carried out in accordance with the guidelines
of the UK Homeoffice.

Expression in Xenopus oocytes

cRNA was produced from HindIll or EcoRV linearized
plasmids using the mMESSAGE mMACHINE kit
(Ambion). Alternatively, RNA was synthesized directly
from amplified DNA fragments that contained a
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T;-binding site added to one of the primers used for the
PCR. The RNA was purified by LiCl precipitation and
concentration was determined spectrophotometrically.
Routinely, between 2 and 10ng of cRNA in 50nl of
water were injected into oocytes. For nuclear injections,
the injection volume was decreased to 10nl without
changing the amount of RNA. The oocytes were kept at
18°C in modified Barth’s solution up to 3 days before the
assays. All experiments were done with oocytes from
at least three different frogs with comparable results.

Isolation of nucleic acids

Mouse tissues (<100 mg) were ground to powder in liquid
nitrogen and added to 1ml of Tri-reagent (Sigma).
Homogenization was completed by passing the slurry
repeatedly through 21 and 25G injection needles. RNA
extraction was then performed according to the supplier’s
protocol. The integrity of the RNA was checked by
denaturing gel electrophoresis and concentration was
determined as above. Total RNA was used for all PCR
and cloning steps. Single oocytes were quickly homo-
genized in 100 pl of Tri-reagent using disposable plastic
pestles. Thereafter, the supplier’s protocol was followed.
The centrifugation times were increased for precipitation
of nucleic acids for up to 1h at 14000 g if short RNAs
were to be detected.

Non-radioactive detection of nucleic acid

Assessment of RNA from injected oocytes was done
using denaturing formaldehyde agarose gels (1.2%).
RNA from single oocytes was separated and blotted by
capillary force onto nylon membranes (Roche). After UV
cross-linking the membranes were pre hybridized (>1h)
and hybridized over night in digoxygenin (DIG)
EasyHyb solution (Roche). The DIG labelled probes
were generated by in vitro transcription using the
mMESSAGE mMACHINE kit (Ambion) and DIG
labelled nucleotides (Roche). Hybridization was carried
out at 58°C. Membranes were washed at a final stringency
of 0.5x SSC/0.1% SDS at 50°C followed by ECL detec-
tion (Roche). To assay short RNAs samples were mixed
at 1:3 ratio with Ambion formaldehyde loading buffer and
heated at 75°C for 15 min. RNA was separated on 4-12%
Bis—Tris polyacrylamide gels using 1x TBE running buffer
[89 mM Tris-base, 2mM EDTA-sodium salt, 8 mM boric
acid, pH 8.5]. This combination gave superior result as
compared to TBE-urea gels. Gels were pre-run for 1h
prior to loading of the samples. Blotting was performed
at constant 100 mA for 50 min. All steps were performed
using precast gels and a Criterion midi gel system
(Biorad). Hybridization was essentially done as above,
however, the stringency was reduced. Hybridization was
performed at 37°C and final washes were at room temper-
ature in 0.1x SSC, 0.1% SDS.

PCR and cloning

PCR-related techniques were used for expression analysis,
cloning purposes and probe generation. To detect Na/
phosphate transporter-related sense or antisense tran-
scripts 0.1-0.5 pg of total RNA were reverse transcribed
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using a kit from Qiagen. The RNA in 5pl of water was
denatured at 70°C for 5min in the presence of 0.1 pg/ul
oligo-dT primer and cooled to 37°C. 15 ul of RT mix was
added containing buffer, nucleotides (250 pmol each), 4
units reverse transcriptase (Qiagen) and 20 units RNase
inhibitor (Promega). After 60 min incubation at 37°C the
supplier’s protocol was downscaled and 2pl of the RT
reaction were used for hot start PCR with Taq polymerase
and reagents from Qiagen. The final volume was 25 pul. For
3’ RACE an oligo dT adaptor primer (Sigma) was used to
prime the reverse transcription. A first PCR was done as
above including a gene-specific primer and the adaptor
primer. A second, nested reaction was performed with
1 pl of the 1/2000 diluted first reaction, a second specific
primer and the adaptor primer. PCR conditions were
modified according to the annealing temperature of the
primers and the length of the expected fragments. For &
RACE a kit from Invitrogen was used and the protocol
was strictly followed. The sequences of the primers
are given in the Supplementary Table 1. The two DNA
fragments from 3’ and 5 RACE were separated on
agarose gels and purified. The entire fragment was ampli-
fied by overlapping PCR. One microlitre of each fragment
was added to a PCR reaction (Qiagen). After four
cycles at a low annealing temperatures (50°C) to allow
hybridization of the overlapping DNA ends and extension
of the full fragment the two adaptor primers were added
and the cDNA was amplified. The resulting fragment was
cloned into pCR2.1-TOPO using the TOPO cloning kit
from Invitrogen according to the standard protocol. The
cDNA was verified by sequencing.

Bisulfite treatment

Genomic DNA was isolated from adult mouse kidney,
testis and skeletal muscle. The tissue was homogenized
as above but omitting the step using the 25G needle.
The QIAamp DNA Mini Kit (Qiagen) was used according
to the supplier’s protocol. Concentration was determined
by spectrophotometry. Approximately 0.5 ug of DNA was
bisulfite treated using the EZ DNA methylation gold kit
(Zymo Research). Colum purification of the DNA
resulted in samples of 14ul of which 3ul were used
for PCR in a 15ul reaction (HotStarTaq Master Mix,
Qiagen). The sequence of the primers specific for the
sense and the antisense promoter as well as the sense/anti-
sense overlapping region are given in the Supplementary
Data. The resulting fragments were directly sequenced and
checked for evidence of C/T bias in the context of CpG
dinucleotides.

Bioinformatics

Probes from Affymetrix 430_2 arrays were mapped to the
mouse genome using BLAT. The probes were correlated
with exons and selected if they mapped to an exon on
the opposite strand. The pipeline used the Affymetrix
Mouse430 2 probe mapping generated in Ensembl
v49  (http://Mar2008.archive.ensembl.org). Briefly, the
Ensembl mapping pipeline retains genomic mappings
with one mismatch regardless of the location on the
genome, or multiple mappings. The probe mapping was

done using exonerate (22). The antisense-specific probe
coordinates represent about 3.5% of the total probes
mapped to the genome. (The antisense probe sets are
listed in Supplementary Table 2). The resulting probe
set was used to assess datasets in the public repositories
with emphasis on testis and embryonic stem cells. Other
mouse tissues were included as controls and cross refer-
ence. The relevant GEO accession numbers are: GSE9954,
different mouse tissues; GSE4193 spermatogenesis. Raw
data was downloaded pre-processed with RMA and a
per-gene normalisation applied in GeneSpring 7.3.1
(Agilent). Net expression levels were plotted for each
probe and compared between the different tissues.

In order to assess a correlation between antisense tran-
scription and random imprinting three published datasets
were compared: Human antisense transcripts (16) were
correlated with two compilations of monoallelically
expressed human genes (23,24). HUGO gene names were
used as common denominators for the three datasets.
Genes were then identified that were present in both
the antisense dataset and the imprinted genes pool. To
assess significance of the overlap a random gene list of
the same size as the imprinted gene set was compared to
the antisense dataset over 100000 permutations.

RESULTS

We compared the genomic organization of flounder
and zebrafish Slc34a with the homologous gene encoding
the Na/phosphate cotransporter Slc34al from mouse.
The presence of an annotated gene Pfn3, encoding the
protein Profilin 3, closely downstream of the Slc34al
3’end strongly indicated overlapping transcription of the
mouse locus (25). An additional gene encoding the
coagulation factor F12 (FI2) could lead to overlapping
transcripts as well (Figure 1). We tested for the expression
of antisense transcripts by RT-PCR using primers located
in different exons of Slc34al, Pfn3 and FI2. In Slc34al
we focused on exons X and XIII based on structural
information from the homologous zebrafish gene.
Primers located in S/c34al exon X and the in the distal
part of Pfn3 (in relation to Slc34al) amplified specific
fragments. Primers located in S/c34a exon XIII gave
weak and unreliable signals and primers in the proximal
part of Pfn3 and FI2 failed to amplify any DNA
(Figure 2A and not shown). RNA was extracted from
different mouse tissues and tested for integrity by gel
electrophoresis. ¢cDNA was amplified from testis and
kidney RNA. Skeletal muscle did not express the antisense
transcript (Figure 2B).

We cloned the Slc34a-related antisense transcript by
RACE and overlapping PCR from mouse testis RNA.
The predominant transcript contained 517 nucleotides
with an open reading frame of 158 amino acids. The
first 47 amino acids are identical with Profilin 3, the
remaining 111 amino acids show no similarity to known
proteins and lack structural motifs. Other splice forms
were identified, based on the inefficient amplification of
the corresponding fragments we assume that the addi-
tional isoforms represent splice byproducts. These results
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Figure 1. Schematic representation of the S/c34al gene in vertebrates. (A) Phylogenetic conservation of the corresponding transcripts. The organi-
zation of the sense transcript (top) is conserved in all vertebrates with 13 exons and 12 introns. Antisense transcripts have been cloned from the three
species flounder, zebrafish and mouse. The intron/exon structure of the different antisense transcripts differs significantly between organisms. Other
splice forms may be expressed at a low level and have not been cloned. (B) The Slc34al locus as it is displayed in Contig view in the public ensemble
database. The Affymetrix probe sets recognize the 3’ end of the Sic34al transcript (1423279 _at), a region downstream of Slc34al partly comple-

mentary to Pfn3 (1427627_at) and the Pfn3 transcript itself (1453962_at).

indicate that evolutionary conservation of the antisense
transcript does not follow rules for protein coding
RNAs. Open reading frames may be present; however,
little pressure seems to act on maintaining them.

The significant expression of the Slc34a-related anti-
sense transcript in both mice and zebrafish testis (26)
raised the question if this was a gene-specific feature or
if antisense transcription was generally unregulated in
testis (27). Tools to routinely assess antisense transcripts
on a genome wide scale are not established. We took
advantage of a small but representative number of
Affymetrix probes that recognize the reverse strand of
coding genes. The probes were selected to localize in
exonic regions of annotated sense transcripts. This
enabled us to screen specifically for a limited number of
transcripts that fulfill hallmarks of NATSs as outlined
in the introduction. On the Affymetrix mouse 430 2
array, 14101 probes map to exons predicted by Ensembl
but on the opposite strand. Among those probes 10420
mapped to the genome once. The antisense probes repre-
sent 2596 unique exons of 1977 different genes (Ensembl
v49). The individual probes belong to 1630 probe sets
according to the standard Affymetrix CDF file. In other
words, the 1630 probe sets return a positive expression
call if (1) a potential antisense transcript is complementary
to this exon and (ii) the antisense exon covers enough
individual probes to return an unambiguous call (this is
not necessarily the case because the intron—exon structure

refers to the sense transcript. The complementary exon(s)
of the antisense transcript may only span a fraction of the
individual probes that make up the entire probe set). We
tested the expression of the corresponding transcripts in
various mouse tissues using GEO datasets GSE9954 and
GSE4193. In particular, antisense transcripts were
assessed in a multi tissue experiment including testis, sem-
inal vesicle, brain, kidney and embryonic stem cells.
Datasets from spermatocytes at different stages of devel-
opment were included. We found significant up regulation
of antisense transcripts in testis and, to a lesser extend, in
seminal vesicle. Increased NATSs expression was observed
specifically during the final stages of spermatogenesis
(round stage, Table 1). Interestingly, kidney and ES cells
also showed a slightly increased expression of NATS,
whereas values from other tissues were in a comparable
low range.

We have previously reported that co-expressed overlap-
ping Slc34a sense-antisense transcripts from zebrafish are
processed into endo-siRNAs after injection into the
nucleus of Xenopus oocytes (19). We used a similar
approach to demonstrate that the mouse NAT was pro-
cessed accordingly. As shown in Figure 3A single tran-
scripts remained stable in both nucleus and cytoplasm.
Co-expression of sense and antisense cRNAs in the
nucleus resulted in complete degradation of both tran-
scripts, whereas the related signals remained detectable
after cytoplasmic injections (Figure 3B, ‘full overlap’).
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Figure 2. Analysis of the mouse S/c34al antisense transcript. (A)
Putative splice products were tested by RT-PCR using testis total
RNA. Only primers located within sense exon 10 and at the profilin
S'end (fl-rl; f2-r1) gave detectable amplicons. The 2kb band (f3-rl)
derived from genomic DNA. If genomic DNA was used instead of
cDNA long range PCR yielded the expected fragments of 2kb (f3-r2)
and about 6.5kb (f1-r2 and f2-r2, data not shown). (B) Tissue distri-
bution of the antisense transcript in mouse testis, kidney and skeletal
muscle. The lower panels represent the negative control minus reverse
transcriptase and B-actin, respectively. The locations of the primers are
indicated on the scheme in (A).

Table 1. Expression of NATs in mouse tissues

The mouse sense and antisense transcripts share a single
exon with an overlap of 124 bp. We determined the min-
imal size of overlap that induced processing by gradually
truncating the antisense transcript to 40, 31, 30, 29 and
20 bp of complementarity. All the transcripts were stable
for days after co-injection into the cytoplasm (C) of
Xenopus oocytes (Figure 3B). Upon co expression of
sense-antisense pairs in the nucleus (N) RNA overlaps
of 30bp or longer were efficiently cleaved. Shorter
duplexes were either poorly processed (29bp) or were
stable (20 bp) (Figures 3 and 4). The generation of endo-
siRNAs from overlapping sense/antisense transcripts
was demonstrated by RNA PAGE and northern blotting
of samples from single oocytes. In accordance with
conventional northern blots short RNAs of approximately
23 bases were detectable in samples that showed evidence
of sense/antisense processing (Figures 3 and 4, left panel
lanes 1-5).

If the processing observed in Xenopus oocytes was
physiologically relevant one would expect the presence
of endo-siRNAs in tissues that co express Slc34al sense
and antisense transcripts [Figure 2B and (25)]. Total RNA
samples from mouse kidney, testis and skeletal muscle
were included into the PAGE northern experiments
(Figure 4, left panel, lanes 6-8). As controls, samples
from zebrafish embryos were included (Figure 4, right
panel, lanes 9-11). Small RNAs are indeed present
in both kidney and testis samples. Most interestingly, in
testis both siRNA strands could be detected whereas in
kidney only endo-siRNAs complementary to the antisense
RNA were found. These results concur with published
data from zebrafish Sic34a and other reports that
showed accumulation of strand-specific endo-siRNAs
(19-21). We concluded that strand selection of the
endo-siRNAs was non-random. In the context of

Tissue ES cells Brain Kidney Testis Sem. vesicle Sem. v. curated® Ovary Placenta
Tissue distribution of antisense transcripts (NATSs)
Max value 149.8 70.85 188.3 254.9 1843 128.1 80.13 22.26
Min value 0.049 0.043 0.234 0.059 0.09 0.09 0.11 0.21
Mean 1.56 1.28 1.55 2.34 2.45 1.32 1.05 1.09
SD 4.47 291 7.04 10.08 45.73 3.19 2.21 1.24
Pfn3 1.07 0.77 1.06 18.75 1.39 0.66 0.80
Sle34al 0.94 0.82 274.6 1.09 1.47 0.74 0.96
Sle34a-3' 0.99 0.75 49.49 1.46 1.62 0.72 0.84
Spermatogenesis
Cell A B Pachytene Round
Max value 4.07 3.50 5.30 24.42
Min value 0.01 0.08 0.10 0.11
Mean 0.98 1.00 1.11 1.21
SD 0.33 0.32 0.41 1.38
Pfn3 0.33 0.36 1.54 105.1
Slc34al 0.97 0.79 1.04 1.06
Sle34a-3' 0.98 0.95 1.03 1.04

Datasets GSE9954 and GSE4193 were evaluated using the probe sets specific for NATs (Supplementary data 1). The normalized values for the
probesets Pfn3 (1453962 _at), Slc34al (1423279 _at) and Slc34a-3' (1427627 _at) are included. The alternative splice product of Pfn3 is not represented
in the database; therefore probeset Pfn3 (1453962 _at) is included in the NATs probe compilation. The RT-PCR results indicate significant expression
of the alternative splice form (Figure 2), however, the probeset will pick up the unspliced form as well.

“The curated data from seminal vesicle lacks the value of a single probeset 1422515 _at: the probes bind to a highly expressed protein coding
transcript (Svs7) that is specifically expressed in seminal vesicle and complementary to another protein coding transcript (AC113081).



siRNA-induced gene silencing this implies that a down-
stream response can be directed either towards the sense
or the antisense strand. We therefore hypothesized a
connection between the expression of NATs and epige-
netic gene silencing, for example random monoallelic
expression.

A Injection NaPi-lla (sense) and Profilin-3 (antisense) transcripts
cRNA Sense 40bp 35bp 31bp 30bp 29bp 20bp Profilin-3

Injecion N C N C N C N C N C N C N C N C

B Co injection NaPi-lla (sense) and Profilin-3 (antisense) transcripts
Full

cRNA Sense overlap 40bp 31bp 30bp 29 bp 20 bp Profilin-3
O—
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Figure 3. Expression of sense and antisense transcripts in Xenopus
oocytes. (A) Injection of the different constructs into the cytoplasm
(C) or nucleus (N) of oocytes. All the cRNAs remain stable regardless
of cytoplasmic or nuclear injection. (B) Co-injection of sense and var-
ious truncated antisense constructs. The size of overlap is indicated. A
30bp overlap is efficiently processed whereas a 29 bp overlap is rela-
tively stable.

S + AS Co-inj (Full length)

S+ AS Co-inj (30 bp overlap)
S+ AS Co-inj(29 bp overlap)
S+ AS Co-inj (20 bp overlap)
S + AS {Full length, cytoplasm)
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Figure 4. Northern blot analysis of short RNAs from injected oocytes
and mouse tissues. The left panels (lanes 1-8) show samples from
mouse, the right panel control samples from zebrafish (lanes 9-11).
Lanes 1-3 indicates sense-antisense processing whereas lanes 4 and 5
do not contain short RNAs either because the overlap is too short (lane
4) or the samples were injected into the cytoplasm (lane 5). Lanes 6-8
represent tissues that express the sense encoded protein (kidney), do not
express the transporter (skeletal muscle) or expresses both sense and
antisense RNAs but the presence of the transporter is unclear (testis).
Lane 10 represents short RNAs isolated from 48 h zebrafish embryos
(19) as a positive control. Lane 11 shows another control, i.e. a sample
from Xenopus oocytes injected into the nucleus with sense and antisense
RNA. ‘Sense’- and ‘antisense’- probes mean that the short RNAs
detected with the sense probe will be complementary to the antisense
transcript and vice versa.
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Random monollelic expression is experimentally
approached by using polymorphisms to assess the allelic
origin of transcripts. We argued that polymorphisms or
mutations within a bi-directionally transcribed locus may
skew or completely reverse the endo-siRINA strand selec-
tion process. This would result in reversed targeting of
endo-siRNA-induced silencing. The sense transcript
instead of the antisense transcript would become silenced
on the allele that shows the polymorphism. The other
allele, unaffected by the polymorphism, would show the
‘normal’ strand selection. As a consequence, mono-allelic
expression of the polymorphic gene locus should be
observed. To support this hypothesis we investigated
whether a genome wide correlation between mono-allelic
gene expression (i.e. random imprinting) and antisense
transcription could be found. Both phenomena have
been assessed in humans by other groups and the
corresponding datasets are published (16,24). We used
the datasets from Chen et al. for human NATs (2940)
and Gimelbrant er al. for monoallelically expressed
human autosomal genes (16,24). As a control group, the
25157 HUGO genes were used. Matching the gene names
of the three data sets resulted in 2772 NATs and 281
randomly imprinted genes with compatible annotations.
The overlap between the NATs dataset and monoalleli-
cally expressed genes was 56, a figure in the 99th percentile
when compared against the control of a randomly permu-
tated list of 281 HUGO genes and the NATs. A similar
evaluation was performed with an independent set of
randomly imprinted genes (23) and (11) with comparable
results (Table 2). These findings add weight to the
argument that mutations may influence the orientation
of endo-siRNAs.

To assess for short RNA-induced transcriptional
silencing we checked for DNA methylation changes in
the sense/antisense overlapping region (5 CpG dinucleo-
tides in 274 bp) and the sense promoter (1 CpG in 374 bp)
in DNA isolated from mouse kidney and muscle, respec-
tively. These regions are devoid of CpG islands. Bisulfite
treatment of the DNA and direct sequencing of the ampli-
fied fragments revealed complete CpG methylation and
no difference between kidney and muscle. Therefore gene
regulation by NATs may include other mechanisms such
as histone modifications (28) to induce transcriptional
silencing.

Table 2. Correlation between NATs and randomly imprinted genes

Monoalleically  Antisense HUGO Overlap Significance
expressed genes transcripts genes (%)
104 (23) 2772 (16) 23 >95
2772 (16) 104 from 25 157 11+£3
281 (24) 2772 (16) 56 >99
2772 (16) 281 from 25 157 30+5

Two datasets that identified randomly imprinted human genes were
compared to the human antisense transcripts (16,23,24). As a control
the same comparison was done with 281 and 104 randomly selected
genes from the HUGO database (100000 times).
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DISCUSSION

Our experiments addressed the phenomenon of antisense
transcription at single gene and entire genome level. We
aimed at correlating the data and suggest novel strategies
to assess gene regulation by NATSs. It is important to take
into account that the conclusions from this approach only
apply to processed NATs that show exon complementary
with the corresponding processed sense transcript.

We report the cloning of a NAT related to the Na/
phosphate cotransporter gene Slc34al from mouse testis.
The NAT represents an alternative splice product of Pfn3
that has not been reported previously in the database
(EU375560). Our approach exemplifies the difficulties
related to the cloning of a specific NAT. The poor
phylogenetic conservation of NATs (Figure 1) and their
often unreliable representation in the public databases
complicate any cloning effort of a specific NAT. We
were fortunate as the Pfn3 gene provided a promising
starting point for a RACE approach. In addition, the
Slc34al NAT contained an intron allowing for unambig-
uous annotation of PCR products. Without an intron, the
confirmation of antisense orientation can be cumbersome
and would rely on more error prone strategies such
as strand-specific RT, oligo-dT priming, capping or tran-
scription start site predictions. The generally low expres-
sion level and the restricted expression pattern of NATs
add further complications to a targeted cloning approach.
The general up regulation of NATS in testis [Table 1 and
(27)] would now suggest using this tissue in relation with
a NAT cloning effort. In addition, investigations into
comprehensive antisense expression and transcript charac-
terization may best focus on the testis transcriptome.

The expression pattern of NATSs in testis is particularly
intriguing with respect to the developmental stage at
which overexpression occurs. During the early polyploid
stages, types A, B and pachytene (Table 1), expression of
NATSs is low. It significantly increases during later stages
of spermiogenesis in haploid cells. Widespread transla-
tional repression is observed during this later stage of
spermiogenesis (29).

We found a rather insignificant expression of NATSs
in other organs apart from testis whereas other reports
find low but significant expression of NATSs in other tis-
sues. This discrepancy is most likely due to experimental
constraints. We used stringent conditions when analyzing
the DNA array data and may have excluded weak signals
that were included in other reports (30,31). Transcripts
specific to a very small number of cells in a heterogeneous
tissue may have failed our detection limit. More sensitive
experiments such as RT-PCR indeed confirmed the
co expression of the complementary S/c34a transcripts
[Figure 2 and (25,26)].

The cloned Slc34al NAT is processed into mRNA and
displays exon complementarity with the corresponding
sense transcript. There is compelling recent evidence that
NAT/sense transcript hybrids may be cleaved into endo-
siRNAs (19,21,32,33). The detection of Slc34al-related
endo-siRNAs in testis concurs with these previous findings
(19,27). We also found that a 30bp overlap of the two
substrate  RNAs represents the cut off for efficient

processing (Figure 3B). Dicer accepts long double-
stranded RNAs as substrates and produces short RNAs
of variable size [19-30bp (34)]. A significant decrease in
dicer processivity between 30 and 29 bp double-stranded
substrates was also reported by Elbashir ez al. (35). These
findings suggest that the short Slc34al-related RNAs are
indeed dicer processed endo-siRNAs. The tissue-specific
orientation of the endo-siRNAs in testis and kidney
(Figure 4) represents an exciting finding that corroborates
previous observations in mouse and zebrafish. Watanabe
et al. reported endo-siRNAs related to the Ppp4rl gene
that were all oriented in sense direction in mouse oocytes,
thus reflecting a similar situation as reported for the
Slc34al endo-siRNAs in mouse kidney. In zebrafish
embryos, the orientation of S/c34a endo-siRNAs shows
developmental regulation from antisense direction to
sense orientation. Interestingly, the switch coincides with
the physiological induction of the sense-encoded protein.
These observations suggest that the orientation of the
endo-siRNAs is somehow related to the expression of
the sense transcript. The fact that northern blotting
revealed different endo-siRNA patterns in testis and
kidney (Figure 4) might relate to the transcriptional
state of the relevant gene locus. In testis, a general up
regulation of transcription would stimulate sense and anti-
sense transcription at a similar scale leading to transient
levels of both endo-siRNA strands (36). In kidney, the
Slc34al sense transcript is activated in a gene-specific
way. This could lead to either a short period of sense/
antisense co-expression followed by sustained sense
expression or, alternatively, strong sense expression
including stochastic antisense events at a low level. In
both cases, it is conceivable that only the sense oriented
endo-siRNAs (targeting antisense transcription) are pre-
dominantly accumulated.

By comparing published datasets we found a significant
correlation between NATSs expression and monoallelically
transcribed genes (16,23,24). The data sets, however, con-
tain monoallelically expressed genes without NATs and
vice versa. A better overlap between the datasets is likely
to be achieved once the NAT transcriptome becomes sys-
tematically characterized. Random monoallelic expression
of a gene is assessed using polymorphisms to determine
the allelic origin of transcripts. On the other hand, we
have shown that the probability of monoallelic gene
expression increases with the expression of NATs and
possibly endo-siRNAs. It is therefore tempting to specu-
late that the expression of NATs from a polymorphous
locus, endo-siRNA strand selection and random allelic
expression are connected phenomena. Such a link could,
for example, explain the selection against NATs on
the mammalian X chromosome because a NAT-induced
silencing event would lead to a complete knock down
of the relevant gene. In this context the identification of
the factors that influence endo-siRNA strand selection
would be of major interest (37).

We developed this idea further towards a concept which
is outlined in Figure 5. The working model predicts that
sense and antisense transcripts are co expressed during a
limited window during cell development or differentiation.
Our expression studies indicate that such co-expression
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that the feedback mechanism remains allele specific.

could occur during late stages of spermiogenesis or in
renal stem cells (Table 1). Production of endo-siRNA
and possibly the concomitant accumulation of specifically
oriented endo-siRNA strands involve fully processed
mRNAs. Experimental evidence so far (19,21) predicts
that the protein coding sense transcript dictates the
strand selection. Features that differentiate sense and
antisense transcripts and may affect endo-siRINA strand
selection include, translatability (38), structure (39) or sta-
bility, for example. It is conceivable that polymorphisms
or mutations in general alter these transcript features
and skew endo-siRNA strand selection. As a consequence,
the silencing response could become redirected and target
the sense transcript (40—42,43). The entire process could
be seen as a quality test for RNAs.

The proposed concept has different consequences if
applied to the tissues testis and kidney that show increased
NATSs expression. In testis, male germ cells show signifi-
cant up regulation of transcriptional activity including the
expression of NATs (27,44). This will lead to a wide
spread generation of endo-siRNAs, hence both endo-
siRNA strands are detected on the northern blot in
Figure 4. The concomitant RNA quality test will lead to
the accumulation of sense oriented endo-siRNAs (comple-
mentary to the antisense transcript; quality test passes). If
a specific gene is mutated the quality control potentially
fails, endo-siRNA strand selection is reversed and the
sense transcript becomes silenced. The haploid spermatids
will not be able to compensate for the loss and face
increased selective pressure. Significant levels of apoptosis
are indeed detected during spermatogenesis (45). The pro-
cess may therefore remove cells that carry deleterious
mutations and eventually result in a purified population
of spermatozoa.

In kidney, the RNA quality control would apply as
above, however with slightly different consequences.

Under physiological conditions, the endo-siRNA comple-
mentary to the antisense RNA is selected and the sense
transcript is expressed. If one allele is mutated and shows
reversed strand selection only one allele would become
silenced and the other one stays active. Allele specificity
may be achieved simply by the timing of transcription
from the two alleles. The specific cell may still function
normally but show ‘random’ monoallelic expression of the
corresponding gene.

To conclude, we suggest that NATs are a significant
source of endo-siRNAs. We hypothesize that these
endo-siRNAs act as molecular switches responsive to
mutations/polymorphisms. Such a biological role may
explain the under representation of NATs on mammalian
X-chromosomes and the phenomenon of mono-allelic
gene expression.
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