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This paper describes a hot/cold controller for regulating crystal-
lization operations. The system was identified with a common
method (the Broida method) and the parameters were obtained by
the Liegler—Nichols method. The paper shows that this empirical
method will only allow a qualitative approach to regulation and
that, in some instances, the parameters obtained are unreliable and
therefore cannot be used to cancel variations between the set point
and the actual values. Optimization methods were used to
determine the regulation parameters and solve this identification
problem. It was found that the weighted centroid method was the
best one.

Until the 1970s, regulation, which is important in bulk
chemistry, was based on traditional controllers: analogue,
pneumatic or electrical. When microprocessors began to
appear, numerical PID controllers were available and
proved much easier to use and preset. In addition,
controllers quickly became less expensive.

To maintain a temperature in chemistry, often involves
complex regulation, either in cascade or of the hot/cold
type. In both cases, the transfer functions of the systems
have to be known so that the parameters involved in the
regulation can be identified. This requires the use of
empirical methods, such as the Broida method, which is
associated with the Ziegler-Nichols method. These
methods are easy to implement in terms of obtaining
the parameters of the controller, but they require numer-
ous ‘tries’ in order to reach the objective. This paper
reports on the use of optimization methods to determine
the optimal parameters of a hot/cold controller, which
was being used for the regulation of the temperature in a
reactor-crystallizer.

This paper describes the experimental set-up for a
laboratory-scale crystallization apparatus and shows
how the parameters for the PID controller were deter-
mined using the Broida and Ziegler-Nichols methods.
The optimization of the settings are described, and the
results obtained by different optimization methods are
compared: simplex, modified simplex (Nelder and
Mead), multi-move and weighted centroid method

(WCM).
The hot/cold controller

The aim was to regulate temperature control during a
crystallization operation [1]. Temperature is controlled

over time, so nucleation and growth rate can also be
regulated. The control over temperature must be as
accurate as possible and requires a good regulation
around the desired value. This value varies over time
and follows a polynomial law of the type T = a+ b4,
where 7T is the temperature, ¢ the duration of the
operation, and a and b are the parameters. The Pyromat
300 and Programat controllers, manufactured by
Schlumberger, were used. The program emitter allows
the set value to be changed over time.

The Pyromat 300 series are programmable PID numer-
ical controllers. There is a channel dedicated to the
cooling system and another dedicated to the heating
system. The two channels are completely independent
and can be set to analogue or numerical PID modes,
They offer three possibilities for the heating and cooling
channels: modulated/modulated, modulated/analogue,
and analogue/modulated. The ‘cold’ and ‘hot’ channels
can overlap for up to —10 to 20% of the command signal.
Therefore, both the heating and cooling rate can be
controlled.

The heating loop

The heating loop consists of a Pt100 probe (TP) im-
mersed in a 10 1 thermostatted bath filled with water,
with a circulation pump (flow rate 1000 I/h), a heating
resistance (HR) of 1000 W connected to a power unit
(PU) through a controller (C) (see figure 1).

The power unit is controlled by the analogue output (4—
20 mA) of the ‘hot’ channel of the controller. This signal
is converted by the power unit’s interface to a percentage
(0-100%) of the total heating power.
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Figure 1. Heating loop.
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Figure 2. Cooling loop.

The cooling loop

The cooling loop consists of the same controller (C) and
Pt100 probe (TP) immersed in the thermostatted bath.
Tap water flows through a coil (average temperature
16 °C) when an electrovalve (EV) is opened. For crystal-
lization processes requiring operations below 20°C, a
water/glycol mix cooled to —10°C is used instead of
tap water. A static relay is activated to allow the passage
of this mix. This regulation loop is shown in figure 2. The
cooling system is controlled through the ‘cold’ channel
with a discontinuous modulated signal (0-10 V). Before
using controllers without autosetting capabilities, the
regulation parameters must be determined as follows:

(1) The proportional band, expressed as the variation in
a percentage of the total measurement range.

(2) The integral time (in seconds) which represents
the necessary time lapse before the signal output
variation equals the variation caused by the propor-
tional action.

(3) The derived time which allows the cffects of the
proportional action to be amplified.

(4) The modulation time.

These parameters are set during the process identification
phase.

Parameter setting

The majority of regulation loops can be accomplished
simply with an empirical adjustment of the parameters of
universal controllers. Other loops are more complicated
and 1t is necessary to know the dynamics of the process
concerned. Most systems are naturally stable and, when
displaced out of their equilibrium state by a perturbation
or a corrective action, they tend to attain a new state of
equilibrium after a certain time. This dynamic phase of
the system is a characteristic function of the process.

The optimal parameter values for a PID controller
depend only on the characteristics of the system to be
regulated and on the controller which is being used. The
system is identified in this case by determining its transfer
function—the function correlating the influent value
and the controlled value. Analysis of a graph showing
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the evolution of the controlled value over time allows the
transfer function to be calculated and also, therefore, the
most favourable conditions for the stability of the system,
i.e. the parameters to be set on the controller. The
identification of a process is the key to finding its transfer
function. Identification is often a delicate task, but it is
necessary to calculate the controller’s actions. It is often
accomplished by creating perturbations. The investi-
gation of the system’s response was conducted in this
study in an open loop, using the Broida method [2].

Implementation of the Broida method

For system identification purposes, the controller must be
set to manual mode, i.e. disconnected. The system must
also be in the permanent regime, with the output and
command signals, O(s) and C(s), constant. This is an
open loop process. A perturbation is then applied to the
system; the most common perturbation used is an incre-
mental step. The command signal is incremented, and
the output signal is recorded.

The transfer function for a first order system with pure
delay can be expressed as follows:

G, x ¢ 03

s = 1
T-s+1 m

where Gs =static gain; 7 =time constant; 6 = pure
delay.

The theoretical Broida graph (see figure 3) (first order
system with pure delay) shows the output value to be
equal to 028 times the final variation at the time (4, — 6);
and, at (& — 6), 0-40 of the final variation:

_h-0

01() =028=1—¢"~ (2)

0o(t) =040 = 1 — ¢ (3)

These equations lead to the value of the time constant
and 6:
T = 5‘5(t2 - l]) (4)
0=28-t1—18-1 (5)
In most cases, it is impossible to predict the static

behaviour of a process because the exact influence of
the perturbations is difficult to evaluate. Generally, the
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Figure 3. Indicial response.
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Figure 4. Control with open loop.

characteristics of a process are determined with an
empirical method. The influent variable is changed in
steps covering the full range of possible values, and a
correlation is derived from observing the resulting effects
on the controlled value.

Indicial response

Indicial response of the system to incremental steps was
studied in order to determine the types of action that a
controller needs to perform. This analysis is conducted
in an open loop (the controller does not react to the
temperature read from the probe). The programmer is
disconnected from the controller (see figure 4).

An incremental step A Y, corresponding to a variation of
the heating or cooling power of 1% at the controller’s
output, is applied. This is equivalent to sending a
constant signal to the regulating device. The resulting
increase (AX) of the response signal (controlled value) is
measured until the system stabilizes. Static gain is:

_AY 1M )
TE AY

where E =total temperature range (—200-0°C to
+200-0°C); ¥YM = total variation of the output variable;
AX =variation of the input variable; AY = variation of
the output variable.

The operational parameters are shown in table 1.

Response of the two channels

The temperature in the thermostatted bath is recorded,
the characteristic durations ) and # are determined from
the recording of the indicial responses (see table 2). The
values of the latency time, the pure delay and the static

Table 1. Operational parameters.

‘Hot’ channel “Cold’ channel

Output variation 0 to 100%  —100 to 0%
Incremental step 10% 10%

Variation of the controlled value 156 °C 20-3°C
Table 2. Characteristic time values.
Time ‘Hot’ channel ‘Cold’ channel
t 2400 840
ty 3600 1230

Table 3. Static gain, time constant, pure delay.

Parameter ‘Hot’ channel ‘Cold’ channel
T 55 - (3600 — 2400) = 6600's 21455
[% 2:8 - (2400) — 1-8 - (3600) = 240 138s
Gs (15:6 - 100)/(400 - 10) = 0-39 0-5075

Table 4. Jiegler—Nichols formulae for each type of regulation
(T; is the integral time constant and Ty s the derived time
constant ).

P P.I P.ID.
0 0 0
X, (%) ;Gs~100 > 1'2';(;5-100 20'8~;GS~100
7; (min) — — 20
Ty (s) . - 040

Table 5. Calculated PID parameters.

Parameter ‘Hot’ channel ‘Cold’ channel
Proportional band (%) 147 (XPy) 64 (XP¢)
T; (s) 720 414

gain can be derived from ¢; and # (see table 3). Table 4
shows the formulae established by Ziegler and Nichols to
determine the values of the PID parameters of a con-
troller. The proportional band X, is expressed as a
percentage of the setting range. The parameters X, and
T; were determined for both channels. The results are
shown in table 5.

The regulation mode’s choice depends on the adapt-
ability of the system, measured by the 7/6 ratio:

(1) If 7/6 > 20, then the regulation must be Boolean in
nature.

(2) If 155 < 7/6 < 20, then the regulation must be
proportional.

(3) If 75 < 7/0 < 15-5, then the regulation must be
proportional-integral.

(4) If2-5 < 7/ < 7-5, then the regulation must be PID.

(5) If 7/6 < 2:5, then a cascade regulation must be
chosen.

For the ‘hot’ channel: 7/6 = 27-5, the regulation must
thus be of a Boolean type. For the ‘cold’ channel:
7/6 = 155, the regulation must be PI.

As the controller requires common setting parameters for
both channels (for the integral and derived time con-
stants), the best adapted regulation was considered for
this experiment to be of the type PI:

XPy = 15; XP¢ = 6; T; = (720 + 414)/2 = 567; T, = 0

The overlapping segment, R, was arbitrarily set to zero,
because no examples of application to hot/cold regulation
were found in the literature. The introduction of these
five parameters: XPy, XP¢, T;,, T; and R in the
controller, allowed the authors’ first attempts at control-
ling the temperature in the reactor/crystallizer.
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The indicial response of the system to a programmed set
value was recorded. In a previous study [3], and in
experiments with the calculated parameters, it was
observed that the temperature in the reactor does not
follow the set value and that considerable discrepancies
appear when the process is run automatically; these
discrepancies may reach 10°C. To reduce these un-
wanted effects, it was decided to optimize the regulation
parameters in this experiment.

Optimization of the PID parameters on the
simplex method

The aim here was to optimize the controller’s parameters
to obtain a value closer to the programmed value using
the simplex method [4, 5]. Starting with an experiment
already conducted in the experimental domain, £ other
experiments are conducted to obtain a regular geometric
shape called a ‘simplex’. The responses for these £ + 1
other experiments are measured. The experiment with
the least desirable result is discarded, and a new one is
substituted, with co-ordinates obtained by calculating
the symmetric point of the discarded point with respect
to the centre of gravity of those remaining.

The coordinates for the starting simplex, expressed with
reduced variables, are given in table 6. The reduced and
real coordinates are linked as follows:

xid»=x1,j+Xi,j-ij (7)

where 7 ranged from 1 to £+ 1 and j ranged from 1 to £;
x;; = the real coordinate of the jth variable at the point z;
x1; =the real coordinate of the jth variable at the
starting point; X;; =the reduced variable of the jth
variable at the point 7#; Ax; =the chosen incremental
step for the jth variable.

Simplex evolution follows several rules:

(1) Rule I: The worst point is discarded and is replaced
by its symmetric point with respect to the centre of
gravity of the remaining points.

(2) Rule 22 When a better point appears in £+ 1 con-
secutive simplexes, the value must not be over-
estimated, and it must be verified. This prevents
endlessly producing a false optimal point. If a new
experiment confirms the original value, the process is
resumed; otherwise the faulty point is eliminated.

(3) Rule 3: When the evolution takes place on a ridge, i.c.
the newest point is always the worst one, or when a

Table 6. Coordinates for the starting simplex.

(where p and ¢ are obtained
Vertices X1 X9 X3 X4 X5 with the following equations):

1 0 0 0 0 0 1
2 p 9 9 q9 ¢ 17=k—-\/—2:(vk+1+k~1)
i g b 9 9 q
9 9 P 9 q 1
5 9 9 g9 P ¢ q=m(vk+1—1)
6 9 9 9 q9 p
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new point cannot be added because it would be
situated beyond the allowed boundaries (out of the
domain), the symmetric of the second worst point is
used instead. The following notation is used for the
points forming the simplex:

W =point with the worst response; N = point with the
next to the worst response; B =point with the best
response; G =centre of gravity of the remaining points;
R =symmetric of point W with respect to point G (the
Reflex). Coordinates for points G and R are given by the
following equations:

1k+1
Xe. :EZXN« withi# Wandj=1tk (8)

=1

Xpj=Xe,;+ (Xe,j — Xw;) = 2X¢; — Xw,;  (9)

Simplex specifications

The system’s temperature being stable at 25°C, an
increment of 5°C is applied and the temperature
recorded. The response function, FFR [6, 7] is used as an
optimization criterion: this is is a weighted sum taking
into account the decrease of the measure-set value
deviation, but also the duration and amplitude of the
oscillations:

FR=Y Si+a-T,+b-Y E (10)

where §; = surface of the oscillations around the set point;
T, =duration of the oscillations, expressed in mm of
paper ; E; =deviation between the measure and the set
value.

Arbitrary values, 1 and 3, were chosen for the constant a
and &; this was to ensure that the weight of each term in
the expression would be equivalent. The function was
chosen to favour regulation rather than tracking. The
surface is determined as follows: the surface contained
between the temperature curve and the line made by the
set value drawn on a fixed-density paper is cut and
weighted; the weight is converted in a surface expressed
in square millimeters. The object of this optimization is to
minimize the FR.

Variable choice

Five variables are likely to affect the quality of the
regulation in some way:

(1) The proportional width of the ‘hot’ channel, ex-
pressed in %.

(2) The proportional width of the ‘cold’ channel, ex-
pressed in %.

(3) The integral time (expressed in seconds).

(4) The derived times (expressed in seconds).

(5) The overlapping segment of the channels (in %).

So, the system has five variables; the geometric repre-
sentation of the simplex is therefore a six-vertex figure in
five-dimensional space.
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Table 7. Reduced and real coordinates for the first simplex.

Vertex X[ XQ X3 Xy X5 XPy XP(; 7_, Td R
1 0-000 0-000 0-000 0-000 0-000 150 6-0 570 0-0 0-0
2 0-912 0-205 0-205 0-205 0-205 20-0 70 580 50 40
3 0-205 0-912 0-205 0-205 0-205 16:0 10:5 580 50 4.0
4 0-205 0-205 0-912 0-205 0-205 16:0 7-0 615 50 4-0
5 0-205 0-205 0-205 0912 0-205 16-0 7:0 580 23-0 4-0
6 0-205 0-205 0-205 0-205 0912 16:0 7-0 580 50 18-0

The starting coordinates used were the values of the
parameters obtained with the Ziegler—Nichols identifica-
tion of the system. The increment values chosen were
sufficiently large to ensure significative variations in the
results of each experiment:

AXPy =5; AXPe = 5; AT, = 50; AT, = 25; AR = 20

Table 7 shows the reduced and real co-ordinates for the
first simplex.

Boundaries

The applicable domain is limited by a number of
constraints. First, the proportional bands of the ‘hot’
and ‘cold’ channels must be an integer between 0%
and 100%; they have to be integer numbers above
10%. Second, the integral time constant must be an
integer between 0 and 1999 s. Third, the derived time
constant must be between 0 and 999 s; it must be an
integer above 10. Finally, the overlapping of the bands
must vary between —10% and +20% of the total
measurement range, in increments of 0-1%.

Results and interpretation

The initial simplex evolution can be traced in table 8,
which shows the numerical values for all five coordinates
and the value of the response function. Three values that
proved useful for obtaining indications about the best
moment to stop the evolution are also given:

(1) The deviation between the responses at the best and
worst points: ¥ — ¥Vp.
(2) The value of the standard deviation (SD):

SD = (VCE -0 Y)Q])M (11)

k(£ - 1)]

(3) The value of the root-mean square deviation of the
responses of the vertices from the mean response

(RMS):

RMS =Zﬁ%—@i (12)

In simplex 3, the new point, 8, remains the worst one, but
because it presents a better response than point 4 whose
symmetric it is, it is kept in the simplex, and the
symmetric from the next to worst point, 3, is taken
instead. The iterations continue normally until simplex

10. At this point, when the point 12 is discarded
(712 = 330), point 16 is obtained but eliminated because
its response is poorer (115 = 370). The next to worst
point, 15, would not be discarded because this would lead
to point 6, which has already been tested. The third worst
point, 7 (¥7 = 302), was thus removed, and point 17 was
obtained but also discarded because of its poorer response
(Y17 = 336). The fourth worst point, 14, was then
discarded.

In simplex 12, as the new point is the worst, it is
discarded; the evolution of the simplex is then stopped.
The responses have been improved from 814 to 240. The
value of the three criteria has also been significantly
reduced: 78 instead of 482 for the deviation between
the extreme responses, 32 instead of 165 for the standard
deviation and 12 instead of 62 for the root-mean square
deviation.

Optimization by the Nelder and Mead method

This derived method uses a variable-increment simplex
[8-10]. If the symmetric becomes the best of all the points
of the new simplex, then the direction of the last move is
considered to be the most profitable. An extension is then
applied. The following cases must be distinguished:

(1) If the response R is better than the response of B (best
point of the simplex), the simplex is extended beyond
the point R and the response at a new point, F, is
measured. The responses ¥z and Y are compared;
the best point replaces the point W and forms the
new simplex.

(2) If the response is worse than 1 but better than T,
the process resumes without changing the size of the
simplex.

(3) If the response is worse than Yy, two cases are
distinguished: (a) Y3 is better than ¥}y : a contraction
is applied at the side containing R and point Cy is
added; () Y is still worse than 1y a contraction is
applied at the side containing W and point Cy is
added.

The coordinates of the points making up expanded (or
contracted) simplex are given by the formula:

Xpj=Xej+v(Xe,; — Xw) (13)

where v = 2 for E; v = 05 for Cg; 7= —0-5 for Cy.
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Table 9. Evolution following the Nelder and Mead method.

N° x1 x2 x3 x4 x5 FR
Simplex n°1 Yw-YB=
1 15 6 570 0 0 814 w 482
2 20 7 580 5 4 452
3 16 10 580 5 4 469 SD=
4 16 7 615 5 4 491 N 165
5 16 7 580 23 4 419 RMS =
6 16 7 580 5 18 332 B 62
R/1 7 19 9.2 604 17 13.6 302
EN 8 20 11 621 26 20 240
Simplex n°2 Yw-YB=
8 20 11 621 26 20 240 B 251
2 20 7 580 5 4 452
3 16 10 580 5 4 469 N SD=
4 16 7 615 5 4 491 w 96
5 16 7 580 23 4 419 RMS =
6 16 7 580 5 18 332 36
Simplex n°3 Yw-YB=
8 20 11 621 26 20 240 B 229
2 20 7 580 5 4 452 N
3 16 10 580 5 4 469 w SD=
R/4 9 19 9.8 561 21 16 308 91
5 16 7 580 23 4 419 RMS =
6 16 7 580 5 18 332 34
Simplex n°4 Yw-YB=
8 20 11 621 26 20 240 B 212
2 20 7 580 5 4 452 w
R/3 10 20 6.7 589 27 20 293 SD=
9 19 9.8 561 21 16 308 30
5 16 7 580 23 4 419 N RMS =
6 16 7 580 5 18 332 80
Simplex n°5 Yw-YB=
8 20 11 621 26 20 240 B 179
R/2 11 16 9.6 592 36 20 276
10 20 6.7 589 27 20 293 SD=
9 19 9.8 561 21 16 308 61
5 16 7 580 23 4 419 W RMS =
6 16 7 580 5 18 332 N 23
R/5 12 20 11 597 23 20 370
C/12 13 19 9.9 593 23 20 288
Simplex n°6 Yw-YB=
8 20 11 621 26 20 240 B 92
R/i2 11 16 9.6 592 36 20 276
10 20 6.7 589 27 20 293 SD=
9 19 9.8 561 21 16 308 N 31
13 19 9.9 593 23 20 288 RMS =
6 16 7 580 5 18 332 W 12
Simplex n°7 Yw-YB=
8 20 11 621 26 20 240 B 68
11 16 9.6 592 36 20 276
10 20 6.7 589 27 20 293 SD=
9 19 9.8 561 21 16 308 w 25
13 19 9.9 593 23 20 288 RMS =
R/6 14 22 12 602 48 20 305 N 9
R/9 15 20 9.9 638 43 20 338 Discarded
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Table 10. Evolution following the Hendrix method.

22

N° x1 x2 x3 x4 x5 FR
Simplex n°1 Yw-YB=
1 15 6 570 0 0 814 W 482
2 20 7 580 5 4 452 B
3 16 10 580 5 4 469 B SD=
4 16 7 615 5 4 491 B 165
5 16 7 580 23 4 419 B RMS =
6 16 7 580 5 18 332 B 62
Simplex n°2 Yw-YB=
R/1 7 19 9.2 604 17 13.6 302 B 189
2 20 7 580 5 4 452 w
3 16 10 580 5 4 469 w SD=
4 16 7 615 5 4 491 W 77
5 16 7 580 23 4 419 W RMS =
6 16 7 580 5 18 332 B 29
Simplex n°3 Yw-YB=
7 19 9.2 604 17 13.6 302 B 307
R/2 8 15 9.2 604 17 20 293 B
R/3 9 19 6.2 604 17 20 592 w SD=
R/4 10 19 9.2 569 17 20 360 B 117
R/5 11 19 9.2 604 0 20 285 B RMS =
6 16 7 580 5 18 332 B 43
Simplex n°4 Yw-YB=
7 19 9.2 604 17 13.6 302 B 75
8 15 9.2 604 17 20 293 B
R/9 12 16 11 580 5.4 16.6 303 B SD =
10 19 9.2 569 17 20 360 w 28
11 19 9.2 604 0 20 285 B RMS =
6 16 7 580 5 18 332 B 11
Simplex n°5 Yw-YB=
7 19 9.2 604 17 13.6 302 B 47
8 15 9.2 604 17 20 293 B
12 16 11 580 5.4 16.6 303 B SD =
R/10 13 15 9 620 1 15.3 330 W 19
11 19 9.2 604 0 20 285 B RMS =
6 16 7 580 5 18 332 w 7
Simplex n°6 Yw-YB=
7 19 9.2 604 17 13.6 302 B 158
8 15 9.2 604 17 20 293 B
12 16 11 580 5.4 16.6 303 B SD=
R/13 14 20 10 576 19 19.8 398 w 52
11 19 9.2 604 0 20 285 B RMS =
R/6 15 19 12 616 15 17.1 240 B 19
Simplex n°7 Yw-YB=
7 19 9.2 604 17 13.6 302 B 122
8 15 9.2 604 17 20 293 B
12 16 11 580 5.4 16.6 303 B SD=
16 15 10 627 2.8 15.1 362 w 39
11 19 9.2 604 0 20 285 B RMS =
R/6 15 19 12 616 15 17.1 240 B 15

For each simplex, the best vertex is expressed in bold
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Results and interpretation

Table 9 shows the evolution of the original simplex, with
numerical values for the five sets of coordinates, and the
value of the response function ‘FR’, including data about
the three ending criteria. In order to build the second
simplex, as the response of the symmetric point is the best
of all, an expansion is applied, and retained. No further
size alteration occurs until the fifth simplex.

The sixth simplex was built from a contraction, as the
symmetric point for point 5 (15 = 419) led to a better
response (Y19 = 370), but it was the worst of this new
simplex. Thus, a contraction was applied on point 12’s
side.

In the seventh simplex, the symmetric point for point 9
(¥y = 308) was found not to be an improvement over the
previous ones (115 = 338). The evolution of the simplex
was discontinued at this point because: as with the initial
method, the response was improved from 814 to 240 for
the best point of the last simplex; the variation between
the points of the last simplex is of the same order of
magnitude: 68 (instead of 78); the SD has the same value:
31; the RMS was lower: 9 (instead of 12). So, 15
experiments were enough to obtain comparable results.
The best point was obtained in the first expansion in the
second simplex.

Optimization by the multi-move method

This method [11] divides the experiments into groups of
good and bad points rather than a single bad point and
the rest. This could allow for a planning and lead to a
reduced number of experiments.

Results and interpretation

Table 10 gives the data used in the evolution of the
original simplex. In the first basic simplex, the Hendrix
method requires no alteration because the group of bad
points only comprises point 1. In the second simplex,
however, the group of bad points includes points 2, 3, 4
and 5 (see table 11).

The most important variation between the mean values is
140-8. Points 2, 3, 4 and 5 were therefore discarded. This
process was repeated until point 16 was reached, with a
response of ¥ = 362. If two groups of points were
defined, then point 16 was the group of bad points.
Consequently, point 16 was discarded; but then point
14 resulted. The simplex evolution was ended at that
point because the same best response 175 = 240 was

Table 11. Determination of bad and good groups of points.

Good Bad Average of  Average of Variation of the
points points good FR bad FR  mean values
7 4,3,2,56 302 432, 6 130, 6
7,6 4,3,2,5 317 457, 8 140, 8
7,6,5 4, 3,2 351 470, 7 119, 7
7,6,5,2 4,3 369 480 111
7,6,5 2,3 4 394 491 97

obtained, although the variation between the points of
the last simplex was higher (122 instead of 78). The SD
and RMS were very close (39 for 32 and 15 for 12).

The results of this method, in the third simplex, were
better than the original method because its 10th simplex
had responses varying between 370 (15) and 260 (773).

Weighted centroid method (WCM )

This method moves away from the worst point towards
the best one [12]. In order to achieve this the determina-
tion of the symmetric point takes into account a weighted
centre of gravity (the weight of each point being a factor
determined from the response at the point and the worst
response). The co-ordinates for the new, weighted centre
are:

Y (X (1= Tw))
2 (Y= Tw)

Xey,; = (14)

To avoid excessive degeneration of the simplex, the
authors recommend limiting the value of <, the ratio
between the distance from the centre of gravity G to the
point Gy and the distance from G to the best point B.

v=|Gw -G

/B =Gl

1/2

7= [2 (Xey, — XG,J’)Q} 1/2/ [Z(XBJ - XG,])Q] (15)

v ranges from 0 to 1. The highest advisable value é for
this ratio is 0-3. If 7 is lower than é or equal to it, the
point Gy is retained; otherwise, it is replaced by G, the
revised centre of gravity, whose coordinates are given by

[13]:
Xeo; = Xe,j + 6(Xs,j — Xo,j) (16)

G, located between G and B, is not necessarily between
G and Gy (unless only two variables are used for the
optimization). For example, for a three-variable optimi-
zation, G is situated on an arc of a circle whose centre is
G. In order to keep both the line of highest increase and
the ponderation, the coordinates of point G/, are deter-
mined from:

Xey = X+ 6/7(Xe,, — Xa,5) (17)

The distance |G — G(|| is equal to |G — G¢||, and the
point G, is situated between G and Gy .

Results and interpretation

Table 12 shows the evolution of the initial simplex. With
the second simplex, because the § ratio was higher than
the limit 0-3, G/, was used as the centre of gravity. The
evolution continued to the seventh simplex, where the
symmetric point could no longer be considered because
its response was much higher. The process ended there,
with responses ranging from 173 =170 and Yy = 275,
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Table 12. Evolution following weighted centroid method.

N° x1 x2 x3 x4 x5 FR
Simplex n°1 Yw-YB =
1 156 6 570 0 0 814 w 482
2 20 7 580 5 4 452
3 16 10 580 5 4 469 SD=
4 16 7 615 5 4 491 165
5 16 7 580 23 4 419 RMS =
6 16 7 580 5 18 332 B 62
Gw 17 7.5 586 8.7 7.5 y=0.1
Simplex n°2 Yw-YB =
R 7 19 9 602 17 15 240 B 251
2 20 7 580 5 4 452
3 16 10 580 5 4 469 SD=
4 16 7 615 5 4 491 w 96
5 16 7 580 23 4 419 RMS =
6 16 7 580 5 18 332 36
G'c 18 8 589 12 12.3 v=0.43
Simplex n°3 Yw-YB =
7 19 9 602 17 15 240 B 229
2 20 7 580 5 4 452
3 16 10 580 5 4 469 w SD=
R/4 8 20 9 561(3)* 19 20 358 86
5 16 7 580 23 4 419 RMS =
6 16 7 580 5 18 332 32
G'c 18 8.2 585 14 14.8 1=0.39
Simplex n°4 Yw-YB =
7 19 9 602 17 15 240 B 212
2 20 7 580 5 4 452 w
R/3 9 20 6.4 590 21(3) 20 275 SD=
8 20 9 561 19 20 358 81
5 16 7 580 23 4 419 RMS =
6 16 7 580 5 18 332 30
G'c 19 7.8 586 16 17 v=0.43
Simplex n°5 Yw-YB =
7 19 9 602 17 15 240 205
R/2 10 18 8.5 590(2) 27 20 214 B
9 20 6.4 590 21 20 275 SD=
8 20 9 561 19 20 358 77
5 16 7 580 23 4 419 W RMS =
6 16 7 580 5 18 332 29
Gw 19 8.1 589 19 18 1=0.28
Simplex n°6 Yw-YB =
7 19 9 602 17 15 240 144
10 18 8.5 590 27 20 214 B
9 20 6.4 590 21 20 275 SD=
8 20 9 561 19 20 358 w 55
R/5 11 22 9.2 598 15 20 265 RMS =
6 16 7 580 5 18 332 20
G'c 19 8.3 594 19 18.5 1=0.32
Simplex n°7 Yw-YB =
7 19 9 602 17 15 240 147
10 18 8.5 590 27 20 214
9 20 6.4 590 21 20 275 SD=
R/8 12 18 7.6 627 19 17 185 B 51
11 22 9.2 598 15 20 265 RMS =
6 16 7 580 5 18 332 w 19
Gw 19 8.2 605 20 18.2 ¥=0.06
Simplex n°8 Yw-YB =
7 19 9 602 17 15 240 105
10 18 8.5 590 27 20 214
9 20 6.4 590 21 20 275 W SD=
12 18 7.6 627 19 17 185 43
11 22 9.2 598 15 20 265 RMS =
R/6 13 22 9.4 630 35 18.4 170 B 16
Gw 20 8.7 617 26 18 y=0.1
R/9 20 11 644 31 16 370

* values between brackets give calculated conditions

24



C. Porte et al. Optimization of control parameters of a hot cold controller by means of Simplex type methods

with four experiments producing responses of 240 or less
(the best response obtained with the other methods).

Figures 4 to 7 show the evolution of the three response
criteria for each method with regard to each simplex.
Figure 8 shows the evolution of the best responses; the
weighted centroid method is clearly the best one.

Conclusion

A hot/cold controller order was used to regulate crystal-
lization operations. The system was identified with a
common method, the Broida method, and the para-
meters were obtained with the Ziegler—Nichols method.
The paper shows that this empirical method will only
allow a qualitative approach to regulation and that, in
some instances, the paramcters obtained are unreliable
and therefore cannot be used to cancel variations
between the set point and the actual values.

Optimization methods were used to determine the reg-
ulation parameters and solve this identification problem.
These methods are the simplex approach and its deriva-
tives (the Nelder and Mead method, multi-move method
and the weighted centroid method). The best adapted
was the weighted centroid method, which produced a
very good response at the 13th point. The other methods
yielded less satisfactory responses (the best response
obtained in the others being 240). However, the coordi-
nates for the points with this response were not identical;
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Figure 5. Difference between extreme responses versus simplex
number.
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Figure 6. Deviation standard versus simplex number.
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Figure 7. Root-mean square deviation versus simplex number.
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Figure 8. Evolution of the best responses.

this value being a compromise between surface, delay
before stabilization and the variation between the set
value and the actual value. So, although both points 18
and 19 have the same response at 240, point 19 is better
with the simplex method. It is also better than point 15
with multi-move and point 8 with Nelder-Mead, because
the temperature with the parameters at point 19 never
rises above 30-7°C, while the other points lead to
temperatures above 31 °C. The most desirable character-
istic for this regulation is a low deviation from the set
value even if this implies longer stabilization delays. Even
when the temperature is stable, deviations in the order of
0-2°C still occur.

The weighted centroid method produced good tempera-
ture regulation in a very short time. The PID parameters
obtained were quite different from the parameters calcu-
lated. The Broida method is relatively unrefined and
should be used in conjunction with an optimization
method. The optimized PID parameters were used in
the experiments and have given satisfactory results. If the
set value is 30 °C, the deviation is about 0.5 °C; it rises to
about 1°C for a set value of 60 °C.
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