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In this study a general formula was established for multi-center integrals over Gaussian basis sets

using the two-center expansion of nuclear attraction and electron repulsion potentials. The terms of the

formula are the analytical functions of interatomic distances.

Three kinds of integrals contained in these formulae can be evaluated analytically. In the presented

method, unlike many other popular methods, the numerical integrations procedure is unnecessary since

it does not contain the incomplete gamma function. A computer program was written and tested for

various orbitals. The calculations show that the series converge very rapidly.

Introduction

The evaluation of multi-center integrals, which is still a important problems in the quantum mechanical
treatment of many-atomic systems has been continuously considered over the last 50 years.

Currently used ab initio methods, even over Gaussian basis sets, which are prefered to Slater
basis sets since the evaluation of the integrals is relatively simple, are expensive and applicable only to small
molecules. An appreciable difficulty appearing in such methods is the fact that the expression for the multi-
center integrals quite often used in these methods are greatly complicated and consume enormous amounts

of computer time1.

In view of the rapid progress of computer capability, it is very desirable to have a reliable assessment

of the usefulness of a Gaussian-type orbital (GTO) as a basis function for large-scale molecular calculation.

The advent of high-speed computers has encouraged researchers to launch a major programming effort
on quantum-mechanical calculations of polyatomic systems, considerable exploratory work on the use of
Gaussian functions for molecular calculations has been undertaken.

Under these circumstances, it is still important to obtain simpler and compact expressions for the
evaluation of multi-center two-electron integrals permitting one to more easily generate the associated
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computer-based solutions. In recent years, many-centered two-electron integrals have been calculated by

many authors2−5.
In the present work, a general formula is derived for the evaluation of multi-center nuclear attraction

and electron repulsion integrals over Gaussian basis functions for the case of moderate overlap. Unlike many
other popular methods, the presented method does not contain the incomplete gamma function, which needs
many numerical integration procedures.

Definitions and Formulae

The contracted Cartesian Gaussian function φA on a center A is defined as

φA(
→
r ) =

M∑
k=1

Dkχk(A, αk, `, m, n) (1)

where the Dk are known as contraction coefficients and M is known as the degree of contraction of φA and

χk(A, αk, `, m, n) = Nα(x−XA)`(y − YA)m(z − ZA)ne−α(
→
r−

→
RA)2

(2)

is the normalized primitive Cartesian Gaussian function with exponent αk. The normalization factor in eq.

(2) is given by

Nα = (
22(`+m+n)α`+m+n

(2`− 1)!!(2m− 1)!!(2n− 1)!!
(

√
2α
π

)3)1/2 (3a)

A multi-center integral over a contracted Gaussian function given by equation (1) can be calculated as a

linear combination of the multi-center integrals over the primitive Gaussian functions given by equation (2).

All the coordinate systems on various centers are considered parallel and right handed in all the
following formulas.

The overlap and kinetic energy integral formulae are similar to the formulae given by Taketa et al.6.
But for easy evaluation algorithms, normalization factor and overlap integrals are written as follows:

Nα = [I(2(`+m+ n+ 1), 2α)IA(2m, 2`)IB(2(m + `) + 1, 2n)]−1/2 (3b)

〈χ(A, α1, `1, m1, n1) |χ(B, α2, `2, m2, n2) 〉 = Nα1Nα2e
− α1α2
α1+α2

RAB
2

`1∑
k1=0

`2∑
k2=0

m1∑
k3=0

m2∑
k4=0

n1∑
k5=0

n2∑
k6=0

Xl1−k1
DA Xl2−k2

DB Y m1−k3
DA Y m2−k4

DB Zn1−k5
DA Zn2−k6

DB

C`1k1
C`2k2

Cm1
k3
Cm2
k4
Cn1
k5
Cn2
k6
I(k1 + k2 + k3 + k4 + k5 + k6 + 2, α1 + α2)

IA(k3 + k4, k1 + k2)IB(k1 + k2 + k3 + k4 + 1, k5 + k6)
(4)
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Cji = i!
j!(i−j)!

−→
R AB = −→RA −

−→
RB

I(N, α) =

∞∫
0

rN exp(−αr2)dr (4a)

IB(M,N) =

π∫
0

(sin θ)M (cos θ)N dθ (4b)

IA(M,N) =

2π∫
0

(sinϕ)M (cosϕ)Ndϕ (4c)

where XDA = α1XA+α2XB
α1+α2

−XA, XDB = α1XA+α2XB
α1+α2

−XB and YDA, YDB , ZDA, ZDB are similarly defined

for the y- and z-coordinates.

Two-center Nuclear Attraction Integral

The two-center nuclear attraction integral is defined as

NC2 = 〈χ(C, α1, `1, m1, n1)
∣∣∣∣ 1
→
rA

∣∣∣∣χ(C, α2, `2, m2, n2)〉 (5)

Here
∣∣∣ 1
→
rA

∣∣∣ can be evaluated by using the two-center expansion7 as follows:

1

|→rA|
= 1

R

∞∑
s=0

(−1)s( rR )s [Ps(cos θ) Ps(cos θR)

+2
s∑

t=−s

(s−t)!
(s+t)!P

t
s(cos θ)P ts (cos θR) cos t(ϕ − ϕR)]

(6)

where
→
rA is the position vector of the electron from the nuclear center A; R is the distance from A to another

nuclear center C; (r, θ, ϕ) and (R, ϕR, θR) are the spherical polar coordinates of electron and A centered

about C, respectively. It is clear that R, θR and ϕR can be written in terms of the coordinates of C and A
as follows:

R =
√

(XA −XC)2 + (YA − YC)2 + (ZA − ZC)2 (7)

θR = arccos
ZC − ZA

R
(8)
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ϕR = arctan
ZC − ZA
XC −XA

(9)

In eq. (6), Pm` (cos θ) are the well known associated Legendre functions.

It is easy to obtain the integral values over the variables of electron of eq. (5) by introducing eq. (6)

into eq. (5) and referring to the spherical polar coordinates with the nucleus C as the origin:

NC2 = Nα1Nα2

∞∑
s=0

(−1)s
Is(J, α1 + α2)

Rs+1
Is(L, θR, ϕR) (10)

where

Is(L, θR, ϕR) = IAs(m1 +m2 , `1 + `2)IBs(`1 + `2 +m1 +m2 + 1, n1 + n2)Ps(cos θR)

+2
s∑
t=1

(s−t)!
(s+t)! IPs,t(`1 + `2 +m1 +m2 + 1, n1 + n2)P ts(cos θR)

[ICt(n1 + n2, `1 + `2) cos tϕR + ISt(m1 +m2, `1 + `2) sin tϕR]

(11)

L stands for a set of (`1, m1, n1, `2, m2, n2) numbers and

J = `1 + `2 +m1 +m2 + n1 + n2 + 2

I`(J, α) =

∞∫
0

rJ+`e−αr
2
dr

IP`(M,N) =

π∫
0

sinMθ cosNθP`(cos θ)dθ

IP`,m(M,N) =

π∫
0

sinMθ cosNθPm` (cos θ)dθ

ISm(M,N) =

2π∫
0

sinMϕ cosNϕ sinmϕdϕ

ICm(M,N) =

2π∫
0

sinMϕ cosNϕ cosmϕdϕ

The analytical solution of these integrals is possible (see appendix).

408



Calculation of Multi-Center Integrals for the Region of..., A. KARABULUT, et al.,

Three-center Nuclear Attraction Integral

The three-center nuclear attraction integral is defined as

NC3 = 〈χ(C, α1, `1, m1, n1)
∣∣∣∣ 1
→
rA

∣∣∣∣χ(B, α2, `2, m2, n2)〉 (12)

We obtained the resultant formula by using the expressions of χ’s and
∣∣∣ 1
→
rA

∣∣∣ given by eqs. (2) and (6),

respectively.

NC3 = Nα1Nα2e
− α1α2
α1+α2

R2
CB

∑
k1k2k3k4k5k6

Ck1
`1
Ck2
m1
Ck3
n1
Ck4
`2
Ck5
m2
Ck6
n2
X`1−k1
DA Y m1−k2

DA Zn1−k3
DA

X`2−k4
DB Y m2−k5

DB Zn2−k6
DB

∞∑
s=0

(−1)s 1
Rs+1
DA

Is(k, α1 + α2)Is(LK, θDA, ϕDA)

(13)

where
k = k1 + k2 + k3 + k4 + k5 + k6

Is(LK, θDA, ϕDA) = IAs(k2 + k5, k1 + k4)IBs(k1 + k4 + k2 + k5 + 1, k3 + k6)Ps(cos θDA)

+2
s∑
t=1

(s−t)!
(s+t)!

IPs,t(k1 + k2 + k4 + k5 + 1, k3 + k6)P ts(cos θDA)

[ICt(k3 + k6, k1 + k4) cos tϕDA + ISt(k2 + k5, k1 + k4) sin tϕDA]

(14)

LK stands for a set of (k1, k2, k3, k4, k5, k6) numbers. Where

XD =
α1XC + α2XB

α1 + α2

and YD and ZD are similarly defined,

→
RCB=

→
RC −

→
RB

→
RDA=

→
RD −

→
RA

→
RAB=

→
RB −

→
RA

θDA = arccos
ZD − ZA
RDA

ϕDA = arctan
YD − YA
XD −XA

The summations in eq. (14) are over the following ranges:

k1 = 0− `1; k2 = 0−m1; k3 = 0− n1; k4 = 0− `2; k5 = 0−m2; k6 = 0− n2
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Two-center Two-electron Repulsion Integral

A two-center two-electrons repulsion integral can be defined as

ER2 = 〈χ(A, α1, `1, m1, n1)χ(A, α2, `2, m2, n2)
∣∣∣ 1
→
r12

∣∣∣
χ(B, α3, `3, m3, n3)χ(B, α4, `4, m4, n4)〉

(15)

For the evaluation of ER2, we used the two-center expansion of
∣∣∣ 1
→
r12

∣∣∣ as given in8

1
r12

=
∞∑
s1=0

∞∑
s2=0

r
s1
1 r

s2
2

R
s1+s2+1
AB

[F (s1, s2, 0) P 0
s1

(cos θ1)P 0
s2

(cos θ2)

+2
Smin∑
t=1

(−1)t
√

(s1−t)!(s2−t)!
(s1+t)!(s2+t)!F (s1, s2, t)P ts1

(cos θ1)P ts2
(cos θ2) cos t(ϕ1 − ϕ2)]

(16)

where

F (s1, s2, t) = (−1)s2
(s1 + s2)!

((s1 + t)!(s1 − t)!(s2 + t)!(s2 − t)!)1/2
(17)

(r1θ1ϕ1) and (r2θ2ϕ2) the spherical polar coordinates of 1 and 2 electrons centered about nuclei A and

B, respectively. Introducing eq. (16) into eq. (15) and referring to spherical polar coordinates with the nuclei

A and B as the origin for each electrons integrating over the coordinates of the electrons simultaneously, we
have

ER2 = N1N2N3N4

∞∑
s1=0

∞∑
s2=0

Is1(J1, α1 + α2)Is2 (J2, α3 + α4)
Rs1+s2+1
AB

Is1s2(L1, L2) (18)

where

Is1s2(L1, L2) = IAs1 (m1 +m2, `1 + `2)

IAs2 (m3 +m4, `3 + `4)IPs1(`1 + `2 +m1 +m2 + 1, n1 + n2)

IPs2(`3 + `4 +m3 +m4 + 1, n3 + n4)P ts (cos θR)F (s1, s2, 0)

+2
Smin∑
t=1

(−1)t
√

(s1−t)!(s2−t)!
(s1+t)!(s2+t)!

(F (s1, s2, t)IPs1t(`1 + `2 +m1 +m2 + 1, n1 + n2)

IPs2t(`3 + `4 +m3 +m4 + 1, n3 + n4) [ICt(m1 +m2, `1 + `2)

ICt(m3 +m4, `3 + `4) + ISt(m1 +m2, `1 + `2) ISt(m3 +m4, `3 + `4)]

(19)

J1 = `1 + `2 +m1 +m2 + n1 + n2 + 2; J2 = `3 + `4 +m3 +m4 + n3 + n4 + 2.
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Three-center Two-electron Repulsion Integral

Due to the definition of the three-center two-electron repulsion integral

ER3 = 〈χ(A, α1, `1, m1, n1)χ(A, α2, `2, m2, n2)
∣∣∣ 1
→
r12

∣∣∣
χ(B, α3, `3, m3, n3)χ(C, α4, `4, m4, n4)〉

(20)

and using the similar procedure given in subsection 3.3, we obtain

ER3 = N1N2N3N4e
− α1α2
α1+α2

R2
ABe

− α3α4
α3+α4

R2
CB

∞∑
s1=0

∞∑
s2=0

∑
k1k2k3k4k5k6

Ck1
`3
Ck2
`4
Ck3
m3
Ck4
m4
Ck5
n3
Ck6
n4
X`3−k1
DB X`4−k2

DC Y m3−k3
DB Y m4−k4

DC Zn3−k5
DB Zn4−k6

DC

Is1(J1,α1+α2)Is2(K2,α3+α4)

R
s1+s2+1
DA

Is1s2(L1, LK1)

(21)

where

Is1s2(L1, LK1) = IA(m1 +m2, `1 + `2)IA(k3 + k4, k1 + k2)

IPs1(`1 + `2 +m1 +m2 + 1, n1 + n2)IPs2(k1 + k2 + k3 + k4 + 1, k5 + k6)(F (s1, s2, 0)

+2
Smin∑
t=1

(−1)t
√

(s1−t)!(s2−t)!
(s1+t)!(s2+t)! (F (s1, s2, t)IPs1t(`1 + `2 +m1 +m2 + 1, n1 + n2)

IPs2k(k1 + k2 + k3 + k4 + 1, k5 + k6) [ICm(m1 +m2, `1 + `2) ICm(k3 + k4, k1 + k2)

ISm(m1 +m2 , `1 + `2) ISm(k3 + k4, k1 + k2)]

(22)

K2 = k1 + k2 + k3 + k4 + k5 + k6 + 2

XD =
α3XB + α4XC

α3 + α4

YD and ZD are also similarly defined,

→
RDB=

→
RD −

→
RB

→
RDC=

→
RD −

→
RC

→
RDA=

→
RD −

→
RA

→
RCB=

→
RC −

→
RB

The summations in eq. (16b) are over the following ranges:

k1 = 0− `3; k2 = 0− `4; k3 = 0−m3; k4 = 0−m4; k5 = 0− n3; k6 = 0− n4
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Four-center Two-electron Repulsion Integral

The definition of the four-center two-electrons repulsion integral is as follows:

ER4 = 〈χ(A, α1, `1, m1, n1)χ(B, α2, `2, m2, n2)
∣∣∣ 1
→
r12

∣∣∣
χ(C, α3, `3, m3, n3)χ(D, α4, `4, m4, n4)〉

(23)

Using a procedure similar to that given in subsection 2.3, we obtain

ER4 = N1N2N3N4e
(− α1α2

α1+α2
R2
AB+

α3α4
α3+α4

R2
CD)

∞∑
s1=0

∞∑
s2=0

∑
k1k2k3...k12

Ck1
m1
Ck2
`1
Ck3
n1
Ck4
m2
Ck5
`2
Ck6
n2
Ck7
m3
Ck8
`3
Ck9
n3
Ck10
m4
Ck11
`4
Ck12
n4

Xm1−k1
FA Y `1−k2

FA Zn1−k3
FA Xm2−k4

FB Y `2−k5
FB Zn2−k6

FB Xm3−k7
PC Y `3−k8

PC Zn3−k9
PC Xm4−k10

PD Y `4−k11
PD Zn4−k12

PD

Is1(K1,α1+α2)Is2(K2,α3+α4)

R
s1+s2+1
FP

Is1s2(LK1 , LK2)
(24)

where

Is1s2(LK1 , LK2) = IA(k1 + k4, k2 + k5)IA(k7 + k10, k8 + k11)

IPs1(k1 + k2 + k4 + k5 + 1, k3 + k6)IPs2(k7 + k8 + k10 + k11 + 1, k9 + k12)(F (s1, s2, 0)

+2
Smin∑
t=1

(−1)t
√

(s1−t)!(s2−t)!
(s1+t)!(s2+t)! (F (s1, s2, t)IPs1t(k1 + k2 + k4 + k5 + 1, k3 + k6)

IPs2t(k7 + k8 + k10 + k11 + 1, k9 + k12) [ICt(k1 + k4, k2 + k5) ICt(k7 + k10, k8 + k11)

ISt(k1 + k4, k2 + k5) ISt(k7 + k10, k8 + k11)]
(25)

K1 = k1 + k2 + k3 + k4 + k5 + k6 + 2, K2 = k7 + k8 + k9 + k10 + k11 + k12 + 2

The summations in eq. (24) are over the following ranges:

k1 = 0÷m1; k2 = 0÷ `2; k3 = 0÷ n1; k4 = 0÷m2 ; k5 = 0÷ `2; k6 = 0÷ n2;
k7 = 0÷m3; k8 = 0÷ `3; k9 = 0÷ n3; k10 = 0÷m4; k11 = 0÷ `4; k12 = 0÷ n4.

XF =
α1XA + α2XB

α1 + α2

YF and ZF are similarly defined,

XP =
α3XC + α4XD

α3 + α4

YP and ZP are similarly defined,

→
RAB=

→
RA −

→
RB

→
RCB=

→
RC −

→
RB

→
RFP=

→
RF −

→
RP
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Results and Discussion

Analytical evaluations of the integrals Is(J, α), IA(M,N), IB(M,N) are described in the appendix. The

latter two integrals are independent of exponent αk and therefore they can be coded for all possible values
of M,N and reach the computer main memory in the form of an array with two indices for any contracted

functions combination. For instance, the overlap integral over contracted Gaussian functions φA(−→r ) and

φB(−→r ) centered at points A and B, respectively, can be coded on the basis of the formula:

〈φA(−→r ) | φB(−→r )〉 =

〈
M1∑
p=1

dpχp(A, αp, `1, m1, n1) |
M2∑
q=1

dqχq(B, αq , `2, m2, n2)

〉

= (IA(2m1 , 2`1)IA(2m2 , 2`2)IB(2(m1 + `1) + 1, 2n1)IB(2(m2 + `2) + 1, 2n2))−1/2

`1∑
k1=0

`2∑
k2=0

m1∑
k3=0

m2∑
k4=0

n1∑
k5=0

n2∑
k6=0

C`1k1
C`2k2

Cm1
k3
Cm2
k4
Cn1
k5
Cn2
k6
IA(k3 + k4, k1 + k2)

IB(k1 + k2 + k3 + k4 + 1, k5 + k6)
Mq∑
q=1

Mp∑
p=1

[I(2(`1 +m1 + n1 + 1)αq)

I(2(`2 +m2 + n2 + 1)αp) ]−1/2
I((k1 + k2 + k3 + k4 + k5 + k6 + 2), αq + αp)

X`1−k1
DA X`2−k2

DB Y m1−k3
DA Y m2−k4

DB Zn1−k5
DA Zn2−k6

DB exp(− αpαq
αq+αp

R2
AB)dpdq

(26)

All multi-center integrals can be computed in a similarway by using the values of IA(M,N), IB(M,N)

over and over again when they have been calculated once.

For the Is(J, αp + αq) integrals, we can also use tree indices array form depending on the evaluable

computer memory capacity and speed of computations. Then each primitive Gaussian function must have

definite numeration in the data input and any integral Is(J, αp+αq) may have indices (J + s, np, nq), where

nq and np are the data input numeration of primitive Gaussian function χq and χp, respectively.

To evaluate the effect of the concerned number of the terms in the series in electron-electron repulsion
and nuclear attraction integrals and contraction coefficients on calculation sensitivity and calculation time
of the computer, test calculations are made for the systems containing four-centered orbitals. In these

calculations, we used the values of dK and αk given by Taketa6. The overlapping of the orbitals centered

on A(0,0,0), B(R,0,0), C(0,R,0) and D(0,0,R) depends on R. The calculated results for the various orbitals

for the different M and S values show that the convergence of the series contained in the integrals is fast in

the region where the overlapping is moderate or weak. As an example, the results of 1s type (1s Slater-type

function ( 1
π exp(−r)) by using the approximate GTO expansions6) orbitals for N=2, 9 and M=4, 8 are

given in Table 1. Analytical values of two-center integrals are also given in Tables 1 and 2 for comparison.

As seen from the table, there was a difference about 10−5 in the calculated values for N=2 and N=9

in R=2 (corresponding to an overlapping equal to 0.5864529) state but there was no difference for R=4

(corresponding to an overlapping equal to 0.189261). The latter one is also in good agreement with the

analytical value. An important aspect of this situation is that the effect of the M values on the sensitivities

of the integral values is small (the differences for M=4 and for M=8 are not greater than 10−7). In addition,
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the results of 3p and 3d types by using the approximate GTO expansion orbitals for N=2, 9 and M=4, 8 are
given in Tables 3 and 4. A similar tendency is also obtained for all the concerned orbitals. But the series
converges at the different values of R depending on the main atomic orbital radius, as expected.

Table 1. Many-center nuclear attraction integrals for 1s type orbitals (All the values are in atomic units)

R N NC2 NC3
4G 8G 4G 8G*

2 -.50000100 -.50000300 -.26001350 -.26001980
2 9 -.49999530 -.49999310 -.26001280 -.26001830

Anal.10 -.47252660 -
2 -.2500005 -.2500001 -.041933360 -.04195849

4 9 -.2500005 -.2500001 -.041933360 -.04195849
Anal. -.2495870 -

2 -.1250003 -.1250001 -.0008894574 -.00113242
8 9 -.1250003 -.1250001 -.0008894574 -.00113242

Anal. -.1249999 -
2 -.08333351 -.08333337 -.000007655 -.000026234

12 9 -.08333351 -.08333337 -.000007655 -.000026234
Anal. -.08333333 -

2 -.06250013 -.06250004 -.000000019 -.00000042
16 9 -.06250013 -.06250004 -.000000019 -.00000042

Anal. -.06250000 -

* STO-4G and -8G are a minimal basis having one STO, approximated by four and eight Gaussian functions.

Table 2. Many-center two-electron integrals for 1s type orbitals

R N ER2 ER3 ER4*
4G 8G 4G 8G 4G 8G

2 .5000020 .4999989 .2600139 .2600198 .1221766 .1221239
2 9 .4999983 .4999945 .2600128 .2600183 .1221680 .1221138

Anal. .4259743 - -
2 .2500010 .2499994 .04193343 .04195834 .00305804 .00310594

4 9 .2500010 .2499994 .04193343 .04195833 .00305804 .00310594
Anal. .2475539 - -

2 .12500050 .12499970 .00088946 .00113242 .00000027 .00000091
8 9 .12500050 .12499970 .00088946 .00113242 .00000027 .00000091

Anal. .12499800 - -
2 .08333366 .08333308 .00000766 .00002623 .00000000 .00000000

12 9 .08333366 .08333308 .00000766 .00002623 .00000000 .00000000
Anal. .08333333 - -

2 .06250025 .06249986 .00000002 .00000042 .00000000 .00000000
16 9 .06250025 .06349986 .00000002 .00000042 .00000000 .00000000

Anal. .06250000 - -
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Table 3. Many-center two-electron integrals for 3p type orbitals

R N ER2 ER3 ER4
4G 8G 4G 8G 4G 8G

2 .058802190 .058802270 .00000438527 .00000513633 .000000000005 .000000000019
16 7 .058743730 .058744210 .00000437687 .00000512139 .000000000004 .000000000014

9 .059032600 .059037270 .00000437203 .00000512057 .000000000004 .000000000014
2 .04050455 .040504680 .00000000168 .00000000685 .00000000000 .00000000000

24 7 .04045714 .040457250 .00000000168 .00000000684 .00000000000 .00000000000
9 .04045749 .040457610 .00000000168 .00000000684 .00000000000 .00000000000
2 .034973550 .034973620 .00000000016 .0000000002 .00000000000 .00000000000

28 7 .034949580 .034950980 .00000000016 .0000000002 .00000000000 .00000000000
9 .034949520 .034949650 .00000000016 .0000000002 .00000000000 .00000000000

Table 4. Many-center two-electron integrals for 3d type orbitals

R N ER2 ER3 ER4
4G 8G 4G 8G 4G 8G

2 .050601230 .053672150 .00000091585 .00000192612 .00000000 .00000000
16 7 .051248000 .054319120 .00000091309 .00000192023 .00000000 .00000000

9 .051555770 .054658180 .00000091303 .00000192023 .00000000 .00000000
2 .036226260 .038407280 .000000000031 .000000002126 .00000000 .00000000

24 7 .036210510 .038389760 .000000000031 .000000002125 .00000000 .00000000
9 .036211890 .038391250 .000000000031 .000000002125 .00000000 .00000000
2 .031678620 .033574240 .00000000000 .000000000064 .00000000 .00000000

28 9 .031664300 .033559090 .00000000000 .000000000064 .00000000 .00000000
9 .031664410 .033559150 .00000000000 .000000000064 .00000000 .00000000

In the same way, convergence analysis of the series allows us to find the starting point of the
convergence for different orbitals.

As a result, a general formula is derived for the evaluation of the multi-center nuclear attraction and
electron repulsion integrals in the form of the series giving sufficiently accurate values, each containing only
two or three terms.

Besides the sufficient accuracy, the presented formulae can provide a fast algorithm for the calculation
of non-valence intra- and inter-molecular interaction energies in polyatomic systems, in which the computa-
tion time is not unreasonable in relation to the information obtained. Undoubtedly, this method of approach
is very attractive for the calculations of the overlap, nuclear attraction and electron repulsion integrals of
the 2-4 centered system containing similar atoms.

References

1. Paper Symposium on Computational Methods in Quantum Chemistry, Solid-State Theory and Molecular

Biology in Honor of Enrico Clementi, Int. J. Quantum Chem., 42, 523-1632(1992).

2. E. F. Valeev, F Schaefer, J. Chem. Phys., 113 (10), 3390 (2000).

3. V. Magnasco, A. Rapallo, Int. J. Quantum Chem., 79 (2), 91 (2000).

4. V. Magnasco, M. Casanova, A. Rapallo, Chem. Phys. Letters, 289 (1-2), 81 (1998).

415



Calculation of Multi-Center Integrals for the Region of..., A. KARABULUT, et al.,

5. J. F. Rico, R. Lopez, I. Ema, G. Ramirez, Comp. Phys. Com., 105 (2-3), 216 (1997).

6. H. Taketa, S. Huzinaga, K. O-ohata, J. Phys. Soc. Japan, 21, 11 (1966).

7. V. I. Smirnov, Kurs Vis. Mat., Moscow, Nauka, 3, 2 (1969) (Russian).

8. A. T. Amos, Gripsin R.J., Theoretical Chemistry: Advances and Perspectives, 2, 1 (1976).

9. I. J. Gradsteyn and I. M. Rijik, Integral, series, addition and derivation tables, (1952) (Russian).

10. P. Gombas, Theorie und Lösungsmethoden des Mehrteilchenproblems der Wellenmechanik, Basel,

p.266 (1950).

416



Calculation of Multi-Center Integrals for the Region of..., A. KARABULUT, et al.,

Appendix

1- According to reference [9], the integral Ie(j, α) is given by

IS(j, α) =
(j + l − 1)!!

2(2α)
j+S

2

√
π

α
for l+ j = 2n (A1)

and

S(j, α) =
( j+l−1

2 )!

2α
j+l+1

2

for l+ j = 2n+ 1 (A2)

2- IA(M,N) integral equals zero, unless both M and N are even, so

IA(2m, 2n) =
(2m− 1)!!(2n− 1)!!

(2m+ 2n)(2m+ 2n− 2) . . . (2m+ 2)
2π

2mm!
(A3)

3- IB(M,N) integral equals zero, unless N is even and given by

IB(2m, 2n) =
(2n− 1)!!(2m− 1)!!

(2m+ 2n)(2m+ 2n− 2) . . . (2m+ 2)
π

2mm!
for M = 2m (A4)

and

IB(2m, 2n) =
(2n− 1)!!

(2m+ 2n+ 1)(2m+ 2n− 1) . . . (2m+ 3)
22m+1(m!)2

(2m+ 1)!
for M = 2m+ 1 (A5)

4-

IPl,m(M,N) = (2l−1)!!
(l−m)!

(IB(M +m,N + l −m)+

+
∑
j=1

j∏
k=1

(α+k−1)(β+k+1)
(γ+k−1)k IB(M +m, l −m− 2j))

(A6)

In this equation the summation is restricted with the non-negative values of n−m− 2j. Where

α =
m− l

2
; β =

m− l+ 1
2

; γ =
1
2
− l (A7)

5-

IPl(M,N) = IPl,0(M,N) for m = 0 (A8)
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6-

ISm(M,N) = 2m−1IA(M + 1, N +m− 1)− C1
m−22m−3IA(M + 1, N +m− 3)

+C2
m−32

m−5IA(M + 1, N +m− 5) · · · (−1)dCdm−(d+1)2
m−(2d+1)IA(M + 1, N +m− (2d+ 1)

(A9)

The series can be expanded to d > (m+ (d+ 1)) at which the binomial coefficients are equal to zero.
7-

ICm(M,N) = 2m−1IA(M,N +m)− m
1 2m−3IA(M,N +m− 2)

+m
2 C

1
m−32m−5IA(M,N +m− 4) · · · (−1)dmd C

d−1
m−(d+1)2

m−(2d+1)IA(M,N +m− 2d) (A10)
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