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Abstract

Coordination of two monoprotonated 2’-deoxyguanosine 5’-monophosphate species,

H(dGMP)’, via N7 to cis-(NH3)2Pt2+ gives the complex cis-(NH3)2Pt(H.dGMP)2 which is a four-

protonic acid. The corresponding acidity constants were measured by potentiometric pH titrations

(25C;/= 0.1 M, NaNO3). The first two protons are released from the two -P(O)2(OH)- groups

(PKa/1 5.57; PKa/2 6.29) and the next two protons are from the H(N1) sites of the guanine

residues (PKaJ3 8.73; PKa/4 9.48). The micro acidity constants of the various sites are also

evaluated. Comparison of these data with those determined for the three-protonic H2(dGMP)+/-

(PKa/1 2.69 for the H+(N7) site; PKa/2 6.29 for-P(O)2(OH), PKa/3 9.56 for H(N1)) shows that

on average the N-7-coordinated Pt2+ acidifies the phosphate protons by z pKa 0.36 and the

H(N1) sites by pKa 0.46. These results are further compared with those obtained previously for

cis-(NH3)2Pt(L)2, where L 9-ethylguanine or monoprotonated 2’-deoxycytidine 5’-monophos-

phate. Conclusions regarding platinated DNA are also presented.

1. INTRODUCTION

Them is now much evidence that the anticancer drug, Cisplatin,+ i.e. cis-diammine-

dichloro-platinum(ll), loses in the cell the chloro ligands and exerts then its biological action

+Abbreviations" cis-(NH3)2Pt2+ cis-diammine-platinum(ll); cis-(NH3)2Pt(dCMP)- Pt(dCMp)22-;
2+ p2-cis-(NH3)2Pt(dGiP)- Pt(dGMP)-;cis-(NH3)2Pt(9-EtG)22+ Pt(9-EtG)2 dCM 2’-deoxy-

cytidine 5’-monophosphate; dGMP2 2’-deoxyguanosine 5’-monophosphate; (dGMP-H)3- N1-

deprotonated dGMp2; 9-EtG 9-ethylguanine; (9-EtG-H)- Nl-deprotonated 9-EtG; L general

ligand. Species which are given without a charge either do not carry one or represent the species in

general (i.e., independent from their protonation degree); which of the two versions applies is always
clear from the context.
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by the preferred binding of cis-(NH3)2Pt2+ to the N7 sites of the guanine residues of

DNA.[1’2] Consequently, the coordination chemistry of cis-diammine-platJnum(ll) has much

been studied, especially its interaction with nucleobases (e.g.[3’4]), as have the metal ion-

binding properties of nucleobase derivatives in general (e.g.[S’6]).
However, so far there is no comprehensive study which examines the effect of NF-

coordinated cis-(NH3)2Pt2+ on the acid-base properties of guanine derivatives. We have

recently published some dataIF] on cis-(NH3)2Pt(9-EtG)22+ and a preliminary abstract[8]

dealing with cis-(NH3)2Pt(dGMp)2-. The latter study has been completed in the meanlJme

and therefore we are now in the position to compare the effect of NF-coordinated cis-

(NH3)2Pt2+ on the N1 sites of 9-EtG with that on the corresponding sites of dGMP2 (Figure

1) as well as on the monoprotonated phosphate groups in cis-(NH3)2Pt(H.dGMP)2. The

latter effect may further be compared with the situation of monoprotonated 2’-deoxycytidine

5’-monophosphate, H(dCMP)’, if bound via N3 to cis-(NH3)2Pt2+; this complex, i.e. cis-

(NH3)2Pt(H.dCMP)2 (see Figure 2, vide infra), has also been studied.[9]

-0

-O P--O--- CH2 R,,
0

OH H

R

CH3CH2
dGMP2- 9-EtG

Figure 1. Chemical structures of 2’-deoxyguanosine 5’-monophosphate (dGMP2")
and of 9-ethylguanine (9-EtG).

2. MATERIALS AND METHODS
2-

2.1. Synthesis of cis-(NH3)2Pt(dGMP)2

To a solution of H2(dGMP).2 H20 (0.53 mmol, 202 mg)in water (50 mL) is added cis-

(NH3)2PtCI2 (0.28 mmol, 84 mg) and the pH is adjusted by means of NaOH to 7.3. After

stirring for 5 days (room temperature, stoppered flask) the sample is filtered from a small

amount of grey precipitate (presumably elemental Pt) and brought to dryness by rotary

evaporation at 40C. The crude product is passed over a Sephadex G10 column (FPLC,
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Pharmacia/LBK) to remove NaCI and then brought to dryness at 40C. Anal. calcd (found)
for Na2[(NH3)2Pt(dGMP)2].11 H20 (1): C, 20.6 (21.2); H, 4.5 (4.0); N, 14.4 (14.0). The

yield was 204 mg (66%).
Addition of HCI to an aqueous solution of 1 (0.09 mmol, 100 rng; 3 mL H20; pH 1.6)

and slow evaporation in air yields within several days 40 mg (43%) of colorless crystals of

cis-(NH3)2Pt(H.dGMP)2.6.5 H20 (:2). Anal. calcd (found): C, 23.1 (23.1); H, 4.4 (4.4); N,
16.2 (16.5). Thermogravimetry is consistent with 6.5 H20 molecules present.

Coordination of the two dGMPs via N7 to cis-(NH3)2Pt2+ is confirmed by the acid-

base properties of 1 described in this study; these are in accord with a pt2+-N7 coordination

in cis-(NH3)2Pt(H.dGMP)2 only.

2.2. Materials and Apparatus for the Titration Experiments

The disodium salt of 2’-deoxyguanosine 5’-monophosphate was purchased from

Sigma Chemical Co., St. Louis, MO, USA. Potassium hydrogen phthalate, NaNO3, HNO3
and NaOH (Titrisol) (all pro analysO were obtained from Merck AG, Darmstadt, Germany.
The disodium salt of Pt(dGMP)" was prepared as described in Section 2.1. For all solu-

tions distilled CO2-free water was used.

The titer of the NaOH used for the titrations was determined with potassium hydrogen

phthalate. The stock solutions of dGMP2" and cis-(NH3)2Pt(dGMP)" were freshly

prepared daily, and the pH was adjusted to about 8.4 and 7.6, respectively; the exact

concentrations of these solutions (titrated in the presence of an excess of HNO3; see
Section 2.3) were measured by titrations with NaOH.

The potentiometric pH titrations were carded out with a Metrohm E536 potentiograph

equipped with an E665 dosimat and a 6.0202.100(NB) combined macro glass electrode.

The buffer solutions (pH 4.64, 7.00, 9.00; based on the NIST scale) used for calibration

were also from Metrohm AG, Hedsau, Switzerland. The direct pH meter readings were used

in the calculations of the acidity constants; i.e., these constants are so-called practical,

mixed or Brnsted constants.[] Their negative logarithms given for aqueous solutions at I
0.1 M and 25C may be converted into the corresponding concentration constants by

subtracting 0.02 from the listed pKa values.[9’1]

2.3. Potentiometric pH Titrations

The acidity constants KHH2(dGMP), K(dGMP and /IGMP of H2(dGMP)+ were deter-

mined by titrating 50 mL of aqueous 1.08 mM HNO3 (25C; I = 0.1 M, NaNO3) in the

presence and absence of 0.3 mM or 0.4 mM of dGMP under N2 with 3 mL 0.03 M or 2 rrL
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0.045 M NaOH, respectively, and by using the differences in NaOH consumption between

two such titrations for the calculations. The constants were calculated with an IBM compa-
tible computer with an 80486 processor (connected with a Brother M1509 printer and a
Hewlett-Packard 7475A plotter) by a curve-fit procedure using a Newton-Gauss non-linear

least-squares program within the pH range 3.1 to 10.3, corresponding to about 72% neutra-

lisation for the equilibrium H2(dGMP)+/H(dGMP) and about 85% neutralisation for the equi-

librium dGMp2/(dGMP-H)3. The results listed in Table 1 are the averages of 18 indepen-

dent pairs of titrations.

The acidity constants KHR(H.dGMP), /(dGMP)(H.dGMP), /(dGMP)z and

Kpt(dGMP-H)(dGMP) of cis-(NH3)2Pt(H’dGMP)2, abbreviated as Pt(H.dGMP)2, were
determined by titrating 25 mL of aqueous 1.08 mM HNO3 (25(3; I 0.08-0.1 M, NaNO3) in

the presence and absence of 0.4 mM Pt(dGMP)2 under N2 with 2 mL of 0.03 M NaOH and

by using the differences in NaOH consumption between two such titrations for the calcu-

lations. These calculations were carried out as indicated above within the pH range 3.6 to

10.3, corresponding to about 1% neutralisation for the equilibrium

Pt(H.dGMP)2/Pt(dGMP)(H.dGMP)- and about 87% neutralisation for the equilibrium

Pt(dGMP-H)(dGMp)3/Pt(dGMP-H). The final results given in Table 1 are the averages
of 4 independent pairs of titrations.

3. RESULTS AND DISCUSSION
3.1. Definition of the Acidity Constants and Results

A species with a nucleobase residue is always defined as L; hence, such a species

may be mono-protonated, e.g. at the phosphate group as in dGMP2" or at the N7 site as in

9-EtG, giving H(L), or it may be de-protonated, e.g. at H(N1) as in dGMP2, giving (L-H).
Therefore, the acidity constants are defined, e.g., according to equilibria (1) to (3); for the

sake of clarity the charges are omitted at the ligand species:

H2(L H(L) + H+ (la)
H

KH2(L [H(L)][H+]/[H2(L)] (lb)

H(L) L + H+ (2a)

/(L) [L][H+]/[H(L)] (2b)

(L-H) + H* (3a)

K [(L-H)][H+]/[L] (3b)

Hence, e.g., H2(dGMP)+/- (= H2(L)) is deprotonated at H+(N7) (see Figure 1) according to
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equilibrium (1) giving H(dGMP)" (= H(L)) which loses next (eq (2)) the proton from the

phosphate group giving dGMP2 (= L); this species may further be deprotonated at its

H(N1) site to give (dGMP-H)3" (= (L-H); eq (3)). Or, to give a further example"

coordination of two H(dGMP)" species via N7 to ci$-(NH3)2Pt2+ results in cis-

(NH3)2Pt(H.dGMP)2, a complex which first loses in successive steps two protons from its

phosphate residues (cf. also Figure 2, vide infra) according to equilibria (1) and (2); next,

one of the two H(N1) sites of the guanine residues (see Figure 1) is ionized to give

Pt(dGMP-H)(dGMP)3" according to equilibrium (3) and then in a final step Pt(dGMP-H)
is formed.

The corresponding acidity constants obtained via potentiometric pH titrations for the

deprotonation of H(9-EtG)+ and H2(dGMP)+ as well as for their complexes, cis-

(NH3)2Pt(9-EtG)+ and cis-(NH3)2Pt(H.dGMP)2, are listed in Table 1, where the various

deprotonation sites are also defined. The constants due to H(dCMP)- and cis-

(NH3)2Pt(H.dCMP)2 are given for comparison.

From the results summarized in Table 1 it is immediately evident that deprotonation of

the -P(O)2(OH)- residues occurs in all species relatively close to pH 6, whereas the proton
from the H(N1) site of the guanine moieties is released in the pH range of about 9. Of some

surprise may appear the fact that the H+(N7) site of the positively charged H(9-EtG)+ re-

Table 1. Negative Logdthms of Acidity Constantsa of Free and Pt-Coordinated Guanine

Derivatives as Determined by Potentiometric pH Titrations in Aqueous Solution at 25C
and I 0.1 M (NaNO3) Together with Some Related Data Determined Under the Same
Conditions for Cytidine Species

H2(L)/H(L)/L

H(9-EtG)+ [7]
Pt(9-EtG)+ [7]
H2(dGMP)+

Pt(H.dGMP)2
H(dCMP)-[9]b

Pt(H.dCMP)2 [9]

H2(L) (L)

H+(N7) -P(O)2(OH )- -P(O)2(OH )-

3.27:L-0.04

2.6.03 6.29:L-0.01
5.57:E).03 6.29:L-0.02

6.24:L-0.01

5.73:L-0.02 6.47:L-0.02

H(N1) H(N1)

9.57:L-0.04

8.0.01 8.67:L-0.01

9.56:L-0.02

8.73:3.04 9.48:L-0.04

a The error limits given are three times the standard error of the mean value or the sum of the

probable systematic errors, whichever is larger.
b For the deprotonation of the H+(N3) site holds" pKHH2(dCMP) 4.46 + 0.01 .[91
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leases its proton with pKa 3.27 only, whereas from the overall neutral (i.e. zwitter ionic)

H2(dGMP)+- species the release occurs already with pKa 2.69 (Table 1). This lower

basicity of N7 in H(dGMP)" compared with that of 9-EtG is clearly attributable to the sugar
residue, and is thus probably a solvation effect because H(guanosine)+ and H(2’-deoxy-

guanosine)+ are H+(N7)-deprotonated with pKa 2.11 + 0.04[11] and pKa 2.30:1: 0.04,[12]

respectively. Comparison of the values for H(dGuo)+ (pKa 2.30) and H(d.GMP)- (pKa
2.69) shows that the expected charge effect is now operating.

3.2. Some Statistical Considerations on the cis-(NH3)2Pt(L)2 Species

From Figure 2, where a simplified structure of cis-(NH3)2Pt(H.dCMP)2 is shown, it is

immediately obvious that this complex as well as cis-(NH3)2Pt(9-EtG)22+ or cis-

(NH3)2Pt(H.dGMP)2 are ’symmetrical’ di- (and tetra-) protonic acids, just like dihydrogen

sulfide, H2S, or oxalic acid, HO(O)C-C(O)OH. The statistical expectation for the sepa-
ration of the acidity constants of two identical acidic sites in the same molecule, which do not

affect each other, is P Ka/st 0.6.[9] This follows from the symmetry properties of, e.g.,

cis-(NH3)2Pt(dCMP)2: Beginning with Pt(H.dCMP)2 there are two equivalent ways (see
Figure 2) to form Pt(dCMP)(H.dCMP)-; on the other hand, there are also two equivalent

ways for the protonation of Pt(dCMP) to give Pt(dCMP)(H.dCMP)’. This means, the

H3N NH3

Pt

,
Figure 2. A possible and simplified structure of the cis-(NH3)2Pt(H.dCMP)2 complex showing the

two monoprotonated -P(O)2(OH)- groups.
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formation of the monoprotonated species Pt(dCMP)(H.dCMP)-is two times favored by a
factor of 2 which gives overall a factor of 4, i.e. z PKa/st 0.6.

The above value has to be compared with the following ones"

A PKa/et,dCMe P/(dCMP)(H.dCMP)- pKH(H’dCMP)2
(6.47 +/- 0.02)- (5.73 +/- 0.02)

0.74:1:0.03 (4)

A PKa/Pt,9.EtG pKHpt(9.EtG_H)(9.EtG)- pKH(9.EtG)2
(8.67:1: 0.01)- (8.02:1: 0.01)

0.65 + 0.0 (5)

A PKaJPt,H.dGMe pKH(dGMP)(H.dGMP)- pKH(H.dGMP)2
(6.29 + 0.02)- (5.57 + 0.03)

0.72 + 0.04 (6)

A PKa/Pt,dGMP pKH(dGMP_H)(dGMP) pKH(dGMP)2
(9.48 5: 0.04)- (8.73 :!: 0.04)

0.75 + 0.06 (7)

It becomes thus evident that all these pKa values are close to the statistical expectation;

they are on average only about 0.1 pK units larger than z PKaJst 0.6. In other words, the

mutual influence that the two corresponding acidic sites in these complexes exert on each

other is quite small, which indicates that the distances between these sites (at least in the

protonated forms) must be relatively large.

3.3. Micro Acidity Constants for the cis-(NH3)2Pt(L).2 Species and Acidifying

Effect of the N7-Coordinated Pt2+

The negative logarithms of the two acidity constants, e.g., pKHpt(H.dCMP)2 and

P/(dCMP)(H.dCMP), are only slightly more apart from each other than the statistically

expected 0.6 pK units; this means, the buffer regions of the two species, Pt(H.dCMP)2 and

Pt(dCMP)(H.dCMP)-, are strongly overlapping. The same also applies to the other Pt2+

complexes considered here; i.e., those formed between cis-(NH3)2P+ and 9-EtG,

H(dGMP)-, or dGMP2 (see Table 1). Therefore, for a clean quantification of the acidity of

the various sites it is necessary to calculate the micro acidity constants for the individual

sites. Following known routes[13’14] we have summarized in Figure 3, as an example, the

equilibrium scheme for cis-(NH3)2Pt(H’dCMP)2 defining the micro acidity constants (k) and
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giving their interrelation with the macro acidity constants (K). There are three independent

equations (a), (b), and (c), but four unknown constants;[3] however, by taking into

account the statistical considerations of Section 3.2 the matter becomes simple in the pre-
sent case because P/(H.dCMP) + log 2 5.73 + 0.3 6.03 pk Pkl; the analogues

reasoning provides pk2, etc.

The values for the micro acidity constants, pk pk and pk2 pk2, for the four cis-

(NH3)2Pt(L)2 complexes appearing in Table 1 are summarized in columns 2 and 3 of Table

2, respectively. Columns 4 and 5 provide the differences between the pKa values of the

free ligands, like 9-EtG or H(dGMP)-, and the values given for pk pk and pk2 pk2.
Thus, these values quantify the acidifying effect of Pt2+ on the individual sites.

For a general comparison, however, we feel it is more appropriate to take the average
of the effect that the two ’symmetrical’ sites experience by pt2+; e.g., the hydrogens in the

pt(dCMP) 1- H+cis- (NH3)2 (H. dCMP) +

pk2 6.17

/" PKHH +pK"
z (L) H(L)

cis (NH3 )2 et(H. dCMP)2 (5.73 + 0.02) + (6.47+ 0.0) cis (NH3 )2 et(dCMe)22" + 2 H+

12.20 _+ 0.03

p(H. dCMP) -]- +cis- (NH3 )2-’(dCMP) _J + H

(a) KHH -k
2 (L) + kl

1 1 1(b) ---+---H k k 2KH(L) 2

IH_I H k .k2 k k 2(c) K (L).KH(L) .
2

Figure 3. Equilibrium scheme for cis-(NH3)2Pt(H.dCMP)2 defining the micro acidity constants (k)
and showing their interrelation with the macro acidity constants (K). The arrows indicate the direc-

tion for which the acidity constants are defined. Equations (a), (b), and (c) show how the various

constants are interlinked with each other.[13] See also text in Section 3.3.
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two -P(O)2(OH)- groups of cis-(NH3)2Pt(H.dCMP)2 (see Figure 2). These average values

are listed in column 6 of Table 2. They follow from equation (8),

(z pk + & Pk2) (8)ApKa/av -which is identical with equation (9):

PKa/av pKH (pKHR(H.L)2 + pKHpt(L)(H.L)) (9)H(L) -’
In equation (9) the difference is taken between the pKa value of the free ligand and the

average of PKa/1 and PKa/2 for the complex formed with two such ligands by their coor-
dination to cis-(NH3)2Pt2+. This latter method is identical with the one we have applied

before.[79] In the footnotes to Table 2 some detailed examples for the calculation proce-
dures indicated above are given.

From the z PKa/av value in row 1 and column 6 of Table 2 it is evident that the acidi-

fying effect on the two H(N1) sites of Pt2+ coordinated to the N7 sites in the guanine resi-

dues of cis-(NH3)2Pt(9-EtG)22+ is quite significant (L PKa/av 1.23). The corresponding

Table 2. Micro Acidity Constants for cis-(NH3)2Pt(L)2 Species (defined in analogy to

Fjure 3) and Extent of the Acidification (A PKaav; (eqs (8) and (9))a by Nucleobase-

Coordinated cis-(NH3)2Pt2+ on H(N1) Sites and-P(O)2(OH)" Groups (25C; I 0.1 M,

NaNO3)

H2(L) pk pk b pk2 pk2 b L pk c,d L pk2
d L PKa/av

Pt(9-EtG) 2 8.32 8.37 1.25c 1.20 1.23

Pt(H.dGMP)2 5.87 5.99 0.42d 0.30d 0.36e

Pt(dGMP)" 9.03 9.18 0.53 0.38 0.46

Pt(H.dCMP)2 6.03b 6.17 0.21 0.07 0.14
a The sites of acidification are for rows I and 3 H(N1) and for rows 2 and 4 -P(O)2(OH)-.
b See tex in Seion 3.3 and Figure 3.

Example for row I and column 4"

z pk pKIg"Ig.EtG pk (9.57 +__ 0.04) (8.32 _+ 0.01) 1.25 _+ 0.04
d Examples for row 2 and columns 4 and 5:

& pk pKIH(dGMP)- pk (6.29 + 0.01) (5.87 _+ 0.03) 0.42 0.03

Z pk2 pK(dGMP pk2 (6.29 +_ 0.01) (5.99 +_ 0.02) 0.30 _+ 0.02
e Example for row 2 and column 6:

A PKa/av 1/2(Z pk + A Pk2) 1/2[(0.42 +_ 0.03)+(0.30 + 0.02)] 0.36 +_ 0.04

(6.29 _+ 0.01) 1/2[(5.57 + 0.03)+(6.29 + 0.02)] 0.36 + 0.04
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effect in cis-(NH3)2Pt(dGMP)22 is considerably lower (A PKa/av 0.46) which is probably

the result of the counterbalance in the charge by the two -P(O)" residues. On the other

hand the effect of the N7-coordinated Pt2+ on the two -P(O)2(OH)- residues in cis-

(NH3)2Pt(H.dGMP) is of the same order (A PKa/av 0.36), which is kind of surprising be-

cause in this latter case only a through-space effect can operate; this is different in the case
of H(N1) and the N7-coordinated Pt2+ (A PKa/av = 0.46) because here both sites are part of

the aromatic purine residue. Why the acidifying effect of Pt2+ in cis-(NH3)2Pt(H.dCMP)2
(z PKa/av 0.14 :t: 0.03), where it is N3-bound, is by about 0.2 pK units lower than in cis-

(NH3)2Pt(H.dGMP)2 (z PKa/av 0.36 + 0.04) despite the fact that in both instances the

two-P(O)2(OH)" groups are acidified, is not clear. Maybe the spatial orientation of the
pt2+-coordinated nucleotides is different.

4. CONCLUSIONS

It is evident from the present study that a nucleobase-coordinated ci$-(NH3)2Pt2+

affects only little the basicity of phosphate residues of nucleoside 5’-monophosphates; the

same may be surmised for the phosphate groups in the backbone of DNA. As the basicity

of phosphate groups is only slightly lowered, one may assume that the metal ion affinity of

these groups is still quite pronounced; in fact, for cis-(NH3)2Pt(dCMP)" this has already

been proven.[9] Consequently, one may suggest that, e.g., Mg2+ binding to the phosphate
backbone of platinated DNA is not much inhibited by the nucleobase-bound Pt2+.

A further interesting observation is the rather significant acidification of the H(N1) sites

of guanine residues by N7-coordinated Pt2+. This suggests, and evidence pointing into this

direction has already been found,[7] that in this way the H(N1) site is transformed into an
even better H donor suitable for hydrogen bonding than it is the case in the uncomplexed
guanine residue.

ACKNOWLEDGEMENTS

The competent technical assistance of Mrs. Rita Baumbusch in the preparation of the

manuscript is gratefully acknowledged. This study was supported by the Swiss National

Science Foundation (H.S.), the ’Deutsche Forschungsgemeinschaft’ (B.L.), the ’Fonds der

Chemischen Industrie’ (B.L.), and the Human Capital and Mobility programme (for B.L. via

the Commission of the European Communities in Brussels and for H.S. via the Swiss

Federal Office for Education and Science in Berne). This research is also part of the COST
D1 programme and received in this context support (H.S.) from the Swiss Federal Office for

140



B. Song,, G. O.ald, M. Bastian, H. Sigel and B. Lippert Metal-Based Drags

Education and Science. B.S. is grateful for a leave of absence from the Zhongshan (Sun
Yatsen) University in Guangzhou, People’s Republic of China.

REFERENCES

10.

11.

12.

13.

14.

1. Bloemink, M. J.; Reedijk, J." Met. Ions BioL Syst. (1996) 32, 641-685.

2. Whitehead, J. P.; Lippard, S. J.: Met. Ions Biol. Syst. (1996) 32, 687-726.

3. Lippert, B.: Prog. Inorg. Chem. (1989)37, 1-97.

4. Lippert, B.: Biometals (1992) 5, 195-208.

5. Sigel, H.: Chem. Soc. Reviews (1993) 22, 255-267.

6. Sigel, H.; Song, B.: Met. Ions Biol. Syst. (1996) 32, 135-205.

7. Schr6der, G.; Lippert, B.; Sabat, M.; Lock, C. J. L.; Faggiani, R.; Song, B.; Sigel, H.: J.
Chem. Soc. Dalton Trans. (1995), 3767-3775.

8. Song, B.; Feldmann, G.; Bastian, M.; Lippert, B.; Sigel, H.: J. Inorg. Biochem. (1995)
59, 141.

9. Song, B.; Feldmann, G.; Bastian, M.; Lippert, B.; Sigel, H.: InOrg. Chim. Acta (1995)
235, 99-109.

Sigel, H.; ZuberbShler, A. D.; Yamauchi, O.: Anal Chim. Acta (1991) 255, 63-72.

Sigel, H.; Massoud, S. S.; Corf, N. A.: J. Am. Chem. Soc. (1994) 116, 2958-2971.

Sigel, H.; Song, B.; Lippert, B.; et al.: results to be published.

Martin, R. B.: Met. Ions BioL Syst. (1979) 9, 1-39.

Sigel, H.; Massoud, S. S.; Tribolet, R.: J. Am. Chem. Soc. (1988) 110, 6857-6865.

Received" March 23, 1996- Accepted" April 25, 1996-
Received in revised camera-ready format- April 26, 1996

141


