Program in BASIC to combine data from two different selective detectors and its application for screening of pesticides in residue analysis

H.-J. Stan and H. Goebel

Institut für Lebensmittelchemie der Technischen Universität Berlin, Müller-Breslau-Straße, 1000 Berlin 12, FR Germany

Introduction

For the analysis of pesticide residues in food, gas chromatography with selective detectors is established internationally as the most suitable method. The application of electron capture (ECD) and nitrogen-phosphorus (NPD) detectors enables the selective detection of contaminants at trace level in the presence of a multitude of compounds extracted from the matrix, which do not respond to these detectors.

The number of compounds used in agriculture for plant protection and the variety of pollutants in the environment has increased to such a level that it is impossible to separate them all in a single chromatogram, despite using high-performance capillary columns. These capillary columns allow the retention times of compounds to be determined with a very high accuracy and good reproducibility. The high resolution facilitates the differentiation of substances belonging to the same structural class as organophosphate pesticides (PP) or chlorinated pesticides (CP).

When splitting the effluent of the capillary column to both selective detectors, additional information about the identity of the individual compounds can be obtained from the chromatograms by calculating the response ratios.

A concept has recently been developed for automated pesticide residue analysis—realizing it by means of a gas chromatograph with options for BASIC programming, dual-channel operation and automatic liquid sampling [1 and 2].

The BASIC program, which controls the automated analysis, calculates the residue concentrations and evaluates the degree of certainty of the pesticides found is presented here.

Materials and methods

The pesticide residue analysis was performed with a gas chromatograph (HP 5880 A, Hewlett Packard, Palo Alto, California, USA) using capillary columns (BP 1, SGE-Scientific Glass Engineering, Australia) and effluent splitting to the two selective detectors (NPD and ECD). The signals from detectors are processed in a dual-channel integrator connected to two terminals, allowing both chromatograms to be recorded in parallel. The manufacturer's operating system and chromatography programs are used for data collection, immediate recording of the chromatograms, recognition of calibrated peaks and quantitation. The internal standard method is generally used. The instrument is also equipped with an autosampler, HP 7671 A, and the microprocessor's memory is extended by a cartridge tape unit.

The procedure of the complete pesticide analysis has already been described [1 and 2].

The program

The HP 5880 A was launched as the first gas chromatograph which could be programmed in BASIC; this allows it to execute individual calculations, to format reports and to control the autosampler. The authors' program was developed to fulfil the following requirements:

- (1) The ability to run a food sample with parallel signal processing in two channels and storage of the data.
- (2) Calculation of peaks found by means of several calibration tables.
- (3) Evaluation of the results by comparing the peaks identified in the two channels.
- (4) Summarizing final results in a clearly arranged report.

The HP 5880 A was designed to store one calibration table in each channel. However, the large number of pesticides included in the authors' analytical method requires at least three calibration mixtures with the three corresponding calibration tables in each channel. Therefore the calibration tables have to be saved on an external memory; in this case a tape. The calibration tables are included in the three 'Analysis files'. Each file contains two calibration tables generated by dual-channel recording of one calibration mixture. Additionally, the analysis files contain the parameter settings of the instrument to run the gas chromatographic analysis. A special problem arises from the fact that communication between the two channels is limitedcalculations can easily be performed, but processing in one channel cannot be controlled by the other one. Therefore two separate programs have been created, these are synchronized by means of waiting loops.

The programs are documented in figures 1 and 2; the REM statements should make them almost self-explanatory.

For readers unfamiliar with the HP 5880 A, a list of some of the commands for activating special procedures and functions integrated in the program might be helpful:

START AUTO SEQ X, X: Starts the automatic sampler. The two numbers define the first and last bottle.

RECALIB: The areas from the calibration mixtures found in the most recent run and the amounts from the original calibration run of the same mixture are used to calculate new response factors.

RECALIB RUN TIME: The retention times in the calibration table are replaced by real times found in the most recent run.

SAMPLE \$: Returns the number of the sampler bottle in the tray.

ID \$: Returns the sample names from the sample table.

DETECTOR A O: NPD is switched off.

AMT (I): Returns the concentration of a specified peak calibrated.

HEAD \$: Returns the title from the calibration table.

Application to a real food sample

START AUTO SEQ N1,N1

600

LIST PRGM

The automated pesticide residue analysis controlled by the BASIC program described has been designed as a screening procedure. As already mentioned, a complete residue analysis in food of unknown origin cannot be performed on a single capillary column: so the aim of automated screening is to provide the analyst with information about contaminants that

may be present in the specified sample. All of the suspected pesticides listed in the final report are analysed using an independent method of confirmation [1 and 2]. Examples of final reports from the two channels are shown in figures 3 and 4. All peaks identified by means of the data stored for each calibration mixture are printed, and those responding to both detectors are compared by applying their specific response ratios. The deviation from the value calculated from the calibration data is reported as a percentage. A difference of more than 30% is usually an indication that the peak found does not correspond to the substance calibrated. Also, all compounds identified with only one detector are indicated, as well as those belonging to 'critical pairs' in chromatography and those responding to both detectors.

```
PROGRAM:
                  (ANNOTATION OFF)
     PRINT "LEADING PROGRAM (CHANNEL 1) FOR RESIDUE ANALYSIS"
     PRINT "PARALLEL IN NPD AND ECD"
 20
 30
     REM
 40
     REM ******* NPD (SIGNAL A): CHANNEL 1
 50
     REM ****** ECD (SIGNAL D): CHANNEL 2
     REM ****** COLUMN: METHYLSILICONE- BP1
 70
     REM ****** INTERNAL STANDARDS FOR NPD: NT (PT)
 80
     REM *******
                                        FOR ECD: ALDRIN (1,2,3- TCB)
 90
     REM ****** CALIBRATION TABLES AND INSTRUMENT SETPOINTS
100
     REM ******* IN ANALYSIS FILES 1,2 AND 3
110
     PRINT
120
     PRINT "PUSH Y IF LOADING THE THREE STANDARD MIXTURES INTO THE TRAY"
     INPUT "AS FOLLOWS: PPI, PPII, CPI AND STARTING CHANNEL 2", A$
130
140
     IF A$<>"Y" THEN 120
150
     PRINT
160
     PRINT "CREATION OF SAMPLE TABLE"
170
     PRINT
     PRINT "START WITH 4 AND CONCLUDE BY PUSHING EXIT"
180
190
     PRINT
200
     SAMPLE TBL
210
     INPUT "HOW MANY BOTTLES ARE IN THE TRAY?",N
     LET C = N-3
220
     GET ANALYSIS 1 DEVICE# 6
230
240
     OVEN TEMP ANNOTATION OFF
250
     LIST CLOCK TIME
260
     START AUTO SEQ 1,1
     RECALIB
270
280
     RECALIB RUN TIME
290
     WAIT 0.2
300
     DELETE ANALYSIS 1 DEVICE# 6
310
     SAVE ANALYSIS 1 DEVICE* 6
     GOSUB 2030
320
330
     GET ANALYSIS 2 DEVICE* 6
     OVEN TEMP ANNOTATION OFF
340
350
     START AUTO SEQ 2,2
360
     RECALIB
370
     RECALIB RUN TIME
380
     WAIT 0.2
390
     DELETE ANALYSIS 2 DEVICE* 6
400
     SAVE ANALYSIS 2 DEVICE* 6
410
     GOSUB 2030
     GET ANALYSIS 3 DEVICE# 6
420
430
     OVEN TEMP ANNOTATION OFF
     START AUTO SEQ 3,3
440
450
     RECALIB
460
     RECALIB RUN TIME
470
     WAIT 0.2
480
     DELETE ANALYSIS 3 DEVICE* 6
     SAVE ANALYSIS 3 DEVICE* 6
490
500
     GOSUB 2030
510
     WAIT 1
     GET ANALYSIS 1 DEVICE# 6
520
530
     REM
540
     REM ******* INJECTION OF C SAMPLES AND STORING THE DATA ON TAPE
550
     REM
560
     FOR N1 = 4 TO N
570
     OVEN TEMP ANNOTATION OFF
580
     ATTN 2↑2
590
     THRESHOLD 1
```

```
610
      PRINT SAMPLE$,ID$
620
     LIST SIGNAL
630
      WAIT 0.5
640
     EXECUTE E, "SAVE REPORT "&VAL$(N1)&" DEVICE* 6"
650
     NEXT N1
660
     PRINT
670
     DETECTOR A 0
680
      PRINT
690
      PRINT TAB(15); "REGISTER OF PESTICIDE RESIDUES OF"; C; "SAMPLES"
700
     PRINT
710
     PRINT
     IMAGE X,2A,4X,12A,4X,12A,4X,DD.DD,4X,DD.DD,4X,DD.DD,4X,DDDDDD
720
     IMAGE X,2A,4X,12A,4X,12A,4X,5A,4X,5A,4X,6A,4X,6A
PRINT USING 730; "NO", "SAMPLE", "NAME", "PPM", "RT", "EXP.RT", "AREA"
730
740
750
      PRINT
760
     PRINT
     FOR N1 = 4 TO N
770
      PRINT "CALCULATED FROM STANDARD MIXTURE I FOR P-COMPOUNDS"
780
790
      PRINT
800
      WAIT 0.5
810
     REM
      REM ****** LOADING THE REPORTS INTO MEMORY AND COMPARISON WITH
820
      REM ****** THREE STANDARD MIXTURES
830
840
      REM
850
      EXECUTE E, "GET REPORT "&VAL$(N1)&" DEVICE# 6"
      GOSUB 1040
860
870
      WAIT 1
      GET ANALYSIS 2 DEVICE# 6
880
890
      PRINT
900
      PRINT "CALCULATED FROM STANDARD MIXTURE II FOR P-COMPOUNDS"
910
     PRINT
      GOSUB 1040
920
930
      WAIT 1
940
      GET ANALYSIS 3 DEVICE# 6
950
960
      PRINT "CALCULATED FROM STANDARD MIXTURE FOR N-COMPOUNDS"
970
      PRINT
      GOSUB 1040
980
990
      GOTO 1320
1000
      REM
      REM ****** PRINTING REPORTS AND COMPARISON OF RESULTS
1010
1020
      REM ****** BETWEEN ECD AND NPD
1030
      RFM
1040
      FOR I=1 TO *PEAKS
1050
      IF AMT(I) > = 0.01 THEN 1070
1060
      GOTO 1080
1070
      PRINT USING 720; SAMPLES, IDS, NAMES(I), AMT(I), RT(I), EXPRT(I), AREA(I)
1080
      NFXT I
1090
      PRINT
1100
      FOR I=1 TO *PEAKS
     LET U$ = NAME$(I)
1110
     LET F = AMT(I)
FOR J = 1 TO *PEAKS(2)
1120
1130
     IF AMT(I) < 0.01 THEN 1290
1140
1150
      IF NAME(J,2) = U$ THEN 1170
1160
      GOTO 1280
1170
      IF AMT(J,2) > = 0.01 THEN 1190
1180
      GOTO 1280
1190
     LET E = AMT(J,2)
1200
      IF F > = E THEN 1220
     IF E > = F THEN 1240
1210
1220
      LET Y = (F-E)*100/F
      GOTO 1250
1230
1240
      LET Y = (E-F)*100/E
      IMAGE "THE DIFFERENCE BETWEEN THE DETECTORS AMOUNTS TO ",DDD, "%"
1250
1260
      PRINT USING 1250;Y
      PRINT "FOR", NAME$(J,2)
1270
     NEXT J
1280
1290
     NEXT I
1300
      PRINT
1310
      RETURN
      IMAGE 72("#")
1320
      PRINT USING 1320
1330
1340
      PRINT
1350
      GOSUB 1580
1355
      WAIT 1
1360
      GET ANALYSIS 2 DEVICE* 6
1370
      GOSUB 1680
1380
      GET ANALYSIS 1 DEVICE<sup>#</sup> 6
      GOSUB 1680
1390
1400
      RRINT
1410
      PRINT USING 1320
```

```
1420
      PRINT
1430
      NEXT N1
1440
      REM
              ****** FOOT NOTES TO THE FINAL REPORT
1450
      REM
1460
      REM
1470
      PRINT TAB(10); "* BELONGS TO A CRITICAL PESTICIDE THAT INDICATES"
      PRINT TAB(13); "SIMILAR RETENTION TIME TO A COMPOUND OF ANOTHER" PRINT TAB (27); "STANDARD MIXTURE"
1480
1490
1500
      PRINT
1510
      PRINT TAB(10); "+ BELONGS TO A COMPOUND RESPONDING TO ECD AND NPD"
1520
      PRINT
1530
      GET REPORT 4 DEVICE# 6
1540
      STOP
1550
      REM
1560
      REM ****** FINAL EVALUATIONS
1570
      REM
1580
      FOR J = 1 TO *PEAKS(2)
      LET Y$ = NAME$(J,2)
1590
1600
      FOR I=1 TO *PEAKS
1610
      IF NAME(I)=Y$ THEN 1660
      IF NAME$(J,2)="ALDRIN" THEN 1660
1620
1630
      IF AMT (J,2)<0.01 THEN 1660
1640
      NEXT I
1650
      PRINT NAMES(J,2), "IS IDENTIFIED WITH ECD IN"; IDS
1660
      NEXT J
      GOTO 1780
1670
1680
      FOR I=1 TO *PEAKS
      LET X$ = NAME$(I)
1690
1700
      FOR J = 1 TO *PEAKS(2)
      IF NAME$(J,2)=X$ THEN 1770
IF NAME$(I)="PT" THEN 1770
1710
1720
1730
      IF NAME\$(I)="NT" THEN 1770
1740
      IF AMT(I) < 0.01 THEN 1770
1750
      NEXT J
      PRINT NAME$(I), "IS IDENTIFIED WITH NPD IN";ID$
1760
1770
      NEXT I
1780
      FOR I=1 TO *PEAKS
      LET U$ = NAME$(I)
1790
1800
      LET F = AMT(I)
      FOR J = 1 TO *PEAKS(2)
1810
      IF NAME$(J,2) = U$ THÉN 1840
1820
1830
      GOTO 1960
      IF AMT(J.2) > = 0.01 THEN 1860
1840
1850
      GOTO 1960
1860
      LET E = AMT(J,2)
1870
      IF F > = E THEN 1890
      IF E > = F THEN 1910
LET Y = (F-E)*100/F
1880
1890
1900
      GOTO 1920
1910
      LET Y = (E-F)*100/E
1920
      IF Y < = 30 THEN 1950
1930
      GOTO 1970
1940
      PRINT
      PRINT NAME$(J,2), "IS SUSPECTED IN":ID$
1950
1960
      NEXT J
1970
      NEXT I
1980
      RETURN
1990
      REM
      REM ****** PRINTING CALIBRATION REPORTS OF STANDARD MIXTURES
2000
2010
      REM ****** INCLUDING RELATIVE RETENTION TIMES
2020
      REM
2030
      FOR I=1 TO *PEAKS
      IF NAME$(I)="NT" THEN 2060
2040
      GOTO 2070
2050
2060
      LET A = RT(I)
2070
      NEXT I
2080
      PRINT HEAD$
2090
      PRINT
      PRINT "CAL", "NAME", "PPM", "RT", "REL.RT"
2100
      PRINT
2110
      FOR I=1 TO *PEAKS
2120
2130
      PRINT CAL*(I), NAME$(I), AMT(I), RT(I), RT(I)/A
2140
      NEXT I
2150
      RETURN
```

Figure 1. The program for the NPD channel (leading program).

```
LIST PRGM
                  (ANNOTATION OFF)
PROGRAM:
     PRINT "PROGRAM (CHANNEL 2) FOR RESIDUE ANALYSIS"
      PRINT "PARALLEL IN ECD AND NPD"
     REM ****** NPD (SIGNAL A): CHANNEL 1
 50
     REM ****** ECD (SIGNAL D): CHANNEL 2
 60
     PRINT
 70
     INPUT "HOW MANY BOTTLES ARE IN THE TRAY?",N
     START
 90
     RECALIB
     RECALIB RUN TIME
 100
110
     GOSUB 1070
120
     START
130
     RECALIB
140
     RECALIB RUN TIME
     GOSUB 1070
150
160
     START
170
     RECALIB
     RECALIB RUN TIME
180
190
     GOSUB 1070
     REM
200
            ******* INJECTION OF SAMPLES AND STORING THE DATA ON TAPE
210
     REM :
220
     REM
230
     FOR B1 = 104 \text{ TO N} + 100
240
     ATTN 219
     THRESHOLD 9
250
260
     START
270
     LIST CLOCK TIME
     PRINT SAMPLES,IDS
PRINT "SIGNAL D"
280
290
     EXECUTE E, "SAVE REPORT "&VALS(B1)&" DEVICE # 16"
300
310
     NEXT B1
320
     PRINT
330
     PRINT
     PRINT TAB(15); "REGISTER OF PESTICIDE RESIDUE OF"; N-3; "SAMPLES"
340
350
     PRINT
360
     PRINT
370
     IMAGE X,2A,4X,12A,4X,12A,4X,DD,DD,4X,DD,DD,4X,DD,DD,4X,DDDDDD
     IMAGE X,2A,4X,12A,4X,12A,4X,5A,4X,5A,4X,6A,4X,6A
PRINT USING 380; "NO", "SAMPLE", "NAME", "PPM", "RT", "EXP.RT", "AREA"
380
390
400
     PRINT
     PRINT
410
420
     FOR B1 = 104 \text{ TO } N + 100
430
     PRINT
440
     PRINT
450
     PRINT "CALCULATED FROM STANDARD MIXTURE I FOR P-COMPOUNDS"
460
     REM
470
     REM ******* LOADING THE REPORTS INTO MEMORY AND COMPARISON WITH
480
     REM ****** THREE STANDARD MIXTURES
490
     REM
500
     EXECUTE E, "GET REPORT "&VAL$(B1)&" DEVICE* 16"
510
     REM
520
     REM ****** WAITING LOOP FOR SYNCHRONISATION
530
     REM ****** WITH THE MAIN CHANNEL 1
540
     REM
550
     LET W$ = SAMPLE$(2)
     IF W$=SAMPLE$(1) THEN 590
560
570
     WAIT 0.2
580
     GOTO 550
590
     GOSUB 870
600
     REM
610
     REM ****** WAITING LOOP FOR SYNCHRONISATION
620
     REM ****** WITH THE MAIN CHANNEL 1
630
     REM
640
     LET A$ = HEAD$
     IF A$="STANDARD MIXTURE II IN ECD" THEN 680
650
660
      WAIT 0.2
670
     GOTO 640
680
      PRINT
690
     PRINT "CALCULATED FROM STANDARD MIXTURE II FOR P-COMPOUNDS"
     GOSUB 870
700
710
     REM
720
     REM ******* WAITING LOOP FOR SYNCHRONISATION
     REM ****** WITH THE MAIN CHANNEL 1
 730
740
     REM
     LET B$=HEAD$
750
     IF B$="STANDARD MIXTURE FOR CHLORINATED COMPOUNDS IN ECD" THEN 790
760
770
      WAIT 0.2
780
      GOTO 750
     PRINT
790
```

PRINT "CALCULATED FROM STANDARD MIXTURE FOR CHLORINATED COMPOUNDS" 800 GOSUB 870 810 **GOTO 930** 820 830 **REM** 840 REM ******* PRINTING REPORTS AND COMPARISON OF RESULTS REM ****** BETWEEN ECD AND NPD 850 860 REM 870 FOR I=1 TO *PEAKS IF AMT(I) > 0.01 THEN 900 880 890 **GOTO 910** 900 PRINT USING 370; SAMPLES, IDS, NAMES(I), AMT(I), RT(I), EXPRT(I), AREA(I) 910 NEXT I **RETURN** 920 930 WAIT 0.2 940 REM REM ****** WAITING LOOP FOR SYNCHRONISATION 950 REM ****** WITH THE MAIN CHANNEL 1 969 970 REM LET V\$ = SAMPLE\$(2) 980 990 IF V\$ < > SAMPLE\$(1) THEN 1010 **GOTO 930** 1000 1010 NEXT B1 STOP 1020 1030 **REM** 1040 REM ****** PRINTING CALIBRATION REPORTS OF THE STANDARD MIXTURES 1050 REM ******* INCLUDING RELATIVE RETENTION TIMES 1060 REM FOR I=1 TO *PEAKS 1070 1080 IF NAME\$(I)="ALDRIN" THEN 1100 1090 **GOTO 1110** 1100 LET A = RT(I)NEXT I 1110 PRINT HEAD\$ 1120 1130 **PRINT** 1140 PRINT "CAL", "NAME", "PPM", "RT", "REL.RT" **PRINT** 1150 FOR I=1 TO *PEAKS 1160 PRINT CAL*(I),NAME\$(I),AMT(I),RT(I),RT(I)/A 1170 1180 **NEXT I** 1190 **RETURN**

Figure 2. The program for the ECD channel.

REGISTER OF PESTICIDE RESIDUE OF 1 SAMPLES

NO	SAMPLE	NAME	PPM	RT	EXP.RT	AREA
CALCULAT	ED FROM STANDA	RD MIXTURE I FOR P-COM	POUNDS			
4	PEACHES	PHOSPHAMI+	.54	13.97	13.86	1763
4	PEACHES	PARATH-ME+*	1.48	14.21	14.20	49932
4	PEACHES	MALATHION+	2.69	16.49	16.57	16716
4	PEACHES	ALDRIN	2.00	16.85	16.85	100997
4	PEACHES	PARATHION+*	.20	17.21	17.14	2577
CALCULAT	ED FROM STANDA	RD MIXTURE II FOR P-COM	1POUNDS			
4	PEACHES	DICHLOFENT+*	3.37	14.21	14.18	49932
4	PEACHES	PARAOXON+*	.59	14.98	15.05	5607
4	PEACHES	ALDRIN	2.00	16.85	16.85	100997
4	PEACHES	DURSBAN+*	.10	17.21	17.18	2577
CALCULAT	ED FROM STANDA	RD MIXTURE FOR CHLORII	NATED COM	POUNDS		
4	PEACHES	CHLORFPROP-M	.79	7.67	7.60	2719
4	PEACHES	HEPTACHLOR*	.30	14.98	14.97	5607
4	PEACHES	ALDRIN	2.00	16.85	16.85	100997

Figure 3. Print-out from the ECD channel for a screening run of pesticides in peaches.

REGISTER OF PESTICIDE RESIDUES OF 1 SAMPLES

NO	SAMPLE	NAME	PPM	RT	EXP.RT	AREA				
CALCULATED FROM STANDARD MIXTURE I FOR P-COMPOUNDS										
4	PEACHES	PARATH-ME+*	1.60	14.20	14.32	1088				
4	PEACHES	PARATH-ML+*	.10	17.20	17.28	27				
4	PEACHES	NT	2.00	18.19	18.19	1055				
THE DIFFERENCE BETWEEN THE DETECTORS AMOUNTS TO 8%										
FOR PARATH-ME+*										
THE DIFFERENCE BETWEEN THE DETECTORS AMOUNTS TO 52%										
FOR PARATHION+*										
CALCULATED FROM STANDARD MIXTURE II FOR P-COMPOUNDS										
4	PEACHES	DICHLOFENT+*	5.11	14.20	14.28	1088				
4	PEACHES	DURSBAN+*	.07	17.20	17.31	27				
4	PEACHES	NT	2.00	18.19	18.19	1055				
THE DIEFED	ENCE DETWEEN	THE DETECTORS AMOUNT	S TO 240/							
FOR			3 10 34/0							
FOR DICHLOFENT+* THE DIFFERENCE BETWEEN THE DETECTORS AMOUNTS TO 35%										
FOR DURSBAN+*										
TOR	DORSBAIN	T								
CALCULATED FROM STANDARD MIXTURE FOR N-COMPOUNDS										
4	PEACHES	NT	2.00	18.19	18.19	1055				
,	12.101125	***	2.00	10.17	10.12	1000				
############	************	***********	+++++++++++	#########	+ # # # # # # # # # # * #	##########				
CHLORFPROP-M IS IDENTIFIED WITH ECD IN PEACHES										
HEPTACHLOR* IS IDENTIFIED WITH ECD IN PEACHES										
PARATH-ME	E+* IS	SUSPECTED IN PEACHES								

^{*} BELONGS TO A CRITICAL PESTICIDE THAT INDICATES SIMILAR RETENTION TIME TO A COMPOUND OF ANOTHER STANDARD MIXTURE

Figure 4. Print-out from the NPD channel for the same screening run as in figure 3, including final report.

Discussion

Figures 3 and 4 show the parallel print-outs from the two terminals reporting a screening run for pesticide residues in peaches. By means of this example, the utility and the limits of our program for evaluating food samples are briefly discussed.

After the clean-up, a number of substances responding to the ECD are generally found in a chromatogram and several are recognized as calibrated pesticides in the screening run. In figure 3 a total of nine pesticides are indicated, together with the internal standard (aldrin). Only these nine compounds out of about 80 pesticides incorporated in three calibration mixtures may be present in the sample. Processing of the NPD signals recorded simultaneously in the other channel results in four organophosphorous pesticides and no nitrogen-containing pesticide (figure 4). For all of the compounds responding to both detectors a calculation of the response ratios and comparison with their calibrated values leads to the discrimination of 'parathion', dichlofenthion' and 'dursban', whereas the response ratio of 'parathion methyl' is close to the calibrated one. Therefore parathion methyl is announced in the final report as suspected. This screening run permits no further decision about 'chlorfenprop methyl' and 'heptachlor'.

All pesticides marked with a cross in figure 3 are organophosphorous compounds and so they also have to respond to the NPD. As there are no corresponding signals for 'phosphamidon', 'malathion' and 'paraoxon' in the NPD report of this example, all three substances are eliminated and do not appear in the final report. This discrimination procedure results in the final proposal of chlorfenprop methyl, heptachlor and parathion methyl as possibly being present in this sample.

The program proved to be a great help in routine analysis for selecting the positive food samples after screening. A major drawback is the time-consuming data transfer between the tape and the gas chromatograph's memory.

The analyst has to inspect the chromatograms of both detectors in order to evaluate the quality of the separation and the performance of the chromatographic system. After this, the computer supports him by handling the huge amount of information produced by a series of screening runs.

References

- GOEBEL, H. and STAN, H.-J. in J. Rijks (ed.), Proceedings of the Fifth International Symposium on Capillary Chromatography (Elsevier, Amsterdam, 1983), 557.
- STAN, H.-J. and GOEBEL, H., Journal of Chromatography (in press).

⁺ BELONGS TO A COMPOUND RESPONDING TO ECD AND NPD