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Effects of experimental design on calibra-
tion curve precision in routine analysis
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A computational program which compares the efficiencies of
different experimental designs with those of maximum precision
( D-optimized designs) is described. The program produces
confidence interval plots for a calibration curve and provides
information about the number of standard solutions, concentration
levels and suitable concentration ranges to achieve an optimum
calibration. Some examples of the application of this novel
computational program are given, using both simulated and real
data.

Introduction

Calibration is a very important step in any analytical
procedure. The choice and arrangement of standard
solutions, i.e. experimental design, may affect the preci-
sion with which a calibration curve can be estimated.
Since a calibration curve is the basis for predicting
concentrations of unknown samples, the purpose of good
experimental design is to obtain the best possible pre-
dictive power [1].

Although the theoretical importance of experimental
design is widely recognized [2], the relevance of its
applicability to analytical laboratory procedures has
only attracted limited attention [3, 4]. For the construc-
tion of a calibration curve, the usual practice is still to
divide the experimental region uniformly. This proce-
dure, however, is only indicated when there is a need to
establish the linear concentration range. For routine
analyses, where this range is known in advance, this
procedure is not recommended.

This paper describes a computational program which
allows selection of the best experimental design for a
given situation, based on efficiency values and plots of
confidence intervals. Some examples of its application in
typical routine analysis are also given, using simulated
and real data.

* Author to whom correspondence should be addressed.

Theory

The underlying theoretical principles used in this paper
follow; a more detailed discussion can be found elsewhere
[5-7].

Assuming the linear model, y = by + b1x (where y is the
dependent variable, x the independent variable and bg
and b; the estimates of the model parameters), the
precision of the calibration curve can be evaluated from
the width of the confidence interval for the analytical
response y corresponding to a certain concentration
value, xo, which is given by:
g 71/2
o) =0 85| 1 4 L0 2m) (1)
n Z(xi - xm)

where (59), is the true value of the analytical response at
concentration xp; yo is the predicted response by the
model for the concentration xo; ¢ is a point in Student’s
distribution; s is the estimate of the standard deviation of
; n is the number of measured responses; and x, is the
average of x values.

In matrix notation, this equation can be written as:
(o). =s0 % 61 +x(X'X) ] (2)

where:

Xo =

X

n is the number of measured responses and £ is the
number of independent variables (in the linear model
k=1).

Analytical chemists will primarily use the calibration
curve to predict the value of the independent variable
(concentration), xg, corresponding to a specific value of
the analytical response, ». This procedure is called
‘inverse regression’. The confidence intervals around
the estimated concentration, (xo),, are given by equation
(3), which is similar to equation (2). The only difference
between the two equations is the appearance of the term
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Figure 1. Four designs for the same range, with the same number
of measurements.

by in equation (3), which represents the straight line
angular coefficient:

L.
() =20 %5 [1+x(XX) ] (3)

Analysis of equations (2) and (3) reveals that the
confidence interval depends on the experimental design
defined by the matrix (X'X)™', which is square with
dimension p (p is the number of parameters in the
calibration model). The best design, as far as precision
is concerned, is the one that somehow minimizes this
matrix. Among the several minimization criteria already
proposed, the most popular consists in choosing the
design that minimizes the determinant of (X’X)_l. Such
a design is said to be D-optimized [3, 8].

For D-optimized designs, the number of concentration
levels must always be equal to the number of parameters
in the chosen model. For a linear model, for example,
which is defined by two parameters, the minimum value
of det(X'X) ™" is attained when the concentration levels
coincide with the two extreme points of the calibration
range. In practice, D-optimized designs are not recom-
mended for all situations, as sometimes it is not previously
known whether the functional relationship between x and
y is really linear within the range of interest. In such
cases, the experimental design must include at least three
concentration levels, to allow for a lack-of-fit test of the
proposed model [6].

For a given calibration range and a number of measure-
ments, several different designs are possible. Figure 1
shows four designs, all with the same number of measure-
ments and the same working range (1-6 arbitrary con-
centration units). Design a is often employed in routine
laboratories. Design d is the D-optimized design for these
conditions, and results in the most precise calibration
curve. A way of comparing a given design with the
corresponding D-optimized design is to calculate its
efficiency, which is defined by equation (4):

det(X'X)
=——=——""-100 4
3t X Ky W
where det(X'X) is the determinant of (X'X) for the
chosen design and det(X'X)p . is the determinant of
(X'X) for the D-optimized design with the same number
of measurements.
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The computational program ‘DESIGN’, presented in
this paper, provides values for efficiencies and plots of
confidence intervals, with a view to helping analytical
chemists to decide which experimental design is most
suited to a given situation.

Description of the DESIGN computational program

DESIGN was written in the MATLAB high-level lan-
guage and was designed to be user-friendly; a flow chart
of the program is shown in figure 2. Three options allow
evaluation of different experimental designs in fitting
linear models:

(1) Selection of the number of standard solutions, taking
into account the width of the confidence interval for
the D-optimized design.

(2) Selection of the concentration levels (number and
location).

(3) Comparison of several designs.

In option 1, the user evaluates the effect of the number of
standard solutions used for calibration, from plots of
confidence intervals for D-optimized designs. The pro-
gram asks for the lower and higher concentrations of the
working range, and the number of standard solutions of
the design.

Once the number of standard solutions is chosen, option
2 permits the effect of the number and distribution of
concentration levels on the calibration curve to be esti-
mated. Efficiencies and plots of confidence intervals for
selected designs are given. Since this option is intended to
access only the effect of how many and which levels
should be selected, all designs must have the same lower
and higher concentrations, in addition to the same
number of standard solutions.

In option 3, there is no constraint on the designs under
comparison. Designs with different numbers of standard
solutions, different numbers of concentration levels or
different working ranges are evaluated through confi-
dence interval plots. The concentration range shown on
the plot is chosen by the user.

The subprogram used to calculate confidence intervals
and efficiencies is described in listing 1 in the Appendix to
this paper.

Simulations

Two practical examples were used to demonstrate the use
of the options in the DESIGN program: the determina-
tion of potassium and iron in drinking water by flame
emission spectroscopy (FES) and inductively-coupled
plasma atomic emission spectrometry (ICP-AES), re-
spectively. For both cases a calibration curve needs to
be constructed relating the intensity of the measured
signal (dependent variable y) to the concentration of
the analyte in the sample (independent variable x).

It is important to bear in mind that replicate levels
require full authentic replicate determinations, and not
just replicated measurements of the same solution.
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Figure 2. Flow chart of the ‘DESIGN’ program.
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Figure 3. Comparison of designs with different number of stan-
dard solutions (N); (a) N =4, (b) N =6, (c) N =8, (d)
N =10, (e) N =12.

Selection of the number of standard solutions (option 1)

Assuming a linear relationship within the working range,
the number of standard solutions to be used in a
calibration curve can be chosen from observation of the
plots generated by the program in option 1.

In the determination of potassium by FES, the known
linear range is between 1 and 10mg/l. In order to
demonstrate the influence of the number of standard
solutions on the precision of the fitted calibration curve,
the following designs were chosen:

ar [1 1 10 10}, N =4

b: [1 1 1 10 10 10}, N=6

¢ [1 1 1 1 10 10 10 10}, N=8

d: [1 1 1 1 1 10 10 10 10 10], ¥=10

e [1 1 1 1 1 1 10 10 10 10 10 10],
N=12

Figure 3 shows that the larger the number of standard
solutions, the smaller the confidence interval and, there-
fore, the more precise the calibration curve. This is
explained by the decrease in ¢ and 1/n in equation (1).
However, it is also evident that this trend is progressively
damped, so that beyond a certain point (e.g. N > 6) the
improvement in precision does not seem to be enough to
compensate for the additional effort of preparing more
standard solutions. It is then suggested that designs with
six different standard solutions are adequate for the
construction of calibration curves for routine analysis.

Selection of the number of concentration levels (option 2)

For a linear working range, the ideal experimental design
is the D-optimized one [3, 8]. In practice, however, range
linearity cannot always be taken for granted and it is
advisable to employ at least three concentration levels to
allow for a lack-of-fit test of the assumed linear model
[5-7]. The selection of how many and which concentra-
tion levels are to be used to construct the calibration
curve can be carried out through comparison of the
efficiencies of the chosen designs with that of the
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Figure 4. Comparison of designs with different number of con-
centration levels; (a) design [1 2 3 5 8 10], six levels;
(b) design [1 1 3 6 8 10], five levels; (c) design
[T 1 38 5 10 10], _four levels;  (d)  design
[T 1 1 6 10 10], three levels.

D-optimized design. In potassium determination by
FES, for example, problems in nebulization may change
the linear range and therefore a periodic linearity test is
recommended.

In order to select the number of concentration levels the
following designs may be considered:

ar [1 2 3 5 8 10],six levels

b: [1 1 3 6 8 10], five levels

¢ [1 1 3 5 10 10], four levels
d [1 I 1 6 10 10], three levels.

Decreasing the number of levels increases the design
efficiency and consequently improves the precision of
the calibration curve too (see figure 4). Nevertheless, this
tendency cannot be generalized, because design efficiency
depends not only on the number of levels but also on
which points in the working range they are located at. To
illustrate this, let us consider the following designs, whose
efficiencies are shown in figure 5:

a: [1 1 5 5 10 10], three levels
b: [1 1 3 7 10 10], four levels
c [1 1 2 9 10 10], four levels.

As shown in figure 5, although design a has only three
levels, it results in lower efficiency relative to the other
four-level designs. Thus, the selection of concentration
levels can be very specific and highly dependent on the
kind of analysis being performed. In general, it is
recommended that:

(1) Four concentration levels be used, to have not only
high efficiency but also two degrees of freedom to test
for lack of fit of the linear model [4, 5].

(2) Measurements be taken as close as possible to the
calibration range limits, which is the choice asso-
ciated with D-optimized designs.

From these considerations, an experimental design like ¢
in figure 5 should be employed in the example of the FES
potassium assay in water. This design involves six



M. F. Pimentel ¢t al. Effects of experimental design on calibration curve precision in routine analysis

33t Efficiencies: 1
N a: 66.9% /
W2 b: 73.5% e
g c: 86.8% /°
32F W\ ’

w
-

confidence intervalfs

concentration

Figure 5. Comparison of designs with different number of con-
centration levels; (a) design [1 1 5 5 10 10], three
levels; (b) design [1 1 3 7 10 10], four levels; (c)
design [1 1 2 9 10 10], four levels.

standard solutions distributed in four concentration levels
and allows for lack-of-fit testing with two degrees of
freedom, yet still has a high efficiency.

Comparison between designs (option 3)

Consider, for example, the determination of iron in
drinking water by ICP-AES. In most of the samples,
iron concentration is between 0.01 and 0.5 mg/l and this
working range is normally used, although the linear
range is much larger. As a consequence, it is not
necessary to test for linearity. Besides, it is known from
experience that iron concentration in uncontaminated
drinking waters is close to 0.01 mg/l, rising to 0.5 mg/l
in iron-contaminated samples. Which design should
be adopted for analysing these samples? Recalling that
the precision of a calibration curve increases towards the
mean [term (xo — %) in equation (1)], designs like the
following can be suggested:

a: [0.01 001 001 00 001 0.5]
b: [0.01 05 05 05 0.5 0.5]
¢ [0.01 001 001 05 05 0.5].

Confidence interval plots for these designs are given in
figure 6. The best design for a given case is the one whose
mean standard solution concentration is closest to the
expected concentrations of the samples to be analysed. As
a result, design a in figure 6 should be used for samples
without iron contamination, while design b is suitable for
contaminated samples. Design c¢ is indicated for batches
containing both kinds of samples.

Another relevant aspect of experimental design is the
selection of the working range. The designs just com-
pared have the same concentration range, but the pro-
gram permits comparison of designs with different
numbers of levels and different ranges.

In order to demonstrate the application of DESIGN, we
return to the iron assay in drinking waters by ICP-AES.
As already stated, in this analytical procedure the linear

38t

w
=

w
~
T

confidence interval/s

w
r

01 02 03 04 05
concentration

Figure 6. Comparison of designs with different concentration
means; (a) design [0.01 0.01 0.01 0.01 0.01 0.5],
mean= 0.09mg/l; (b) design [0.01 05 05 0.5
0.5 0.5], mean=0.42mg/l; (c) design [0.01 0.01
0.01 0.5 0.5 0.5], mean= 0.25 mg/l.

ranges are very wide [6] and the working range can be
increased without risking deviation from linearity.

The following designs can be used to illustrate the use of
option 3:

a: [0.01 0.01 001 05 05 0.5]
b: [0.01 001 001 001 1 1].

Results are shown in figure 7: design b provides a smaller
confidence interval, when the whole range is considered
(design a is better only in a small region, close to the
concentration mean). This is due to the presence of the
%(xi — %m)? sum in equation (1).

Applications

A real example of iron determination in natural waters
by atomic absorption spectrophotometry (AAS) follows.
This illustrates the effect of some experimental designs
discussed in this paper on the precision of estimated
sample concentration [equation (3)].

Measurements were made using a Perkin-Elmer instru-
ment, Model 503, following the procedure described in
the manufacturer’s manual. Standard solutions were
prepared by dilution of Titrisol (MERCK) standards.
Absorbances measured for each concentration level are
presented in table 1.

In order to construct calibration curves, data from table
1 were used, according the following experimental de-
signs:

(A) X=[02 02 5 5]

Xm = 2.6

¥ = [0.0084 0.0070 0.1794 0.1802].
B) X=[02 02 02 5 5 5]

Xm = 2.6
Y =[0.0078 0.0084 0.0068 0.1810 0.1802
0.1794].
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(C) X=1[02 02 02 02 5 5 5 5
Xm = 2.6
¥ =1[0.0068 0.0088 0.0070 0.0084 0.1794
0.1810 0.1802 1800].
(D) X=[0.2 02 0.2 02 02 5]

X = 1
¥ =1[0.0088 0.0078 0.0068 0.0070 0.0084
0.1802].
(E) X=1[0.2 5 5 5 5 5]
Xm = 4.2
Y =[0.0078 0.1794 0.1800 0.1814 0.1802
0.1810).
(F) X=1[0.2 1 2 3 42 5]
Xm = 2.6
Y =[0.0078 0.0358 0.0732 0.1098 0.1520
0.1802].
(G) X=[02 02 05 46 5 5
Xm = 2.6
¥ =10.0078 0.0084 0.00178 0.1668 0.1802
0.1794].
325
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Figure 7. Comparison of designs with different calibration

ranges; (a) design [0.01 0.01 0.01 0.5 0.5 0.5]; (b)

destgn [0.01 0.01 0.01 0.01 1 1].

Table 1. Absorbance values of stan-
dard solutions of iron. The repeated
concentration values correspond to
authentic replicates of the standard
solutions series.

Concentration (mg/l) Absorbance
0.2 0.0078
0.2 0.0088
0.2 0.0068
0.2 0.0070
0.2 0.0084
0.5 0.0178
1.0 0.0358
2.0 0.0732
3.0 0.1098
4.2 0.1668
5.0 0.1794
5.0 0.1800
5.0 0.1814
5.0 0.1802
5.0 0.1810

Table 2. Estimated values of the tron
concentration (in mg/l) and 95% con-
fidence interval in a sample of well

water.
Design Estimated concentration
A 0.209 £0.117
B 0.209 £ 0.071
c 0.209 £ 0.061
D 0.209 + 0.068
E 0.209 £ 0.087
F 0.209 £ 0.075
G 0.209 £0.072

It is important to note that the estimates of 41 and s in
equation (3) are approximated to 0.0359 and 0.0008,
respectively, for curves A—G above. Hence, confidence
intervals will only depend on the terms related to
experimental design [, n and X, in equation (3)].

The absorbance measured for a sample of well water was
0.0081 absorbance units. The estimated concentration
and the 95% confidence intervals around this estimate
for curves A—G are presented in table 2. Some of the

features discussed in the previous section are highlighted
by table 2:

(1) When the number of standard solutions increases
from four (design A) to six (design B), the width of
the confidence interval decreases 39% (from 0.117 to
0.071 mg/l). When the number of standard solutions
goes from six to eight, the same interval decreases
only by 14% (from 0.071 to 0.061 mg/l). This small
decrease needs to be weighed against the task of
preparing two more standard solutions to decide
whether the increase in precision is worth the trouble.

(2) Designs B, F and G illustrate the effect of the number
of concentration levels. Among these, the D-opti-
mized design B presents the narrowest confidence
interval, but design G, with four levels close to the
limits of the working range, presents practically an
equal interval (table 2).

(3) Designs D and E demonstrate how a shift in the
average concentration (xy) affects the precision of
the calibration curve. With design D, ¥, =1 and
with design E, x, =4.2. Because the estimated
concentration [(xg), = 0.209mg/l] is nearer to
xm = 1 than to x, = 4.2, design D shows narrower
confidence intervals for this estimate (0.068, table 2).
This interval is slightly smaller than the D-optimized
one (B), with the same number of standard solutions
(0.071, table 2).

Experimental design, of course, varies from case to case
and only the user is able to decide which design is the best
for any particular situation.

Conclusion

The DESIGN computational program presented in this
work is conceived as a tool for the experimental design
needed in building calibration curves. It is very simple to
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use and allows the experimenter to choose among several
options.

It is hoped that this program will stimulate analytical
chemists to adopt the practice of planning their experi-
ments as a matter of routine.
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Appendix

%**SUBROUTINE FOR COMPUTATION OF CON-
FIDENCE INTERVALS AND EFFICIENCIES**
%X = Design vector
tam = length (X);
Y ****Computation of t-student (95% confidence)****
gral = (tam-2);
t5=2.282 ./(gral ."5);
4=0.381 ./(gral ."4);
13 =2.9333 ./(gral ."3);
12=2.77608 ./(gral ."2);
11=2.37286 ./gral;
t=1(1.95997 + 5 + t4 + 13 + 2 + t1);
Y% ****Creating D-optimized design matrix ****
Xinic = min(X);
Xfin = max(X);
nm = round (tam/2);
for ¢ = 1:nm
Xotimt(7) = Xinic;
end
for i=(nm+1):tam
Xotimt(z) = Xfin;
end

%****Confidence intervals computation®***

pass = abs((Xfin-Xinic) ./500);

Xotim = Xotimt’;

um = ones(size(Xotim));

Xotimaju = [um Xotim];

mato = Xotimaju’* Xotimaju;

invmato = inv(mato);

pontos = Xinic: pass: Xfin;

np = length(pontos);

Xajun = [um X];

matn = Xajun’* Xajun,

invmatn = inv(matn);

for ¢ = l:np
Xo =1 pontos(z)];
intvogst(i) = Xo*invmato* Xo’;
intvgstn(¢) = Xo*invmatn* Xo';

intvstn(z) =sqrt(l 4 intvgstn(7));

intvost(z) =sqrt(1 +intvoqst(z));

end

intvo =¢ .*intvost;

intvn=¢ *intvstn;

Y% ****Efficience computation****
Eficiencian = (det(matn) ./det(mato))*100;
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