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Introduction

Several different laboratory networks have been described in the
chemical literature [1-14]. Nearly all of them were based on a

hierarchical scheme where one or more time-share host com-
puters provided communication services to remote satellite

computers. All used a star topology. The satellites performed
real-time data acquisition for instruments. Communication was
most frequently implemented via interactive commands avail-
able through the time-shared system. Network operation was
limited to host-satellite communications in all but two cases
[8 and 13]. Typical applications included down-loading of
programs, remote storage of data, and batch processing of print
or plot files.

The advantages offered by these hierarchical systems were:
(1) easy implementation of communication protocols by use of
interactive time-share commands; and (2) readily available host
software for applications. All of the hierarchical networks share
the disadvantage of being wholly dependent on the central time-
share host. Hardware problems in the host can disable all
satellites and communication is usually restricted between hosts
and satellites. Satellite-to-satellite communication would allow
for easier expansion of the network. Finally, changes and new
versions of the time-shared host may necessitate modification of
every satellite, making replacement of the host impractical
unless the new system is largely compatible with the old system.
While the initial development of DISNET [15] required more
effort, its flexibility will easily accomodate new systems. In the
long run, this advantage offsets the effort required for
implementation.

The recent availability of commercial general-purpose net-
works has greatly reduced the development effort required to
construct a laboratory network. Some have shortcomings for
laboratory applications, but some are quite suitable.

The DISNET communication protocol

A network protocol is a set of rules for orderly communication
which guarantees message integrity and avoids the chaos of
ad hoc communication. Unique protocols have been developed
for nearly every type of network hardware constructed. In 1981
the International Standards Organization issued a standard for

Paul Gemperline is now based at the Department of Chemistry, East
Carolina University, Greenville, North Carolina 27834, USA. Corre-
spondence should be addressed to Robert Megargle.

192

Open Systems Interconnection, which established guidelines for
developing protocols. Seven layers of control are identified, each
building on the previous layer to provide increasingly
sophisticated control as well as a higher level of abstraction.
The DISNET protocol has been developed with these objectives
in mind.

In the DISNET system, a station which initiates a commun-
ication becomes a ‘control station’. Part of the transmission line
acquisition sequence is to send the address of the station with
which it wishes to communicate, which becomes the ‘slave
station’. All activity that occurs from the time a station gains
control of DISNET until DISNET is again idle is called a
‘transaction’. The lowest level of software, the Primitive Device
Handler (PDH), combines the transmission of individual data
bytes to construct transactions. Heading bytes and suffix bytes
are added to provide message routing and error-detection
information.

A series of related transactions between the same pair of
stations is called a ‘session’. Transactions within a session can be
initiated by either station, allowing data to be transmitted in
both directions. Many transactions can take place during the
course of a session and the transmission hardware is often idle
for extended periods of time between transactions. It is free for
use by other application programs during these times, allowing
many sessions to proceed concurrently. Sessions are controlled
by the second layer of software: the DISNET Channel Control
Module (CCM).

The CCM manages eight channels at each station. Each
channel is associated with a session. Channel zero is used for
supervisory functions only and the other seven are available for
general use. Sessions are started and stopped by assigning and
releasing channels through supervisory messages that are sent
over channel zero. Once channels are open, the send and receive
data supervisor calls allow partners to initiate or accept
transactions. The CCM routes transactions to the proper
destination, ensures message integrity, and prevents unauthor-
ized communication from third parties. Data integrity is ensured
through automatic retransmission of transactions found to be in
error.

Application programs are the highest level of software. At
this level, programmers have the freedom to design suitable
types of communication protocols using the existing channel
supervisor calls, although a standard protocol has been defined
to achieve resource sharing. The protocol makes a distinction
between two types of communicating partners, resource pro-
viders and resource consumers. Making this distinction helps
the designer address communication problems in a straight-
forward manner.
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DISNET Primitive Device Handler

The Primitive Device Handler (PDH) performs hardware
manipulations in response to DISNET interrupts. It uses data
areas created by the CCM to construct heading information for
transactions. When transactions are received at a slave, the
heading information is checked for errors. Data to be trans-
mitted is placed in buffers by the sending application program
and given to the PDH. Received data is packed by the PDH into
buffers supplied by the receiving application program. An error-
detection suffix is added by the sending station and checked at
the receiving station. The PDH thus creates and enforces the
standard protocol. All protocol errors, as well as hardware
errors, are detected in this module.

Transaction protocol

Three bits of pulse code data are transmitted and received by the
DISNET hardware [15]. They indicate to receiving stations that
a valid data byte is present on the data lines. Pulse code zero is
predefined in hardware as an address transfer byte, and pulse
code 7 indicates data is not present. The remaining pulse codes (1
to 6) are used to clock data into hardware registers at ‘dumb’
nodes. For computer-to-computer communication, it was deci-
ded to use the pulse codes to control transactions. They are
interpreted by the PDH. Figure 1 shows the standard transac-
tion protocol and the pulse code associated with each type of
data byte. The transaction protocol has three major sections: a
heading of two or three bytes, a body of user data, and an error-
detection suffix.

Data byte Pulse code
Control code Slave station address 0
Control code Control station address 2
Packet type (channel 0 only) 2
Send record 1 1
End-of-record byte (ignored) 3
Send record 2 1
Line reversal byte (ignored) 5
Receive record 1 1
End-of-record byte (ignored) 3
Receive record 2 1
Checksum byte 6
Diagnostic byte 4

Figure 1. Transaction protocol.

Transaction heading

Channel zero transactions always have three bytes of heading
information inserted by the PDH. All other transactions require
two heading bytes. The least significant five bits of the first byte

are used for the address of the slave station and are required by
the hardware. The most significant three bits specify the target
channel number at the slave. The slave address byte is automati-
cally transmitted by the hardware with a pulse code of zero.

The least significant five bits of the second byte have the
address of the controlling station. The most significant three bits
specify the originating channel. A pulse code of 2 indicates that
this byte is part of the heading. The PDH uses this byte to verify
that the transaction was initiated by the partner associated with
an open channel. An illegal communication is indicated when
data originates from the wrong channel and/or the wrong
station. A third heading byte sent with pulse code 2 is included to
specify the packet type for channel zero transactions and is
optional for other channels.

User data records

The control station always sends or receives at least one record
following the heading. User data is sent with a pulse code of 1.
The PDH uses tables provided by application programs to
determine how many bytes are to be sent or received.

Three different conditions can specify the end of a send
record. (1) The end-of-record byte with pulse code 3 indicates
that another send record will follow. In this case, the handler sets
up pointers to the next buffer. There can be many such send
records in a transaction. (2) A line reversal byte with pulse code 5
indicates both the end of a send record and a line reversal. If this
happens, the slave is then required to send at least one record.
The value of end-of-record and line reversal bytes is immaterial.
After line reversals occur, slave send records are terminated with
either an end-of-record byte (another record will follow) or a
checksum byte. Only one line reversal for data is legal. (3) The
third possibility is receipt of a checksum byte. This indicates
either the end of send records or the end of receive records, and it
causes the transaction termination sequence to begin.

Termination sequence

The checksum byte is an eight bit sum of all bytes sent and
received, including heading bytes, line reversal bytes and end-of-
record bytes. The last station which was sending (either slave or
control) calculates the two’s complement of this sum and
transmits it with a pulse code of 6. The last station receiving adds
this byte to its own checksum. The result should be zero. If not, a
data-transfer error has been detected by the receiver.

Once the checksum byte is received, the control station
reverses the line so that the station which received the checksum
can send the diagnostic byte with a pulse code of 4. A diagnostic
byte of zero is sent when no errors are detected during the
transaction, and a value of 2 is sent when the checksum
disagrees. If other errors are detected at the control station, a
non-zero diagnostic byte will be sent immediately with pulse
code 4. If a slave station detects an error, it must wait for the first
opportunity to send the diagnostic byte since slave stations
cannot reverse the direction of transmission. They discard data
until the line reverses. If more than 32 K bytes are discarded, the
receiver stops taking data to force the hardware to abort the
apparent run-away condition. The diagnostic byte always ends a
transaction, whether or not preceded by the checksum byte.

The mechanism for reversing the flow of data in the middle of
a transaction is a unique feature of DISNET which is not found
in most commercially available networks. It not only permits
two-way data, but also allows immediate acknowledgement of
transactions through the use of the diagnostic byte. In most
other systems, the receiver must go through the full network
acquisition sequence to transmit a separate acknowledgement to
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the sender. This allows DISNET to make more efficient use of
the shared data pathway.

DISNET Channel Control Module

The Channel Control Module (CCM) is the next layer of
software. Supervisor or subroutine calls provide an interface for
application programs. Six such calls are available, including the
open channel, enable channel, close channel, reset station, send
data, and receive data commands. This layer is responsible for
creating and managing all eight channels, besides initiating user-
requested data transfers.

Channel Control Blocks

Application programs are required to pass up to three different
types of data blocks to the CCM, depending on the function to
be performed. A Channel Control Block (CCB), shown in figure
2, is always required. The first word specifies the application
program that has ownership of a channel. Once assigned, other
programs are not allowed to use the channel. The second word
contains the channel number and is initialized when a channel is
successfully opened. The third word contains two flags, the
‘DONE’ and ‘RETRY’ flags. When an operation terminates,
either normally or due to errors, the DONE flag is set. The
RETRY flag is set when non-fatal errors are detected. The CCM
automatically retries transactions with non-fatal errors. The last
word of the CCB is a code returned to the application to indicate
the completion status of a function when the DONE flag is set.
Table 1 lists all return codes and their meaning.

Word 0 Program identifier

Word 1 Channel number*

Word 2 DONE Flags* RETRY
Word 3 Error code*

* Initialized by the CCM.

Figure 2. Format of a channel control block.

A code of zero indicates ‘the operation was completed
successfully. Codes 1 to 3 are considered non-fatal errors and are
automatically retried up to five times, after which they are
classified as fatal errors. The hardware abort condition (error 1)
usually indicates that a slave station did not respond fast enough
to a DISNET interrupt. The channel busy error (error 3) is
reported when a slave channel cannot receive the data being
sent. This happens when there are no receive buffers at the slave.
In all cases, the CCM waits for 20ms and then retries the
transaction. This allows up to 1s for a receiver to ‘catch up’ or
become ‘free’, providing wide time margins for communicating
programs to synchronize their co-operative functions.

When fatal errors are encountered, the CCM initiates the
printing of a message on the system console. These errors are
never retried. User software errors (error 4) occur when the
number or size of send records exceed the number or size of
receive buffers. In this case the entire transaction is discarded.
System software errors (error 5) are reported when protocol
violations are detected by the PDH. A channel closed error
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Table 1. Channet return codes.
Code Meaning
0 No error
1 Hardware abort
2 Data transfer error
3 Channel busy
4 User software error
5 System software error
6 Channel closed
7 Receiver not found

(error 6) is reported when an application program attempts to
send data through a closed channel. This code also indicates the
successful completion of a ‘close channel’ operation, described
shortly. The receiver not found error (error 7) occurs when an
application program attempts to open a channel and fails to
locate the target receiver.

Channel zero transactions

Prior to opening any channels, a resource provider application
program has to perform an ‘enable channel’ supervisor -call,
giving a two byte name resource name. The CCM serving the
resource provider dynamically allocates a channel number to
this program. Channel zero is always open and ready to accept
data from CCMs in any other station. The packet heading for
channel zero transactions contains an extra byte to specify the
packet type. Types 1, 2, and 3 exist at the present time, and are
‘open channel’, ‘close channel’, and ‘reset station’ types,
respectively.

Open channel transactions: the open channel packet is sent by
the CCM when a resource consumer application program
performs the open channel supervisor call. The consumer gives
the address of the station where the resource provider resides
and its two byte resource name. The CCM allocates a free
channel to the consumer and starts the open channel transac-
tion. During this transaction, the slave returns its list of resource
names as the first receive record after a line reversal. The CCMs
in both the control and slave stations independently scan this list
at the end of the transaction. When a match of resource names is
found, both consumer and provider application programs are
informed that the channel link is open by setting the DONE flag
and giving a return code of zero in the CCBs. The channel link is
actually established at both CCBs by associating the independ-
ently assigned resource provider and consumer channel num-
bers. The two partners may now communicate directly with each
other without the intervention of channel zero. If the open
function fails five times in a row, the CCB return code is set to
seven (requested receiver not found). The application pro-
grammer is left to decide which appropriate action must be
taken in this case.

Close channel transactions: the second type of channel zero
transaction is the close channel transaction. Either partner may
initiate this transaction by use of the close channel supervisor
call, giving the channel number to be closed. The CCM
determines from internal lists where the partner resides and
sends the close channel transaction. Once the transaction is
complete, both the control and slave CCMs set a return code of
six (channel closed) and the DONE flag in the CCBs to indicate
the successful completion of the operation.

Reset transaction: the third type of channel zero transaction
is reset, initiated with the reset station supervisor call. The
application program specifies the address of the station to be
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reset. Once the reset transaction is complete, both control and
slave CCMs close every channel which is open between them.
Channels which are open to third parties are unaffected by this
call.

User data transactions

When an application is to act as a control for a transaction to
move data between it and a slave, it must supply a ‘control
transaction table’. The format of this table is given in figure 3.
Control transactions require that the application program send
or receive at lease one record. Once an initial record has been
sent, additional records can be sent or the direction of data
transfer may be reversed and the slave allowed to send. The
control transaction table specifies the byte count and buffer
address of each record to be sent. The send records are listed
sequentially. A byte count of zero is used to indicate that no
more send records exist.

Send record 1 Byte count

Buffer address

Send record N Byte count
(optional) —_ —_
Buffer address
Line reversal 0

Receive record 1 Byte count
(optional) e —_
Number of bytes received*

Buffer address

Receive record N Byte count
(optional) B —_—
Number of bytes received*
Buffer address
End of list 0

*Initialized by the CCM.

Figure 3. Format of a control transaction table.

The next section of the control transaction table specifies the
size of a receive buffer. If the first byte count is zero, no receive
buffers exist and the transaction is terminated. If non-zero, the
list specifies the available size and address of each receive buffer.
At the end of the transaction, the PDH saves the number of bytes
actually received in each record in a third field of this table. The
end of receive records (also the end of the list) is indicated when a
receive buffer with the size of zero bytes is specified.

When an application program is to act as a slave, it must
provide a ‘slave transaction table’, shown in figure 4. This list is
nearly the same as a control transaction table. Since the slave is
required to receive first, and send second, the order is simply
reversed.

To enable the receipt of data, an application program must
perform the receive data supervisor call. The CCM immediately
returns to the application program, which could then poll the
DONE flag to determine when the data is received. The
application program can suspend itself to wait for the data. In
this case, the CCM automatically restarts the application
program and cancels any remaining wait time when the data is
received.

If a receive buffer is not large enough to contain all of the
data sent in one record, the excess data is thrown out, and a user
software error (error 4) is reported. There must also be a one-to-
one correspondence between send buffers and receive buffers in
the control and slave stations. A user software error is reported
when this condition is not met.

Receive record 1 Byte count
(optional) — ——
Number of bytes received*

Buffer address

Receive record N Byte count
(optional) —_— —
Number of bytes received*
Buffer address
Line reversal 0
Send record 1 Byte count
Buffer address
Send record N Byte count
(optional) e ——
Buffer address
End of list 0

*Initialized by the CCM.

Figure 4. Format of a slave transaction table.

DISNET test

A set of two programs were written to test the DISNET software
system. They were designed to be used together, each as a
partner in a series of transactions which exercised the system.
Four different tests were performed. The first one tested the
open, enable and close channel commands, followed by the send
and receive data commands, including transactions with multi-
ple records and a line reversal. After verifying that the basic
commands work, the second test opened two channels simulta-
neously to verify that the system allowed channels to operate
independently. A more sophisticated third test was then perfor-
med: four tasks, two in each station, competed for use of the
communication system. Each task attempted to open or enable
two channels so that four channels were in use during the middle
of the test. This test exercised the mechanisms which arbitrate
contention between competing tasks, as well as the automatic
retry scheme which reschedules communications if they are
initiated over busy channels.

The last test measured the channel burst data transfer rate,
defined as the maximum rate at which data can be transferred
over a channel. The overhead incurred during line acquisition
and transmission of supervisor data is not included in this term,
or is negligible in comparison to the amount of data sent. Once
the burst rate was measured, the channel throughput data
transfer rate was measured for several different size transactions.
The throughput rate includes the overhead incurred during line
acquisition and the added overhead of channel supervisory
functions, including the occurrence of occasional retries.

The results of the DISNET tests are listed in table 2. As
expected, the throughput decreases with smaller packet sizes,
due to overhead time incurred while setting up the data
transmission packet and waiting for the remote computer to
respond. The lower than usual throughput rate for packet sizes
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Table 2. DISNET throughput data transfer rate.

Packet size Data transfer rate
(bytes) (Kbytes/s)
10 3-704
100 3012
1000 6579
5000 7-483

Maximum data transfer rate = 10-167 Kbytes/s.

of 100 bytes is an artifact resulting from intermittent, automatic
retransmission of data. Lengthy real-time clock interrupt service
in one of the hosts sometimes caused sufficient time delays in
responding to DISNET interrupts that the DISNET abort
sequence was activated. The time required to transmit a 100 byte
packet circumstantially coincided with the development
computer’s clock rate of 100 ms, thus increasing the probability
of this interference when 100 packets of 100 bytes are trans-
mitted consecutively. The automatic retransmission sequence
always corrected the error but slightly lowered the data
transmission rate.

Independent channel operation was also verified by this test.
The multiple channel, multiple task portion of the test illustrated
the ability of the CCM to successfully arbitrate contention
among four active channels. Although the programs always
request service for channels in the same order, some randomness
is observed in the order in which requesting channels receive
service. The randomness results when transactions attempt to
contact busy receivers and are rescheduled by the CCM.

The system has also proven to be highly reliable in routine
use. Data transmission errors have only been detected on two
occasions: one was traced to a faulty integrated circuit and the
other was attributed to dirty connections.
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