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ABSTRACT

The fast pace of bacterial genome sequencing and
the resulting dependence on highly automated anno-
tation methods has driven the development of many
genome-wide analysis tools. OperonDB, first
released in 2001, is a database containing the results
of a computational algorithm for locating operon
structures in microbial genomes. OperonDB has
grown from 34 genomes in its initial release to
more than 500 genomes today. In addition to
increasing the size of the database, we have
re-designed our operon finding algorithm and
improved its accuracy. The new database is updated
regularly as additional genomes become available in
public archives. OperonDB can be accessed at:
http://operondb.cbcb.umd.edu

INTRODUCTION

Large-scale comparison of complete microbial genomes
reveals that numerous gene clusters are conserved across
species; i.e. sets of genes occur in the same physical
arrangement in two or more species. Such gene clusters
often, but not always, represent co-transcribed units, or
operons, which are sets of genes that are co-regulated. In
general, two genes are more likely to belong to an operon
if they are adjacent, have the same orientation, are posi-
tioned relatively close together and are not separated by
known promoters or terminators. Genes in an operon
typically have closely related functions and consequently
there is a strong selective pressure for operon structure to
be conserved between genomes (1). Similarly, knowledge
of operon structure provides important clues to the func-
tion of genes within an operon.

Expression data from microarray experiments has
previously been used to reliably identify clusters of
co-transcribed genes (2,3); however, such data are not
available for most bacterial and archaeal genomes, and
sequencing continues to accelerate. Our operon prediction
method (4) instead uses a purely computational and

statistical approach, relying on conservation of gene
order and orientation in two or more species to infer
operon structure. We first used this method in 2001 to
construct OperonDB, a database of operons for all com-
plete microbial genomes, which at the time numbered 34
species. Although highly specific (with fewer than 2% false
positives), the sensitivity of the original algorithm was
estimated at 30-50% for the Escherichia coli genome.
The current version of OperonDB has greater sensitivity
while maintaining a similarly high level of specificity.

NEW DEVELOPMENTS

The original OperonDB algorithm defined the concept of
a gene pair, and estimated the probability that genes in a
conserved gene pair belonged to the same operon (4). A
gene pair is defined as two adjacent genes (G1, G2) on the
same strand, separated by at most 200 bp. A conserved
gene pair is a gene pair that is found in two or more
distinct genomes, where for pair (A, B) in genome G,
and (C, D) in genome G,, A and C are orthologs, and B
and D are orthologs.

The probability that a conserved gene pair between two
genomes belongs to an operon was estimated (in the orig-
inal OperonDB algorithm) from the overall proportion of
conserved gene pairs as:

P(gene pair in operon)

P(conserved|D) 1
=1 P(conserved|S) X P(SNIS) = Petance
where S and D are the sets of adjacent gene pairs on the
same and different strands, respectively, SN is a subset of
S that contains only pairs that do not belong to the same
operon and Pgance 18 the probability that a conserved S
pair has homologs in other genomes.

We recently re-designed the algorithm behind
OperonDB to make it more efficient and to improve its
accuracy. The new implementation has increased sensitiv-
ity due to a relaxation of the constraints required to assign
a gene pair to an operon. For example, in the current
implementation, we eliminate the adjacency requirement
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by requiring a gene pair to be co-linear, but allowing genes
on the same strand to be separated by other genes with the
same orientation. A threshold determines the maximum
number of genes that are allowed to separate genes
in any conserved gene pair. This relaxation allows for
re-shufflings of gene order between species as well as
genes inserted erroneously by misannotations. We also
eliminated the 200-bp minimum separation between
genes: while this limit works well for E. coli, other species
have different distributions of intergenic lengths, and
genes within operons are likely to reflect this difference (5).

By assuming that the conservation of a gene pair is
independent of intergenic distance /, we can rewrite
Equation 1 as:

P(gene pair in operon) =
B P(conserved|D) » P(/|D)
P(conserved|S)  P(l]S)

where the two probabilities P(/|S) and P(/|D) define the
probabilities for a given S or D pair to have length /
(estimated from the distributions of intergenic distances
between same strand and opposite strand pairs,
respectively).

Due to the enormous quantities of data involved when
dealing with the numerous prokaryotic genomes available
today, the most computationally intensive step in estimat-
ing the probabilities in Equation 2 is the identification of
conserved pairs. To speed-up this step, we identify all
orthologs between all pairs of genomes with highly paral-
lelized BLAST (6) searches run on a grid-based system.
We then find conserved gene clusters with a slightly mod-
ified version of the HomologyTeams (7) software. The
algorithm implemented by HomologyTeams is a fast
way to identify sets of orthologous genes. Within the con-
served clusters neither the order of the genes nor their
orientation need to be conserved, but a fixed threshold
limits the distance between adjacent genes. We modified
the HomologyTeams program to allow conserved pairs to
be separated by a fixed number of non-conserved genes as
well. This modification allows us to estimate both S and D
conserved pairs in the context of our relaxed definition of
gene pair.

Although Equation 2 is an attempt to compute the
probability P that two genes belong to the same operon,
it incorporates several simplifying assumptions related to
both the operon model (e.g. by assuming that D pairs can
never belong to operons) and the evolutionary reason for
gene cluster conservation (e.g. by ignoring alternative
causes such as lateral gene transfer). As shown previously
(4), these assumptions serve to make our estimate of P
more conservative; i.e. it is an underestimate. Therefore,
for the remainder of this discussion we will use the term
confidence value instead of probability when we refer to
the estimated value of P.

The confidence value computed by Equation 2 does not
take into account the evolutionary distance between the
species containing the conserved gene pairs. Intuitively,
the probability that a conserved gene cluster is co-tran-
scribed should be higher if a larger evolutionary distance
separates the species. To reflect this fact, we first estimate
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Figure 1. OperonDB ROC curves computed using the original predic-
tion algorithm from 2001 (‘old’) versus the new improved algorithm
(‘new’). True and false positive rates are computed on a set of 602
E. coli experimentally confirmed operon pairs from RegulonDB.

the evolutionary distance between any two genomes G
and G, using the Jaccard distance (8):

n(Gy) + n(Gz) — WGy;G2) — h(Gy: Gy)
n(Gy) + n(G)

where n(G;) is the number of genes in G; and /(G ;G)) is the
number of homologues from G;in G,. The previously com-
puted confidence value for a conserved gene pair in two
genomes G; and G, is then weighted with the ratio
between d(G1,G,) and the maximum genome distance
observed in the database.

Figure 1 shows Receiver Operating Characteristic
(ROC) curves of true positive versus false positive
operon predictions for the new OperonDB database.
The ROC curves are computed using a set of 602 E. coli
operon pairs from RegulonDB (9), all of which are sup-
ported by experimental evidence. In the figure, a true posi-
tive is defined as any prediction of a conserved gene pair
that is contained in a documented operon, and a false
positive is any predicted pair where only one of the two
genes belongs to a confirmed operon from the E. coli data
set. Our new method shows substantial improvement over
the previous implementation, especially for sensitivity
levels >60%. Using Figure 1, we can compute the accu-
racy (defined as the average of sensitivity and specificity)
of the new OperonDB for all possible thresholds. The
maximum accuracy achieved is 80%, which is comparable
to accuracies obtained by other recent operon prediction
methods (10).

d(G1,G) = 3

IMPLEMENTATION AND WEB INTERFACE

OperonDB is accessible through a web interface at
operondb.cbcb.umd.edu. The website is regularly updated
and currently contains operon predictions for 550 bacter-
ial and archaeal genomes, comprising the complete collec-
tion of finished prokaryotic genomes available from
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Figure 2. Site map of OperonDB. (A) Homepage of OperonDB. (B) Genomes are browsed by clicking the ‘Genomes’ navigation tab, which brings up
an alphabetically ordered list of species. (C) The user can obtain a list of predicted operon gene pairs and their associated confidence values by
selecting a specific organism. (D) Clicking on the number of genomes in which a particular pair is conserved retrieves the list of homologous gene
pairs in those genomes. Each gene name is linked to the corresponding Gene Information page at NCBI. (E) Alternatively, a user can search for a
genome by entering an organism’s name or its NCBI GenlInfo (GI) number in the search box located above the navigation tabs and mirrored on
every page of the website. The search will return a comprehensive list of organisms that match the search query. (F) OperonDB’s help page.

Genbank (www.ncbi.nih.gov) as of July 2008. This
number will increase over time as more complete micro-
bial genomes appear. All predictions can be downloaded
in bulk, and the OperonDB software is available as free,
open source software.

In an effort to make OperonDB faster and more porta-
ble, we have made several changes that have dramatically
improved its performance and user interface. The most
significant performance upgrade resulted from a switch
of the database management system from Sybase to
MySQL (5.0.22). The database also received a perfor-
mance boost from a new database schema, better optimi-
zation tuning and an improved caching system. In
consequence, OperonDB is ecasily scalable to a large
number of genomes, and we routinely update it with
little or no system downtime.

OperonDB’s web interface, which uses an Apache web
server and a collection of php and perl-cgi scripts, was
redesigned with a more intuitive system for data browsing.
Figure 2 shows a site map of OperonDB.

FUTURE PLANS

Accurate knowledge of promoters and terminators should
allow us to improve further our predictions of transcrip-
tion boundaries. Although promoters are notoriously dif-
ficult to predict, the TransTermHP system (11) does an
excellent job—for at least some species—of finding rho-
independent terminators. And as mentioned above, when
expression data are available, operon predictions can be
even more accurate. We will continue to explore these and
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other methods for improving the accuracy of our operon
finding algorithm.
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