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Evaluation of analytical instruments in clinical labora-
tories should be carried out in a systematic and uniform
manner in order to provide data which can be compared
and reproduced by different users, manufacturers and
officials. Concepts for such an evaluation of instruments
with continuous measurement values are presented in the
ECCLS guidelines [1]. To quantify the results of an
investigation, the data has to be condensed by the use of
statistical methods. Obviously the design of an experi-
ment and the statistical model used for evaluating the
data are closely related. Only if the distributional
structure of the experimental data is understood will it be
possible to obtain an unbiased interpretation of the
statistical results.

The first part of this paper covers all those properties of a
new instrument which can be described by relatively
simple statistical or numerical parameters: precision,
analytical range limit and carry-over. Drift effects are
usually assessed by visual inspection of a control chart.
Method comparison studies require statistical procedures
which allow hypothesis testing. Some researchers also
make use of statistical tests for detecting deviant measure-
ment values (outliers) which may be caused by interfer-
ences. These topics are dealt with in the second part of the

paper.

Descriptive statistics
Investigation of precision

The precision of an instrument in respect of a given
method is a measure of the reproducibility of values
within a fixed experimental design. It is described by the
range in which repeated measurements scatter. Several
statistical parameters can be used for the characterization
of precision, each one leading to different regions of
dispersion. The most common parameter is the standard
deviation, which is the square root of the variance s2:
2= g ——(xi — 56)2
i=1 n—1
where 7 is the number of measurements in the series, x; is
the i-th measurement in the series and X is the arithmetic
mean of the series.

A derived quantity of s is the coefficient of variation:

CV=1-100.
x
The formula above gives an unbiased estimation when all
values x; have the same expected value u and the same
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variance 02, and when the values are statistically
independent. As a consequence, the series of measure-
ments must be free of drift and erroneous values
(outliers).

On the basis of 5, a range around the mean can be defined
in which a predefined percentage of values will be
contained. For normally distributed data the regions ¥ £
I-s, * £ 2:sand x = 3-sinclude about 68%, 95% and 99%.
For an arbitrary distribution Tschebyscheff’s inequality
can be used to state the probability of a measurement
value lying inside or outside a predefined region. A robust
statistical parameter for describing precision is the
p%-median distance ma,. For p = 68%, for instance, at
least 68% of the measurements are in the interval med *
magg, where med represents the median of the measure-
ments in the series. In general, the interval med + ma, [2]
contains at least p% of the sample. This parameter is
useful when the data structure is not known; for samples
with n < 15 its use is not recommended.

In most cases the standard deviation s is used to
characterize precision. However, a researcher should
consider carefully the distribution of the data when he
examines the results and defines regions of dispersion.
The reliability of the results depends on the sample size 7;
we advise as a minimum n = 20.

When evaluating the precision of a new instrument,
experiments are carried out to assess ‘within-run’ preci-
sion and ‘between-day’ precision. ‘Within-run’ precision
is calculated from a sequence of analyses between
recalibration periods.

The measurements of the run are inspected after graph-
ical presentation on usual control charts for errors, which
could be caused by drift or deviant values. ‘Between-day’
precision is determined by obtaining duplicate results
from a control specimen on n consecutive days. The
second value of each day is used for the calculation of the
precision statistic. The proposal of # = 10 [1] might not
be sufficient for a reliable estimation.

Analytical range limit and carry-over

The experimental layout for recording the analytical
range of a method (instrument) is described in the
ECCLS guidelines [1]. The upper and lower limit of the
range are numerical quantities which are usually
obtained without using statistical parameters.

Carry-over is caused by transfer of material from one
assay to another. Procedures to treat carry-over are also
described in the ECCLS guidelines [1].



W. Bablok and H. Passing Application of statistical procedures to instrument testing

Method comparison studies

One of the central issues in instrument testing is
comparative studies using samples from patients—
these studies are a basic component of testing for
accuracy [1]. In the study, N independent samples from a
(patient) population are investigated using the method
(instrument) to be evaluated and a comparison method
(instrument). The aim of the biometrical evaluation of
the data obtained from such a study is to make statistical
inferences about the equality of the methods or instru-
ments. Under the premise of a linear relationship
between the two methods in the form of

Y=a+bX

the estimated values for @ and 4 are tested against the null
hypothesis = 0 and 4 = 1. If the estimated values differ
only by chance from 0 and 1 at a predefined significance
level, then the methods are equal.

To date, a number of different regression procedures have
been used for biometrical evaluation of data from method

comparison studies. Each one has specific theoretical
requirements on the data. It is obvious that the reliability
of a procedure depends largely on how far the data can
meet these requirements.

The procedures can be classified into two categories:
(1) Procedures which depend on the assumption of
normal distribution of the data.
(2) Procedures without distributional assumptions.
It is possible to differentiate within each category

between procedures with one and those with both
variables with error terms.

Procedures which assume normal distribution
Only one variable with error term

Linear regression [3 and 4]: this procedure presumes that
the measurements of method X are obtained without any
error. They represent the fixed values of the independent
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Figure 1. Graphical presentation of regression lines. (a) Linear regression: slope of regression line: tg & = b, slope of projection
line: tg 90°. (b) Principal component (Deming procedure); slope of regression line: tg & = b, slope of projection line: 1g(90° +
8) = — 1/b. (c) Standardized principal component; slope of regression line: tg & = b = S,/S,, slope of projection line:
tg (180° — &) = —b. (d) Theil, Bablok/Passing procedures: slope of the regression line: b = med(S;).

75



W. Bablok and H. Passing Application of statistical procedures to instrument testing

variable x. For the measurements of method Y analytical
errors are allowed, so that repeated measurements of one
sample will scatter perpendicularly to the x-axis around
their expected value on the regression line. The para-
meters a and b of the regression equation are determined
by minimizing the sum of the squared distances between
measurement points and regression line (see figure 1{a]).
The method of least squares is sensitive to extreme data
points, which may result in biased values of @ and 6. A
change in the assignment of the methods to the variables
of the regression procedure results in new parameters
which cannot be converted into the old ones by the
regression equation. To obtain statistically unbiased
results the procedure requires that:

(1) The measurements of the method assigned to the
independent variable are not only free of error but
also have fixed values.

(2) The measurements of the method assigned to the
dependent variable have normally distributed
error terms with constant variance over the
concentration range.

(3) There is a linear relationship between the two
methods.

Both variables with error terms

Principal component analyses: these regression procedures
treat both methods alike; especially both methods may
have measurements with analytical error terms. As a
consequence the actual measurement point can deviate
from the true value on the regression line in both the x-
and y-direction. Therefore the calculation of the distance
to the expected value has to be modified; two different
situations can be considered:

(1) The standard deviation of the measurement errors
is the same for both methods; then the distance is
given by the vertical projection on the regression
line, which is geometrically the shortest distance
(see figure 1[6]). This procedure is known as the
DEMING-procedure or orthogonal regression [5
and 6].

(2) The standard deviation of the measurement errors
is different, but the ratio of the error variance to the
total variance is equal for both methods. The
distance is then given by the projection on the
regression line which forms the angle 1gd = — §,/S,
with the x-axis. (S, and §, are the standard
deviation of the sampling distribution of method X
and Y.) The procedure is called standardized
principal component or geometric mean regression
[6 and 7] — the slope of the standardized principal
component model is the geometric mean of the
slopes of the two linear regression models (see
figure 1[c]).

The slope of the projection line results in —1/5 for the
DEMING-procedure and in — 4 for the standardized
principal component procedure. The parameters a and 6
of the regression line are calculated for both procedures
by minimizing the sum of squared distances. However,
for both procedures there are simple formulae for
computing of @ and & (see table 1).
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Table 1. Formulae for the computation of the parameters a and b of
the regression procedures.

Estimation
Procedure Estimation of 6 ofa
Linear regression S, G- bi
© (xindependent) S,
'g Liqez:lr regrgssion S, - b3
E ( yindependent) s,
= Theil-regression o« _Ji=J  Notproposed
(xindependent) med () Sy = x—x Pa/Bacan
" beused
2 G2
Principal component oSt a -
. 2.7 5.-8 y—bx
o (Deming-procedure) ; x 9y
s r
‘g Standardized —2 - -
$ principal component [7]°s, J- bk
M
Passing/Bablok ) S = 2 med (a)
procedure med (S + k)3 S =% 4=y~ bx;

a=+ V(82,—82,)2+ 42 82,82, r=

Extreme data points have a strong influence on the values
of a and 4 and can lead to biased estimates. A change in
the assignment of the methods to the variables does not
alter the results of the method comparison.

To obtain statistically unbiased result the procedures
require that:

(1) The measured values of the analyte are a random
sample from a bivariate normal population.

(2) The analytical error terms are normally distri-
buted and their variance is independent of concen-
tration.

(8) There is a linear relationship between the two
methods.

Procedures without distributional assumptions

Only one variable with error term

THEIL procedure [8]: again the independent variable x is
represented by fixed values. Each connecting line
between two of the N data points can be interpreted as an
estimate of the slope of the regression line. Identical
points and points with the same x-value do not contribute
to the calculation of the regression line and are ignored;
consequently at most N-(N — 1)/2 connecting lines can be
calculated (see figure 1{d]). For a given pair of data points
(x;, 1) and (x;, y;) the slope of the connecting line is given
by:

2 forl=i<j=N.

Si; =
v X;i — xj

After ranking the slopes in ascending order:

Sy =82 =853 == 5@

the slope of the regression line is obtained as the median
of the ordered s(;. For the calculation of the intercept
several proposals are discussed in the literature [9], each
one depending on the previously determined value of 5. A
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change in the assignment of the methods to the variables
can lead to different results of the method comparison.

To obtain statistically unbiased results the procedure
requires that:

(1) The method asigned to the independent variable
has measurements which are not only free of error
but have fixed values.

(2) The method assigned to the dependent variable
has continuously distributed measurements with
constant error terms over the concentration range.

(3) There is a linear relationship between the two
methods.

Both variables with error terms

Passing/Bablok procedure [10 and 11]: like the Theil
procedure all possible connection lines between two data
points are considered and their slopes calculated. If for
two data points the x-values are equal (i.e. x; = x;), then
the slope s;; is set to = %, where the sign is determined by
the difference y; — y;. Again the slopes s; are ranked in
ascending order and the number of slopes with a value
less than —1 is set to K. The parameter & of the regression
line is estimated by the slope which lies K positions higher
than the median of the s5(;. For K =0, i.e. sy >—1, bis
represented directly by the median. The correction value
K ascertains that the assignment of the methods to the
variables can be changed without altering the result of the
method comparison.

To estimate the parameter a of the regression line the
values:

a; = )i — bxi

are calculated for all N data points. The intercept is then
represented by the median of the sorted a;:

a = med {y; — bx;} (see table 1).

To obtain statistically unbiased results the procedure
requires that:

(1) Both methods have continuously distributed
measurements.

(2) There is a linear relationship between the two
methods.

Examination of linearity

Since all regression procedures require a linear relation-
ship between the two methods, a judgement of the
parameters a and 6 is only meaningful after establishing
the linearity of the data. In general, the question of a
linear relationship is examined by visual inspection of the
scatter plot. A more objective approach by means of a
statistical test is desirable. Passing and Bablok [10]
discuss two ways of testing linearity. In both cases scores
with the values +1 or —1 are considered; these are
derived from the data points and their relative location to
the regression line. First the use of a run test is proposed
to examine the randomness of the distribution of scores
along the regression line y = a + bx. The second solution
is based on the cusum concept, where an excess number

of positive or negative scores along the regression line is
tested by means of the Kolmogorov-Smirnov statistic. A
judgement of linearity, of course, depends on the number
of samples and the sampling distribution.

Testing the equality

After the parameters a and & of the regression line have
been calculated, a researcher may wish to test whether or
not the methods differ from each other. If the methods are
equal then there is only a chance difference between a and
0 and between 6 and 1.

As in any statistical test a researcher has carefully to
consider the choice of the number N of samples to find a
significant result for a relevant difference.

The predefined significance level is part of the statistical
test, the size of a relevant difference is specific to the
problem under study and has to be judged by the
researcher. Obviously the main concern is in testing the
parameter b. For each of the five regression procedures
there is a statistical test provided the assumptions
regarding the data are valid. For the preocedures with
distributional assumptions the test for & = 1 makes use of
the t-distribution, for the other procedures the test is
related to the Kendall’s 7 statistic.

A test of the parameter ¢ is only proposed for the linear
regression and the Passing and Bablok procedure.

Sometimes a researcher uses the matched pairs -test or
Wilcoxon test in method comparison studies for judging
equality. However, with these tests only a difference in
the means can be detected. The ECCLS guidelines [1]
suggest their application to test ¢ = 0 when a is estimated
by the standardized principal component procedure.
Details on equality testing have been published by several
authors [3, 6, 10 and 11].

Discussion of the regression procedures

The procedures described in the sections on ‘Procedures
which assume normal distribution’ and ‘Procedures
without distributional assumptions’ give reliable results
as long as the data satisfy the requirements. A close look
at the data structure of a standard comparison experi-
ment shows that:

(1) Both methods have analytical error terms.

(2) The distribution of the error terms is frequently not
normal.

The variance of the error terms is seldom constant.

—~
R
=z =

The sampling distribution is mostly skew.

—
o
=

Samples with considerable methodical differences
can be present.

The way a procedure responds to data which violate its
assumptions cannot be judged by an evaluation of
experimental data. However, the behaviour of procedure
has been investigated by Passing and Bablok [11] in a
simulation study where well-defined data structures were
used to estimate parameter 4. All relevant combinations
of the following conditions were considered:
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(a) Relative size of measurement range.

(b) Sampling distribution (uniform or skew).

(¢) Sample size.

(d) Precision of the methods.

(¢) Distribution of the analytical error terms.

(f) Number and location of extreme data points.

The study showed that no procedure can be applied to
method comparison experiments without restrictions.
The following recommendations are suggested as a result
of the study.

Linear regression procedures should not be used for
biometrical evaluation, because the results are wrong in
the majority of cases.

The Theil and Deming procedures are only of limited value
when compared with the standardized principal component

procedure. This procedure is reliable and the parameters
a and b are easily computed. However, if the sampling
distribution is skew or if the CVs are not constant or if
extreme data points are present then biased estimation of
a and b leading to false inferences about the equality of the
methods must be expected. The procedure of Passing/
Bablok shows reliable results in all of these situations; only
when one of the CVs is higher than 7% and both CVs
differ by a factor of two or more an r-fold determination
with the less precise method is recommended. Because of
the robustness of this procedure the problem of including
or excluding extreme data points (outliers) does not arise.
However, a separate investigation of outlying data points
is advisable to locate method-specific differences. Usually
this examination is carried out using a graphical presen-
tation of the data. Samples which produced deviant
values should be analysed again by both methods. Any
measurement value should only be termed as an outlier

Table 2. Sample size N for a uniform sampling disiribution (significance level 5% ). For a skew sampling distribution the size N should be

multiplied by two.
brel
1/b,
1-02 1-04 1-06 1-08 1-10 1-12 1-15 1-20
Range¢ Cv, cv, 0-98 0-96 0-94 0-93 091 0-89 0-87 0-83
2 2 60 — — — — — — —
® 2 5 + 60 30 — — — — —
5 2 + 60 30 — — — — —
5 5 + 90 40 30 — — — —
5 7 + + 70 40 30 — — —
7 5 + + 70 40 30 — — —
7 7 + + 80 50 30 —_ — —
7 10 + + + 90 55 40 30 _—
10 7 + + + 90 55 40 30 —
10 10 + + + 90 60 45 30 —
10 13 + + + + 90 70 45 —
13 10 + + + + 90 70 45 —
13 13 + + + + 90 75 50 30
4 2 2 + 45 — — — — — —
2 5 + + 80 45 30 — — —
5 2 + + 80 45 30 — — —
5 5 + + + 65 45 — — —
5 7 + + + + 70 45 35 _—
7 5 + + + + 70 45 35 —
7 7 + + + + 75 55 40 —
7 10 + + + + + + 70 40
10 7 + + + + + + 70 40
10 10 + + + + + + 70 40
10 13 + + + + + + + 70
13 10 + + + + + + + 70
13 13 + + + + + + + 70
2 2 2 + + 60 35 — — — —
2 5 + + + + + 75 40 —_
5 2 + + + + + 75 40 —
5 5 + + + + + 90 60 40
5 7 + + + + + + 90 60
7 5 + + + + + + 90 60
7 7 + + + + + + + 65
7 10 + + + + + + + +
10 7 + + + + + + + +
10 10 + + + + + + + +

The range c is an indicator for the 1atio Cpay: Cmin 0f the measurement values.
“+ indicates N > 90; — indicates N < 30, but we advise to have at least 30 samples.
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and be excluded from the data, if an analytical error was
identified or the analyser declared the result as question-
able. If the distribution of the data is known, a statistical
test for detecting outliers can be used.

In addition, the study demonstrated that the size of the
measurement range has a considerable influence on the
outcome. The smaller the size of the range, the smaller
the imprecision of the methods has to be.

For biometrical evaluation of method comparisons, the
standardized principal component and the Passing/
Bablok procedures are advised. The first has its merits in
the ease of computation, the second in reliability when
testing equality.

Houw to proceed in the evaluation

To perform a method comparison study the following
steps are suggested.

First, the precisions of the two methods (instruments)
should be determined and the common concentration
range is established. The question of what kind of
sampling distribution can be obtained has to be con-
sidered and a value for b,;, must be defined which
indicates a relevant difference between the methods.
From table 2, which is derived from the Passing and
Bablok’s results [11], the required sample size N for the
study is taken with respect to CVs, concentration range,
b,; and sampling distribution. After the experimental
data are available they are scrutinized in a scatter plot to
detect and exclude gross measurement errors. Then the
parameters a and b are estimated either by the Passing/
Bablok or standardized principal component procedure.
To ensure a linear relationship between the data,
linearity is tested as described by Passing and Bablok [10]

or the data is visually inspected. If linearity is given, the
test of the null hypothesis @ = 0 and b = 1 is carried out [6
and 10]. If the null hypothesis is not rejected, then the
equality of the methods is inferred. The experimental
data and the results of the biometrical evaluation have to
be documented.

In the final judgement of an instrument evaluation a
researcher has to consider the outcome of the statistical
calculations, as well as the findings which relate to his
expertise in the field of clinical chemistry.
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chromatography. Special sessions will be devoted to:

HPLC

HPTLC

Classical column liquid chromatography
Thin-layer chromatography

Affinity chromatography
Gas chromatography
Gas chromatography — mass spectrometry

Data processing in chromatography

their degradation products; drug, metabolites.

BUDAPEST CHROMATOGRAPHY SYMPOSIUM
The 5th American-Eastern European Symposium on Liquid Chromatography: 11-14 June 1985

To be held at the Research and Teaching Departments of the Semmelweis University Medical School,
Nagyvarad tér 4, Budapest VIII the symposium will be conducted in English. The main topics at the meeting
will be the analytical and preparative separation of biologically active compounds, the theory and practice of

Forced flow (overpressured) thin-layer chromatography

Electrophoresis techniques (PAGE, IEF, PAGIF, isotachophoresis)

Theoretical and practical aspects of separation of amines; amino acids, peptides, proteins; nucleic acids and

More information (the registration fee is $100) from Congress Bureau Motesz, Budapest, PO Box 32, H 1361 Hungary
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