Journal of Automatic Chemistry Vol. 11, No. 3 (May—June 1989), pp. 119-123

Effects of system tuning and RAM disk on
the performance of a clinical laboratory

information system

Arthur A. Eggert

Department of Pathology and Laboratory Medicine, University of Wisconsin,
Madison, Wisconsin 53792, USA

Kenneth A. Emmerich, Thomas J. Blankenheim and
Gary J. Smulka

Clinical Laboratories, University of Wisconsin Hospital, Madison, Wisconsin
53792, USA

Improvements in the performance of a laboratory computer system
do not necessarily require the replacement of major portions of the
system and may nol require the acquisition of any hardware at all.
Major bottlenecks may exist in the ways that the operating system
manages ils resources and the algorithm used for timesharing
decisions. Moreover, significant throughput improvements may be
altainable by switching to a faster storage device if substantial disk
activity is performed. In this study the fractions of time used for
each of the types of lasks a laboralory computer system performs
(e.g. applications programs, disk transfer, queue cycler) are
defined and measured. Methods for reducing the time fractions of
the various types of overhead are evaluated by doing before and after
studies. The combined results of the three studies indicated that a
50% improvement could be gained through system tuning and
Jaster storage without replacement of the computer itself.

Introduction

The performance of any computer system is limited by
both the speed and versatility of its hardware and the
efficiency of its software. Historically, computer systems
have been purchased because they meet the current
requirements and are projected to meet the future
requirements for 2-5 years. Unfortunately, the usefulness
of computer technology is so great that computers are
usually saturated in less than half of the time projected.
This leads to substantial hardware replacement expense
and frequently means that major software systems must
also be replaced, redeveloped or at least reimplemented
on new hardware. The accompanying disruption of
service reduces the value of computer support to an
analytical laboratory. Evaluating methods for reducing
the need for major hardware replacements is therefore
essential not only to reduce costs, but also to prevent
service disruptions that are encountered when actual
system replacement occurs.

Understanding why laboratory computer systems
become obsolete is the first step in determining how to
delay the onset of such obsolescence. Four major arcas of
concern can be readily identified, viz. storage capacity,
hardware speed, operating system efficiency and applica-
tion softwarc efficiency. The first of these areas of concern
can usually be addressed without system replacement by
the addition of large storage devices and is therefore a

solved problem. The last area is one which is generally in
the hands of applications programmers. There is no good
method of rating efficiency except through benchmarking
the programs against specific tasks. Eventhis seldom
indicates what the bottlenecks are in a piece of software
currently in use. As a consequence, only hardware speed
and operating system efficiency are left as topics to study
for someone who wants to improve the performance and
therefore extend the lifetime of current hardware systems.

As both of the phenomena of interest involve the amount
of time the system nceds to accomplish a task, it is
necessary to break the system time into its components.
In a previous paper [1] we indicated that

system time = program time + queue cycler time +
disk wait time

In fact, as the demands on'a system increase, it may be
necessary to permit more users on to the system than
there are memory partitions or space to hold the
application programs which are active. This means that
users are ‘swapped out,” that is, their programs are
transferred to a disk buffer while some other user takes
over their memory partitions. Part of the time needed to
swap is a result of the disk speed and part is a result of the
efficiency of the swapping algorithm. Collectively these
times can be designated as ‘swap time’ and must be
added to the expression above to give a complete
equation:

system time = program time + queue cycler time +
disk wait time + swap time

The important point to grasp about the system time
equation is that it is really an equation in terms of
percentages and not absolute numbers. If a computer
system goes faster, there is cffectively more system time
per every unit of clock (real) time. Traditional bench-
marking studies cffectively show how much system time
occurs in how much real time, but this is not a useful
approach for these studics, as we are not looking at
whether to change systems, but at how the lifetime of a
system can be extended. What we need to accomplish,
therefore, is to maximize the program time by pushing it
as close as possible to 100% of the system time [2]. This
paper reports on our attempts to accomplish this through
studying how to minimize the other three terms in the
equation.

Methods and materials

The Clinical Laboratories of the University of Wisconsin
Hospital and Clinics run a RelationaLABCOM (LAB-

0142-0453/89 $3.00 (© 1989 Taylor & Francis Ltd. 119

A. A. Eggert ¢t al. Performance of clinical laboratory information systems

COM +) system from Laboratory Consulting Inc. (LCI),
of Madison, WI, USA. LABCOM+ is a self-contained
operating system/database management package, but it
is general enough that the conclusions drawn should be
applicable to other operating system environments [3].
The software runs on a PDP 11/84 with 4 megabytes of
main memory [Digital Equipment Corp. (DEC), May-
nard, MA, USA], 336 megabytes of moving head disk (an
RL-02, an RA-80 and an RA-60) and 4 megabytes of
RAM disk (16 more were added as part of this study)
from Imperial Technology Inc. A wide variety of
terminals are present, including several varieties of
teleprinters, several types of video display terminals
(including both formatted and teleprinter equivalent)
and several IBM-XT-compatible personal computers.
There are two Southern Systems QT 600 line printers, a
Hewlett-Packard 7260A card reader, a DEC TS11 tape
drive and numerous character printers. The system has
interfaces to the central hospital computer running
ACTION 2000 by SMS, to a DECnet with two PDP
11/44s in the Clinical Laboratories running RSX 11M+
and to numerous laboratory instruments.

Reducing swap time

A well known computer system problem is that after a
certain number of users have been added to a time-
sharing system, the increase in response time begins to
grow exponentially rather than linearly with cach user
added. A major contribution to this growth is the
necessity for the system to remove temporarily some
active users from memory to disk to permit other users to
have enough memory resources to run. Many schemes
have been devised to make this efficient by swapping out
user programs which are waiting for something to happen
before they can resume execution and therefore cannot be
running anyway. Even the best swapping scheme can fail,
however, if the assumptions made when it was developed
are not true because the system operating conditions are
not those predicted by the designers. Figure 1 shows the
percentage of system time that was used for swapping
over the course of the first shift of our laboratory.

It is obvious from figure 1 when the peak activities in the
laboratory occurred, yet it was also clear to the authors
that the peaks in the figure were much higher relative to
the baseline than the actual system usage peaks. Exam-

60
50
40
304

204

104

Lok LI

E 9 10 11 12 13 14 15 16 17 18
0812 to 1730 Feb/3

Figure 1. The swap time is excessive during times of heavy use
when the criterion for swapping is ‘swap out last program run.’

Percent SWAP

120

ination of the source code showed us the reason for the
problem. The swap algorithm caused the last active
program to be swapped out when there was not enough
space to hold all the programs that users had called. This
algorithm would have worked well if all programs were
equally active, as the program that would be accessed last
in the group of programs to be executed would be
removed from memory. Unfortunately, this is not how a
clinical laboratory system really operates. Many users
will log on to the system and call programs that arc used
only intermittently during the day. On the other hand,
printing programs, once activated, search and format
intensively and continuously until completed. Therefore,
once the memory had filled up with semi-inactive
programs, if two or more printing programs were running
at the same time they would continually be swapped in
and out while the large number of semi-active programs
would remain continually in memory even though they
rarely ran. In other words, when the system became busy,
it stood in its own way, making it even busier. To
eliminate this problem, a pointer was established to the
last program swapped out. Whenever another program
needs to be swapped, the cycler begins at the pointer to
work its way aroung the queue looking for programs
which are waiting on external events (e.g. user input,
device availability) and swaps out the first program found
which is still in memory. As a consequence, the programs
that are eligible to run at the next available opportunity
are left in memory, and those which are less likely to run
are removed. This is not foolproof because it is possible
that a program whose run conditions are about to be met
will occasionally be transferred to disk; nevertheless, after
several passes around the queue, the group of swapped-
out programs is composed almost exclusively of those
which are effectively inactive. When suitable changes to
the source code were made to implement this new
strategy, swapping became rare, as shown in figure 2.

Reducing queue cycle time

To manage a timesharing system one must have a queue
cycler. The queue cycler divides the resources of the
system based on some sort of fairness and priority
scheme. In LABCOM +, as in most timesharing systems,
there are definite levels of priority such that all those
things at a higher level of priority always run in

60

50+

40+

304

207

Percent SWAP

0 VTP, Y A PP

8 9 10 11 12 13 14 15 16 17 18
0913 to 1731 Feb/12
Figure 2. The swap time is almost non-existent when the criterion

Jor swapping is swap out next program which is probably
inactive.’

A. A. Eggert ¢t al. Performance of clinical laboratory information systems

preference to those things at a lower level. In LAB-
COM+, the interfaces run at a higher priority than the
interactive programs, which run at a higher priority than
the printing programs. This means that the printing
programs only get the crumbs of time that are available
and cannot afford to waste any time when given them. On
the other hand, because clinical laboratory systems must
allow multiple users to access the same patient file at the
same time, they must be very careful in what state the files
are left when they switch between programs. Therefore,
while many timesharing systems use a rigid ‘time slice’
algorithm where programs are always switched after a
certain fraction of a second, this is not always practical in
clinical laboratory systems. LABCOM+ bascs its de-
cision to switch programs on how many disk transfers
have been done since the program was initiated.

There are two difficulties which have been detected with
the approach of counting disk transfers. The first is that
not all programs have the same computation to disk
transfer ratio. Search programs rapidly use up their disk
transfer allotments while computation programs use
them slowly, thereby receiving much more generous
fractions of computer time. As printing programs tend to
be search intensive, they get only a small amount of time
while, as mentioned above, running at the lowest priority.
Secondly, information is stored on different types of mass
storage devices, each of which can have a different
response time. Programs that read from short response
time storage can do the same number of transfers in much
less time than those that must rely on long response time
storage.

The inability of programs to accomplish much because
they do not get enough real time as a result of the method
of time sharing employed shows up as an excessive
amount of time spent in the queue cycler (figure 3). This
occurs because the queue cycler uses a fixed amount of
time whenever it must transfer between programs. If it
has to transfer often because programs arc using very
little time, then the queue cycler time will be high. As
queue cycler time is pure overhead, it reduces the
throughput of the system. Increasing the number of disk
transfers before a swap does not solve this problem. It will
indeed decrease the percentage of qucue cycler time, but
it also means that those programs which do few disk

o1

50

404

304

20| !

Percent Disk

104

O S S e e s e et UL B S s S s s s s e e e

8 12 16 20 24 4 8 12 16

0823 Feb/11 to 1406 Feb/12 (5 Min Avg)

Figure 3. The queue cycler uses a large fraction of the time when
programs are switched too frequently.

transfers will remain resident for such long intervals that
system users will notice a distinct increase in response
time. More evenness can be obtained by making the
number of transfers dependent on the speed of the
transfer device used, giving proportionally more transfers
to faster devices than to slower devices. This is not always
simple to implement, and it does not solve the whole
problem. What is needed is some way to hold programs
that do a large number of disk transfers in memory longer
relative to those which compute more, while taking into
consideration that many programs change back and forth
between heavy computation and heavy information
transfers.

The method we developed after some study was the
WAIT SLICE. Whenever a program is restarted by the
queue cycler, the time is saved. When the preset number
of disk transfers is reached, the cycler checks the clock to
see if a preset number of clock ticks (sixty per second) has
clapsed. If not, the disk transfer counter is cleared, and
the program is permitted to keep running. If the time
limit is exceeded, then the program is suspended and the
next program started. In effect, this guarantees that each
program will never be shortchanged on time, no matter
how it uses it. Figure 4 shows the reduction of queue
cycler overhead due to this new way of deciding when to
change active programs.

Mass storage speed

Improving hardware speed invariably means purchasing
new equipment. Which piece of equipment to purchase,
however, might not be obvious. Frequently one can gain
significant performance improvement by replacing only a
small part of the overall system. The problem is to
identify the appropriate part. If the percentage of system
time spent in doing disk transfers is significant, then
improvement can be obtained through the use of a faster
storage device. Figure 5 shows a configuration where only
volatile files (those which are not essential to start the
system in case of power failure) such as scratch files and
on-line data storage were kept on 4 megabytes of RAM
disk storage (RAM disk is random access memory which
is set up to be handled like a disk by the computer). Most
of the patient files were kept on moving head disk (an
RA-80) with an average retrieval (i.e. access plus
transfer) time of 27 ms. As an experiment, we configured
most of the heavily used parts of these files on to another
16 megabytes of RAM disk (retrieval time of 2 ms). The
amount of disk wait time dropped dramatically, as can be
seen in figure 6. This confirms what was demonstrated in
our previous paper on hardware improvements, namely
that the speed of data storage has a noticeable effect on
the performance of a clinical laboratory information
system.

Results and discussion

The nature of research into computer system perform-
ance is always such that everything that one tries that
does not work is insignificant once one discovers what
does, and what does work is always so obvious with
hindsight that the data justifying it seem superfluous. The
major thrust behind our efforts continues to be to define

121

A. A. Eggert ¢t al. Performance of clinical laboratory information systems

60
50
40+
30

204

Percent Disk

10+

. WWMMMJWMMJ\WW

LA S S S B B I S B B LI S B I R B B S S B S B S B S

8 12 16 20 24 4 8 12 16

0814 Feb/25 to 1600 Feb/26 (5 Min Avg)

Figure 4. The queue cycler uses less time and its proportion of time
used is less erratic when time slices are made more even.

60

504

40+

30+

204

Percent QCYC

0 T T T T T T T T T
8 9 10 1 12 13 14 15 16 17 18

0948 to 1741 Oct/1
Figure 5. Using a conventional moving-head disk for patient data

storage causes numerous high peaks of wasted time waiting for disk
activity.

60

50+

40+

304

204

Percent QCYC

0 T T T T T T T T T
8 9 10 1M 12 13 14 15 16 17 18

0942 to 1700 Oct/2

Figure 6. RAM disk drastically reduces the amount of time wasted
Jor the completion of disk transfers.

‘system time’ in terms of its components so preciscly that
anyone with access to a resource monitor can determine
what the bottlenecks to the performance in his system are
and what type of actions must be taken to remove them.
Although we have dramatically improved the throughput
of our own system (and therefore that of many Relationa-
LABCOM users) over the last few ycars, we sense a need
for all chemistry laboratories, clinical and otherwise, to
have tools to diagnose their own computer system

122

performance and to be able to use these tools to tune these
systems to minimize the capital outlay for new equip-
ment.

The swap time study illustrates the importance of
graphing activity over the whole time frame rather than
just looking at system averages. The average swap time
was initially only 1-7% of the system time, which seems to
be so small that it would not be worth trying to reduce it.
Although we were able to reduce it to nearly zero (0:1%),
this could be argued as being less than a 2% improve-
ment (99:9% versus 98:3%) in overall system per-
formance. The time graph shows a different story. The
peak swap time rcached 34:0% of system time, and this
peak swap time occurred when the system was under
maximum use. At such times a loss of one third of the
system’s capacity was indeed significant. The maximum
swap time was reduced to 2:0%, which was a 48%
improvement (98% versus 66%) in the time available.
Identifying where the time is being spent during peak
periods is therefore significant. We considered an alterna-
tive swapping criterion, namely swapping out the pro-
gram that had not been used for the longest period of
time, but this would have required some alterations to the
system files to permit the storage of this information.
Because there was so little additional gain to be attained
even if this latter scheme were more effective, no
experimentation with it was done.

The queue cycler study was the most difflicult because
there was no obvious way to procced. The queue cycler
strategy was a result of the basic system design and it was
not possible to change it. On the other hand, any
overhead function which is consuming an average of
12-4% and a peak of 28:0% of the available time is not an
ignorable problem. Although the implementation of the
WAIT SLICE reduced the average time to 4-2% and the
maximum to 16% of the system time, it is not a perfect
solution because it does not completely even out the time
queues. If a program has just barely missed using its
maximum time, it will be allowed another whole disk
transfer cycle, even though this will carry it well past the
target average. Although this is undesirable, the calcula-
tion necessary at each potential exit is also expensive in
terms of time owing to the layering of the operating
system. A balance point we chose was one which slightly
degraded the response time to prevent expending more
calculation time, which is an overhead.

Finally, with the installation of the RAM disk the average
system time spent in disk activity dropped from 14-4 to
2:7%, with the peak falling from 51-0 to 20-0%. This
change also ecnhanced the gain made from installing the
WAIT SLICE, as the queue cycler time fell to 3:8%. The
total impact of these three improvements was to increase
the program time at full load from approximately 57 to
88% of the system time, that is, by more than 50%. Such
performance enhancement is noticeable by system users
who now see few periods in which response time or
throughput are unacceptable. With these studics,
however, we have nearly exhausted methods for reclaim-
ing program time. Even if we were to force everything but
program time to 0%, we would gain only 15% more
performance. In fact, reclaiming about a third of the

A. A. Eggert ¢t al. Performance of clinical laboratory information systems

remaining time is probably the best we can do. Major
performance improvements in the future can only come
from better written applications programs (a doubtful
source) and offloading some of the work to microcom-
puters. Nevertheless, we feel that we have conclusively
demonstrated that substantial performance enhance-
ments can be made in many laboratory computer systems
by using resource monitors to identify the bottlenecks and
then making the rclatively inexpensive corrections to
remove them.

References

1. EccerT, A. A., SMuLka, G. J., BankenHEm, T. J. and
EmMericH, K. E.| Journal of Automatic Chemistry, 9 (1986), 37.

2. Suaw, A. C., The Logical Design of Operating Systems,
(Prentice-Hall: Englewood Cliffs, NJ, 1974), pp. 198-202.

3. RelationaLABCOM User Manual (Laboratory Consulting:
Madison, WI, 1988).

NOTES FOR AUTHORS

Journal of Automatic Chemistry covers all aspects
of automation and mechanization in analytical,
clinical and industrial environments. The Journal
publishes original rescarch papers; short communi-
cations on innovations, techniques and instrumen-
tation, or current rescarch in progress; reports on
recent commercial developments; and mecting
reports, book reviews and information on forth-
coming cvents. All rescarch papers are referced.

Manuscripts

Two copies of articles should be submitted. All
articles should be typed in double spacing with
ample margins, on one side of the paper only. The
following items should be sent: (1) a title-page
including a brief and informative title, avoiding the
word ‘new’ and its synonyms; a full list of authors
with their affiliations and full addresses; (2) an
abstract of about 250 words; (3) the main text; (4)
appendices (if any); (5) references; (6) tables, cach
table on a separate sheet and accompanied by a
caption; (7) illustrations (diagrams, drawings and
photographs) numbered in a single sequence from 1
upwards and with the author’s name on the back of
every illustration; captions to illustrations should
be typed on a scparate sheet. Papers are accepted
for publication on condition that they have been
submitted only to this journal.

References

References should be indicated in the text by
numbers following the author’s name, i.c. Skeggs
[6]. In the reference section they should be
arranged thus:

to a journal

Manks, D. P., Journal of Auwtomatic Chemistry, 3
(1981), 119.

to a book

Mavrmstapt, H. V., in Topics in Automatic Chemistry,
Ed. Stockwell, P. B. and Foreman, J. K. (Horwood,
Chichester, 1978), p. 68.

Ilustrations

Original copics of diagrams and drawings should be
supplied, and should be drawn to be suitable for
reduction to the page or column width of the journal,
i.e. to 85 mm or 179 mm, with special attention to
lettering size. Photographs may be sent as glossy
prints or as ncgatives.

Proofs and offprints

The principal or corresponding author will be sent
proofs for checking and will receive 50 offprints free
of charge. Additional offprints may be ordered on a
form which accompanies the proofs.

Manuscripts should be sent to Dr P. B. Stockwell, P.S.
Analytical Ltd, Arthur House, Unit B4, Chaucer Business

Park, Watery Lane, Kemsing, Sevenoaks, Kent
TNIS 6QY, UK.

123

