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In this study a general formula was established for multi-center integrals over Gaussian basis sets
using the two-center expansion of nuclear attraction and electron repulsion potentials. The terms of the
formula are the analytical functions of interatomic distances.

Three kinds of integrals contained in these formulae can be evaluated analytically. In the presented
method, unlike many other popular methods, the numerical integrations procedure is unnecessary since
it does not contain the incomplete gamma function. A computer program was written and tested for

various orbitals. The calculations show that the series converge very rapidly.

Introduction

The evaluation of multi-center integrals, which is still a important problems in the quantum mechanical
treatment of many-atomic systems has been continuously considered over the last 50 years.

Currently used ab initio methods, even over Gaussian basis sets, which are prefered to Slater
basis sets since the evaluation of the integrals is relatively simple, are expensive and applicable only to small
molecules. An appreciable difficulty appearing in such methods is the fact that the expression for the multi-
center integrals quite often used in these methods are greatly complicated and consume enormous amounts
of computer time!.

In view of the rapid progress of computer capability, it is very desirable to have a reliable assessment
of the usefulness of a Gaussian-type orbital (GTO) as a basis function for large-scale molecular calculation.
The advent of high-speed computers has encouraged researchers to launch a major programming effort
on quantum-mechanical calculations of polyatomic systems, considerable exploratory work on the use of

Gaussian functions for molecular calculations has been undertaken.
Under these circumstances, it is still important to obtain simpler and compact expressions for the

evaluation of multi-center two-electron integrals permitting one to more easily generate the associated
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computer-based solutions. In recent years, many-centered two-electron integrals have been calculated by
many authors?~>.

In the present work, a general formula is derived for the evaluation of multi-center nuclear attraction
and electron repulsion integrals over Gaussian basis functions for the case of moderate overlap. Unlike many
other popular methods, the presented method does not contain the incomplete gamma function, which needs

many numerical integration procedures.

Definitions and Formulae

The contracted Cartesian Gaussian function ¢4 on a center A is defined as

M
$a(T) =Y Dixr(A, g, £,m,n) (1)
k=1

where the Dy are known as contraction coefficients and M is known as the degree of contraction of ¢ 4 and

Xk (A, ag, b, m,n) = Ny (x — XA)K(y —Ya)"(z— ZA)"e_‘X(?_R‘“)2 (2)

is the normalized primitive Cartesian Gaussian function with exponent «j. The normalization factor in eq.

(2) is given by

22(€+m+n)a€+m+n 2 1/2
Na:((26—1)!!(2m—1)!!(2n—1)!!(\/;)3) ! (3a)

A multi-center integral over a contracted Gaussian function given by equation (1) can be calculated as a
linear combination of the multi-center integrals over the primitive Gaussian functions given by equation (2).
All the coordinate systems on various centers are considered parallel and right handed in all the
following formulas.
The overlap and kinetic energy integral formulae are similar to the formulae given by Taketa et al.5.

But for easy evaluation algorithms, normalization factor and overlap integrals are written as follows:

Ny = [I2(t+m + n+1),20)IA(2m, 20)IB(2(m + €) + 1,2n)] /2 (3b)

__ojoag 2
(x(A,a1,l1,m1,m1) |xX(B, ag, la,ma,na)) = Ny, Ny,e o170z Ras

na
11 —k1 lo—kay mi1—ksy ma—ks oni—ks ona—keg
Z Z Z Z Z Z XDA XDB YDA YDB ZDA ZDB
k1=0 k2=0 k3=0 k4=0 k5=0 k=0

Cl RO Ol CRrCR2I(ky + ko + ks + ka + ks + kg + 2, 01 + a2)

TA(k3 + ky, ky + ko) IB(ky + ko + k3 + kg + 1, ks + ke)
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I(N,a) = /TN exp(—ar?)dr (4a)
0

IB(M, N) = / (sin 0)™ (cos 0)N do (4b)
0

TA(M,N) = /(sin ©)M (cos )N de (4c)
0

where Xpa = % —Xa, XpB = % — Xp and Ypa, YpB, Zpa, Zpp are similarly defined

for the y- and z-coordinates.

Two-center Nuclear Attraction Integral

The two-center nuclear attraction integral is defined as

NC2 = <X(C,Ozl,€1,m1,7’h) X(Ca a25625m25n2)> (5)

—

rA

Here can be evaluated by using the two-center expansion” as follows:

=
TA

I
==
18

(=1)*(%)? [Ps(cos @) Ps(cosbr)

|r

hS

| s=0

S
+2 Y L8P (cos )P (cos Or) cost(p — o))
t=—s

where 74 is the position vector of the electron from the nuclear center A; R is the distance from A to another
nuclear center C; (r, 0, ¢) and (R, ¢g, Or) are the spherical polar coordinates of electron and A centered
about C, respectively. It is clear that R, 8z and @i can be written in terms of the coordinates of C' and A

as follows:

R=\/(Xa—Xc)2+ (Ya—Yc)2+ (Za — Zc)? (7)

—Za

Z
Or = arccos CT (8)
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Zo— 7
YR = arctan H (9)

In eq. (6), P/"(cos @) are the well known associated Legendre functions.

It is easy to obtain the integral values over the variables of electron of eq. (5) by introducing eq. (6)

into eq. (5) and referring to the spherical polar coordinates with the nucleus C' as the origin:

> SIS(J,Oél-i-OéQ)

NC2 =Ny, Noy S (=1 222 L T2 1 (L Ok, oR) (10)
Rs+1

s=0

where

I, (L,0r, or) = IAs(m1 + ma, b1 + l2)IBs (€1 + by +mq + ma + 1,11 + ng) Ps(cos Or)

S
+2 Zl CL TP o (6 + Lo + my + ma + 1,m1 + ng) PY(cos O) (11)
t=
[IC:(n1 4 na, b1 + €3) costor + I1S:(m1 + ma, €1 + £2) sintpp)
L stands for a set of (¢1,m1,n1, {2, M2, n2) numbers and

J=01 4+l +m+ma+ny+ne+2

[o )

I(J,0) = /7“]+€e_‘*’“2dr
0

™

IP;(M,N) :/sinMGCOSNGPg(COSG)dG
0

1Py (M, N) Z/SinMOCOSNGPg”(COSG)dO
0

27

15, (M,N) :/sinMgocosNgosinmgodap
0
27

I1C,, (M, N) :/SinMgocosNapcosmgodgo
0

The analytical solution of these integrals is possible (see appendix).
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Three-center Nuclear Attraction Integral

The three-center nuclear attraction integral is defined as

NC3 = <X(C,a1,€1,m1,nl) X(B,Oég,ég,ﬂlg,ﬂg)) (12)

—

rA

We obtained the resultant formula by using the expressions of x’s and ‘%‘ given by egs. (2) and (6),
A

respectively.
NC3 = N4y, Naje~ e R&p 3 021 Cﬁ% Cﬁf C’Z‘Cﬁ% CﬁgX%;kl ng_’“ ZglA—lw
kikokskakske
(13)
o0
XBE YRR 255" 3. (<) b L a1 + a2) (LK, Opa, )
s=0 D
where
k=ki+ko+ks+Fks+ks+ke
I, (LK,0pa,opa) = TAg(ko + ks, k1 + ka)IBs(k1 + ka + ko + ks + 1, ks + kg) Ps(cosOpa)
S
+2 Y BB y(ky + ko + ka + ks + 1, ks + k) P (cos Opa) (14)
t=1

[Ict(k’g + ke, k1 + ka) costopa + ISt(kig + ks, k1 + ka) Sint(pDA]
LK stands for a set of (ki, ka, ks, k4, k5, k¢) numbers. Where

a1 Xo + axXp

X =
b a1+ Qay

and Yp and Zp are similarly defined,

Rep=Rc — Rp

Rpa=Rp — Ra

Rap=Rp — Ra
Zp —Za
0pa = arccos ———
DA
+ Yp —Ya
= arctan ———
YPDA arcta. XD — XA

The summations in eq. (14) are over the following ranges:

k:1:0—61;k’2:O—ml;kzg:O—nl;kz4:O—ég;kz5=0—m2;k:6=0—n2
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Two-center Two-electron Repulsion Integral

A two-center two-electrons repulsion integral can be defined as

ER2 = (x(A, a1, l1,m1,n1)X (A, ag, o, ma, ng) | =

r12

X(Ba as, 635 ms, 7’L3)X(B, Qy, 645 My, TL4)>

For the evaluation of ER2, we used the two-center expansion of | = 8

r12

as given in

919

Z Z 91+92+1 [F(SlaSQaO) PO (COS 91) (COS 92)
s1=0 s2= O

+2 Z (-1 ,/%F(sl, s9,t) P! (cosby) Pl (cosby) cost(p1 — ¢2)]

where

(s1+ s2)!
((51 +t)!(51 — t)!(SQ + t)!(SQ — t)!)l/Q

F(Sl, S92, t) = (—1)82

(15)

(16)

(17)

(r101p1) and (r262¢2) the spherical polar coordinates of 1 and 2 electrons centered about nuclei A and

B, respectively. Introducing eq. (16) into eq. (15) and referring to spherical polar coordinates with the nuclei

A and B as the origin for each electrons integrating over the coordinates of the electrons simultaneously, we

have

(J1, a1 + a2)1,, (J2, a3 + o)
R61+s2+1
AB

ER2 = N;NyN3N, Z Z Loy I s,(L1, Lo)

s1=052=0
where
Islsz (Lla LQ) - IAsl (ml + ma, el + 62)

ITAg, (m3+ my, b3+ L4)IPs (€1 + Lo+ my +mg + 1,11 + n2)

IP,, (03 + €y + m3 4+ ma + 1,n3 + na) Pl (cos Or) F(s1, 52,0)

Smin

+2 Z ( %(F(sl,s%tﬂﬂlt(@l + Ul +m1+ms+ 1,01 +TL2)

IPg, (03 + Ly + m3 4+ my + 1,134+ nyg) [IC:(my + ma, { + £2)

ICt(mg + my, U3 + 64) + ISt(ml + meo, f1 -‘1-62) ISt(mg + my, {3 +€4)]

Ji=li+l+mi+mot+ng+ne+2;Jy =03+ +m3+mg+n3+ng+ 2.
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Three-center Two-electron Repulsion Integral

Due to the definition of the three-center two-electron repulsion integral

ER3 = <X(A7 aq, el) my, nl)X(A; Q2, 62; ma, nQ)

1 (20)
X(Ba a3, 635 ms, TL3)X(C, Qy, 645 my, TL4)>
and using the similar procedure given in subsection 3.3, we obtain
o aga o0 o0
ER3 = N\ N;N3Nye ™ artaz Fane~askas Ron 5
$1=0 s2=0 k1 kokskskskes
CpiCy2Cla Chs, ChrChe X B X o ke Y Py R Ypa ™z b 2 e (21)
I‘Sl(Jl70{1_;;}2245(27&34_&4)Is152 (LI; LKl)
where
IslsQ (Ll, LKl) = IA(m1 +mo, b1 + EQ)IA(IC?, + kg, k1 + k’g)
IPg, (614 £2 +my +ma + 1,01 + no) I Ps, (k1 + ko + ks + ka + 1, ks + ke) (F'(s1, 52,0)
Smin t [ (s1=t)!(s2—1)!
+2 (—1) W(F(SI;SQ;t)IPslt(el +€2 +m1 +m2+1,n1 +7’l2)
t=1
(22)

IPs2k(k’1 + ko +ks+ks+1,ks+ k’ﬁ) [IC’m(ml + mg,él -‘1-62) Icm(kig + kg, k1 + k’g)

1S, (m1 +ma, b1 + €2) 1Sy, (ks + ka, k1 + k2))

Ko=ki+ko+ks+ky+ks+ke+2

asXp + auXc

X =
b a3+ Qg4

Yp and Zp are also similarly defined,

Rpp=Rp — Rp
Rpc=Rp — Rc
Rpa=Rp — Ra
Rep=Rc — Rp
The summations in eq. (16b) are over the following ranges:

k:1=0—€3;k’2=0—€4;k’3=0—m3;k34=0—m4;kz5=O—n3;k6=0—n4
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Four-center Two-electron Repulsion Integral
The definition of the four-center two-electrons repulsion integral is as follows:

ER4 = <X(A7 aq, el) mi, nl)X(B; 2, 62; ma, nQ)

1 (23)
X(Ca a3, 635 ms, TL3)X(D, Qy, 645 my, TL4)>
Using a procedure similar to that given in subsection 2.3, we obtain
aya aga o0 o0
ER4 = Ny NyN3Nye“artas Fast ¥ Ren) 5o 5~ ¢
81=0 82=0 k1k2k3...k12
O, OOk O CrCRs Clr, Cr Cle Chio Gy O
Xyt e X Y g 2 e X TR Y e 2 R X e Yy Rz e
Iy (Ki,aitaz) s, (K2,a34a4) (24)
s1 1,01 R(g;;s‘;il 2,03 T04 18182 (LKl, LKQ)
where
18182 (LKl, LKQ) = IA(k’l + ky, ko + k/’5)IA(k’7 + k1o, ks + kll)
IP;, (k14 kg + kg + ks + 1, k3 + ke ) I Py, (k7 + ks + k1o + k11 + 1, kg + k12)(F (51, 52, 0)
Smin t [(s1=t)!(s2—1)!
+2 t; (=" oo (F'(s1, 82, )1 Py (k1 + ko + ka + ks + 1, ks + ko)
IPg, (k7 + ks + k1o + k11 + 1, ko + k12) [ICi (k1 + ka, ko + ks5) IC: (k7 + k1o, ks + k11)
(25)

IS (k1 + ka, ko + ks) IS¢ (k7 + k10, ks + k11)]
Ki=ki+ko+ks+ks+ks+ks+2, Ko=kr+ks+kg+kio+kii+kiat+2

The summations in eq. (24) are over the following ranges:

k:1=0+m1;k:2=0+€2;k’3=0+n1;kz4=0+m2;kz5=O+€2;k6=0+n2;
k’7=0+m3;k820+€3;k39=0+n3;k:10=0+m4;k:11=O+€4;k:12=0+n4.

a1 X4+ a2 Xp
Xp— BoATTB
o1+ a2
Yr and Zp are similarly defined,
Xp— a3 Xc + asXp
as + aq

Yp and Zp are similarly defined,
Rsp=Rs — Rp
Rcp=Rc — Rp

Rrpp=Rr — Rp
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Results and Discussion

Analytical evaluations of the integrals I (J, ), TA(M, N), IB(M, N) are described in the appendix. The
latter two integrals are independent of exponent «y and therefore they can be coded for all possible values
of M, N and reach the computer main memory in the form of an array with two indices for any contracted
functions combination. For instance, the overlap integral over contracted Gaussian functions ¢4(7) and

¢p(T) centered at points A and B, respectively, can be coded on the basis of the formula:

M, Mo
<¢A(T)) | ¢B(7))> = <Z dep(Aa apaelamlanl) | quxq(B)QQa€25m25n2)>

p=1 q=1

= (IA(2m1, 261)]14(27’712, 262)]3(2(7’711 + 61) + 1, 27’L1)IB(2(7’T7,2 + 62) + 1, 27’L2))_1/2

01 [ my M2 ni n2 Y Y
kZO kZO kZO kZO kZO kZO CrtCRC O CRr ClTA(Ks + ka, Ky + k)
1=0 k2=0 k3=0 k4=0 k5=0 k¢=

Mg M, (26)
IB(kil + ko +ks+ks+1,ks+ k’ﬁ) Z Z [1(2(61 +mi+n1+ 1)Oéq)
qg=1p=1

I(2(f +mo +no + D) |2 (k1 + ko + ks + ka + ks + ke + 2), ag + ay)

Xpa " Xpp YA YR M 2y 25 exp(— 255 Rap)dydy

All multi-center integrals can be computed in a similar way by using the values of TA(M, N), IB(M, N)
over and over again when they have been calculated once.

For the I,(J, ap + o) integrals, we can also use tree indices array form depending on the evaluable
computer memory capacity and speed of computations. Then each primitive Gaussian function must have
definite numeration in the data input and any integral I5(J, o, + aq) may have indices (J + s, np, ngq), where
n, and n, are the data input numeration of primitive Gaussian function x, and x,, respectively.

To evaluate the effect of the concerned number of the terms in the series in electron-electron repulsion
and nuclear attraction integrals and contraction coefficients on calculation sensitivity and calculation time
of the computer, test calculations are made for the systems containing four-centered orbitals. In these
calculations, we used the values of dx and oy given by Taketa®. The overlapping of the orbitals centered
on A(0,0,0), B(R,0,0), C(0,R,0) and D(0,0,R) depends on R. The calculated results for the various orbitals
for the different M and S values show that the convergence of the series contained in the integrals is fast in
the region where the overlapping is moderate or weak. As an example, the results of 1s type (1s Slater-type
function (%exp(—r)) by using the approximate GTO expansions®) orbitals for N=2, 9 and M=4, 8 are
given in Table 1. Analytical values of two-center integrals are also given in Tables 1 and 2 for comparison.
As seen from the table, there was a difference about 107° in the calculated values for N=2 and N=9
in R=2 (corresponding to an overlapping equal to 0.5864529) state but there was no difference for R=4
(corresponding to an overlapping equal to 0.189261). The latter one is also in good agreement with the
analytical value. An important aspect of this situation is that the effect of the M values on the sensitivities

of the integral values is small (the differences for M=4 and for M=8 are not greater than 10~7). In addition,
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the results of 3p and 3d types by using the approximate GTO expansion orbitals for N=2, 9 and M=4, 8 are
given in Tables 3 and 4. A similar tendency is also obtained for all the concerned orbitals. But the series

converges at the different values of R depending on the main atomic orbital radius, as expected.

Table 1. Many-center nuclear attraction integrals for 1s type orbitals (All the values are in atomic units)

* STO-4G and -8G are a minimal basis having one STO, approximated by four and eight Gaussian functions.

R N NC2 NC3
4G 8G 4G 8G*

2 -.50000100 | -.50000300 | -.26001350 -.26001980

2 9 -.49999530 | -.49999310 | -.26001280 -.26001830
Anal.10 -.47252660 -

2 -.2500005 | -.2500001 | -.041933360 | -.04195849

4 9 -.2500005 | -.2500001 | -.041933360 | -.04195849
Anal. -.2495870 -

2 -.1250003 | -.1250001 | -.0008894574 | -.00113242

8 9 -.1250003 | -.1250001 | -.0008894574 | -.00113242
Anal. -.1249999 -

2 -.08333351 | -.08333337 | -.000007655 | -.000026234

12 9 -.08333351 | -.08333337 | -.000007655 | -.000026234
Anal. -.08333333 -

2 -.06250013 | -.06250004 | -.000000019 | -.00000042

16 9 -.06250013 | -.06250004 | -.000000019 | -.00000042
Anal. -.06250000 -

Table 2. Many-center two-electron integrals for 1s type orbitals

R N ER2 ER3 ER4*
4G 8G 4G 8G 4G 8G
2 .5000020 .4999989 .2600139 .2600198 1221766 1221239
2 9 4999983 .4999945 .2600128 .2600183 .1221680 1221138
Anal. 4259743 - -
2 .2500010 2499994 | .04193343 | .04195834 | .00305804 | .00310594
4 9 .2500010 2499994 | .04193343 | .04195833 | .00305804 | .00310594
Anal. .2475539 - -
2 .12500050 | .12499970 | .00088946 | .00113242 | .00000027 | .00000091
8 9 .12500050 | .12499970 | .00088946 | .00113242 | .00000027 | .00000091
Anal. .12499800 - -
2 .08333366 | .08333308 | .00000766 | .00002623 | .00000000 | .00000000
12 9 .08333366 | .08333308 | .00000766 | .00002623 | .00000000 | .00000000
Anal. .08333333 - -
2 .06250025 | .06249986 | .00000002 | .00000042 | .00000000 | .00000000
16 9 .06250025 | .06349986 | .00000002 | .00000042 | .00000000 | .00000000
Anal. .06250000 - -
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Table 3. Many-center two-electron integrals for 3p type orbitals

z

ER2

ER3

ER4

4G

8G

4G

8G

4G

8G

16

058802190
058743730
059032600

.058802270
.058744210
059037270

.00000438527
.00000437687
.00000437203

.00000513633
.00000512139
.00000512057

.000000000005
.000000000004
.000000000004

.000000000019
.000000000014
.000000000014

24

.04050455
.04045714
.04045749

.040504680
.040457250
.040457610

.00000000168
.00000000168
.00000000168

.00000000685
.00000000684
.00000000684

.00000000000
.00000000000
.00000000000

.00000000000
.00000000000
.00000000000

28

NoBEN I V) NN B \U) NaIEN B \V]

034973550
.034949580

034949520

034973620
.034950980
.034949650

.00000000016
.00000000016
.00000000016

.0000000002
.0000000002
.0000000002

.00000000000
.00000000000
.00000000000

.00000000000
.00000000000
.00000000000

Table 4. Many-center two-electron integrals for 3d type orbitals

z

ER2

ER3

ER4

16

4G

8G

4G

8G

4G

8G

.050601230
.051248000
051555770

053672150
.054319120
054658180

.00000091585
.00000091309
.00000091303

.00000192612
.00000192023
.00000192023

.00000000
.00000000
.00000000

.00000000
.00000000
.00000000

24

036226260
036210510
036211890

.038407280
038389760
038391250

.000000000031
.000000000031
.000000000031

.000000002126
.000000002125
.000000002125

.00000000
.00000000
.00000000

.00000000
.00000000
.00000000

28

O O NO I NNO N

031678620
031664300
.031664410

033574240
033559090
033559150

.00000000000
.00000000000
.00000000000

.000000000064
.000000000064
.000000000064

.00000000
.00000000
.00000000

.00000000
.00000000
.00000000

In the same way, convergence analysis of the series allows us to find the starting point of the

convergence for different orbitals.

As a result, a general formula is derived for the evaluation of the multi-center nuclear attraction and

electron repulsion integrals in the form of the series giving sufficiently accurate values, each containing only

two or three terms.
Besides the sufficient accuracy, the presented formulae can provide a fast algorithm for the calculation

of non-valence intra- and inter-molecular interaction energies in polyatomic systems, in which the computa-

tion time is not unreasonable in relation to the information obtained. Undoubtedly, this method of approach

is very attractive for the calculations of the overlap, nuclear attraction and electron repulsion integrals of

the 2-4 centered system containing similar atoms.
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Appendix

1- According to reference [9], the integral I.(j, ) is given by

j — 1!
Is(j,a):%\/gforl—i—jzhz

2(2a) =
and
N . |
s(j, ) = ST forl4+j=2n+1
2- TA(M, N) integral equals zero, unless both M and N are even, so
TA@m, 2n) = 5o 275)2(”21771_ i)zuff 2_) 1 ) %!(Qm +2) 2772177;!
3- IB(M, N) integral equals zero, unless N is even and given by
IB(2m, 2n) = (2m + 275)2(277_1 ?2'5127112_) .1.)%!(2771 ) Q“Zrm! for M =2m
and
IB(2m,2n) = (2n = LM 2o (mh)” for M =2m+1

Cm+2n+1)2m+2n—-1)...2m+3) (2m+1)!

TP (M,N) =SS IB(M +m, N +1—m)+

J k—1)(8+k+1 )
+JZ:1 kI:[1 %IB(M +m, L —m —2j))

In this equation the summation is restricted with the non-negative values of n —m — 2j5. Where

m—1 m-—1+1 —l—l
- o 7Ty

IP,(M,N) = IP,o(M,N) for m =0

(A3)

(A5)

(A6)

(A7)
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6-

IS, (M,N)=2""1TAM +1,N+m —1) = C} _,2m3TAM + 1,N +m — 3)

(A9)
+Cp, 32" PTAM + 1L, N +m —5)- - (=1)*C¢, _ ;2" CHDIA(M +1,N +m — (2d + 1)
The series can be expanded to d > (m + (d + 1)) at which the binomial coefficients are equal to zero.
7-
IC, (M,N) =2""1TA(M,N +m) — 22" 3JA(M,N +m — 2) (A10)

+2CL _g2mSTA(M,N +m —4)--- (—1)d%Ciil(d+1)2m—<2d+1>1A(M, N +m — 2d)
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