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Abstract
The single-stranded oligonucleotide 5"-d(CCTCGCTCTC) (I) was reacted with the

antitumor trans platinum iminoderivative trans-[PtCI2{E-HN=C(OMe)Me}2] (trans-EE) and
subsequently annealed with its complementary strand 5"-d(GAGAGCGAGG) (11). The platinated
duplex was characterized by 1D and 2D proton NMR spectroscopy at 600 MHz. In agreement with
previous studies by different techniques trans-EE was found to form a monofunctional adduct with
the duplex involving the guanine residue. The modification by trans-EE has been found to induce
only minor local distortion in the duplex geometry. Two key crosspeaks observed in the NOESY
map corresponding to a close contact between G5-H8 and the methoxy and the methyl group,
respectively, enabled us to dock the trans-EE complex with the duplex by geometry optimization.
The results support the idea that the antitumor activity of trans-EE is related to lesion of DNA
fundamentally different from that of cisplatin. Unexpectedly, the NOESY spectra indicated that at
the high NaCI concentration used (0.2 M) the duplex was found to undergo slow deplatination. This
was subsequently proved by HPLC. In a separate experiment on platination of the single strand in
a salt free environment the HPLC analysis showed that the monofunctional adduct was not
deplatinated, however, after 24 hours, additional minor isomers were detected.

Introduction
The treatment of several human tumors is based on platinum chemotherapy. The antitumor

activity of cis-diamminedichloroplatinum(ll) (cis-DDP), the most widely used metal-based
anticancer drug, has been associated with formation of adducts with DNA (for recent reviews see
[1] Lippert (ed.) Cisplatin). Since the trans isomer of cis-DDP is clinically ineffective it was assumed
that a structure-activity relationship exists where only cis geometry is therapeutically active.
However, recently it has been shown that several analogues of trans-DDP exhibit antitumor activity
comparable to that of cis-DDP [2-5]. Of particular interest is a group of iminoether derivatives
analogous to trans-DDP: e.g. trans-[PtCl2(iminoether)] which was shown to be endowed with
significant in vivo antitumor activity [3,6]. Surprisingly, these compounds were even more cytotoxic
than their congener cis-[PtCl(iminoether)] [2].

In addition to the cis and trans geometry, platinum-iminoether complexes can have either E
or Z configuration depending on the relative position of the alkoxy group and the N-bonded Pt with
respect to the C=N double bond, and this represents another aspect to be considered for
evaluation of structure-activity relationships.

Several papers [6-10] have dealt with the cytotoxity of platinum iminoether derivatives in
tumor cells. Trans-[PtCI{E-HN=C(OMe)Me}] (trans-EE) has shown an activity comparable to that
of cis-DDP in the P338 leukaemia system and exerts antitumoral effects on Lewis lung carcinoma,
thus representing a trans platinum drug active in vivo on both limphoproliferative and solid
metastasising murine tumors. Furthermore, the DNA binding mode of trans-EE in a cell free
medium has been characterized by several spectroscopic methods [11]. As a result of these
studies it has been concluded that trans-EE forms kinetically stable monofunctional adducts at
guanine residues in double-helical DNA. As a consequence trans-EE is assumed to modify DNA in
a way different to clinically ineffective trans-DDP.

23



Vol. 7, No. 1, 2000 Antitumor Trans Platinum DNA Adducts." NMR and HPLC Study ofthe Interaction
Between A trans-Pt Iminoether Complex and the Deoxy Decamer

/
Pt
/\HaCcN

o
/

CH3

NCcH3

CI

Trans-[PtClz {E-HN=C(OMe)Me} 2] (trans-EE)

How can the subtle differences in DNA binding mode between trans-EE and trans-DDP
explain the difference in antitumor activity? The nature of the non-leaving groups, i.e. the amine
ligands in trans-DDP and the iminoether ligands in trans-EE, somehow play an important role and it
has been speculated that in the latter case one of the drug DNA interactions could not involve
directly the metal ion but be mediated by the iminoether ligand. Such a type of interaction with DNA
would place the platinum-iminoether complex at the junction between cis-DDP and non-metallic
cytotoxic agents.

The effect of cis-EE and trans-EE binding upon the salt induced B---> Z transition in DNA
has been investigated in poly(dG-mdC) and poly(dG-dC) [11]. The authors used different
techniques including circular dichroism spectroscopy, Raman spectroscopy and immunochemical
assay. They concluded that the behavior of trans-EE was different from that of clinically ineffective
trans-DDP, which hinders B ---> Z transition probably because of the interstrand cross-link formation
[12].

In this paper, a detailed NMR spectroscopic analysis of the DNA duplex consisting of trans-
EE platinated 5"-d(CCTCG*CTCTC) (IM)and its complement 5"-d(GAGAGCGAGG) (11) is described.
The platination reaction is also characterized by HPLC. The presented analysis reveals that the
binding pattern of trans-EE is more complex than first anticipated involving pH and sequence-
dependent isomerization reactions and deplatination if the NMR sample contains high NaCl
concentration (0.2 M).

Materials and Methods
Sample preparation.
The sequence was purchased from Oswell DNA Service as a HPLC purified compound. The
reaction between trans-EE and the pyrimidine-rich strand 5’-d(CCTCGCTCTC) (I) containing a
single G was performed using the aqua species [PtCI(HO){E-HN=C(OMe)Me}=] and the
oligonucleotide in the molar ratio 4:1 at 25 C and pH 6. The platinated oligonucleotide was purified
by reverse phase HPLC using a Waters Symmetry C8 column and isocratic flow of 91% H20 (0.02
M (NHn)(CH3COO), pH 4.7) and 9% CH3CN [13]. The unique platination at the dG residue was
verified by nonreactivity of dimethyl sulfate at this site [14], whereas the monofunctional nature of
the adduct was verified by gel electrophoresis under denaturing conditions (24% polyacrylamide/8
M urea) of the products of reaction between the platinated oligonucleotide and thiourea, a sulfur-
containing molecule which labilizes monofunctional trans platinum adducts from DNA [15]. The
purified platinated oligonucleotide was then mixed with one equivalent of the complementary
sequence, 5’-d(GAGAGCGAGG) (11). The platinated decamer NMR sample was 0.5 ml of 1.1 mM
in duplex with 0.2 M NaCI, and pH at 5.2. No buffer was added. The sample of the unplatinated
duplex was dissolved in 0.5 ml 90 H0/10 DO, 0.2 M NaCI, pH 5.5 and final concentration in
duplex 3.0 mM. 1H NMR spectra were recorded in H20 and subsequently in DO of freeze-dried
samples.
NMR Spectroscopy.

The 1H NMR experiments were performed on a Bruker DRX 600 instrument, operating at
600 MHz for H NMR spectroscopy. In order to avoid melting of the duplexes and to obtain
reasonable resolution all experiments were carried out at 295 K. 1D 1H spectra were collected with
a total of 32K complex points and 64 transients. For all 1D and 2D spectra the spectral width were
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6000 Hz (in D20) or 13200 Hz (in H20), and a relaxation delay of 2 s was used. The 3-9-19
WATERGATE pulse sequence was used for water suppression [16]. The 1H NOESY spectra were
recorded in the pure absorption mode with quadrature detection using the States-TPPI acquisition
scheme [17]. A total of 2048 complex points in t were collected for each of 512 tl increments and
80 transients were averaged for each increment. 2D NOESY spectra were acquired at two different
mixing times (200 and 300 ms) in D,_O and in HQ. The FID’s were processed by linear prediction
routines increasing the time domain to 4K, which significantly improves the signal-to-noise in the
NOESY map [18]. The NMR data were processed on a Silicon Graphics INDY workstation using
the program FELIX (Biosym) [19] and on a 133 MHz Pentium PC using 1D and 2D WlN-NMR
(Bruker) [20]. The one dimensional 1H FID’s were multiplied by an exponential window function
prior to Fourier transformation. Typically, Hz was added to the line widths. No baseline correction
was needed. The assignments of two-dimensional NOESY’s were performed on resolution
enhanced spectra using a Gaussian function. The proton spectra were referenced to the HDO-
resonance at 4.81 ppm (295 K).
HPLC analysis.

The HPLC analysis of the platinated and the unplatinated decamer, and the platination
reaction analysis were performed on a Waters 626 LC instrument using Millenium 32 software [21].
A MonoQ HR 10/10 (Pharmacia Biotech) column was used with a 0.3 to 1.0 M NaCI gradient,
containing 10 mM NaOH. A platination reaction between the single strand d(CCTCGCTCTC) (I)
and excess of trans-EE was carried out at pH 2.5, to insure protonated cytosine and thymine, in
HO and at room temperature. The reaction was monitored by HPLC randomly during the first 48
hours after mixing the single strand and trans-EE.
Molecular modeling

Initially 500 cycles of energy minimization followed by 20ps of molecular dynamics
calculations at constant temperature of 300 K were performed. The Verlet Leapfrog algorithm was
used to integrate the equations of motion, with an integration step of fs. The average calculation
frequency was 10 steps. The molecular dynamics calculation was followed b a second run of 2000
cycles of energy refinement until an average rms gradient of 0.06 kcal mol-1 A-2 was achieved.

Results
NMR assignment and analysis

The decamer is non-selfcomplementary, and the numbering scheme, which will be used, is
the following:

5"- C1 C2 T3 C4 Gs* C6 T7 C8 T9 Clo 3" (IN)
3"- Go G9 Aa G17 C16 G5 A14 G3 A12 GI- 5" (ll)

2D-NOESY spectra of the native duplex in HO were used to assign the resonances of all
protons by standard DNA sequential assignment procedure (Fig. 1A). The proton chemical shifts
were comparable with those reported for the same sequence by Leng et al. [22]. The NOESY
spectra acquired for the trans-EE platinated duplex show connectivities for both strands and are
quite similar to the corresponding spectra for the native duplex, except for the central part of the
duplex (Fig. A, B). The chemical shifts of the assigned resonances are listed in Table 1. The G5*-
H8 resonance is shifted 0.17 ppm downfield relative to the unplatinated duplex. The H8 chemical
shifts are, upon platination of the N7 atom, subject to several effects that can have equal or
opposite signs. Usually, G-H8 downfield shifts are observed in the 0.5 ppm range for
bifunctional platinum coordination as a combination of electron-withdrawing effect of the metal and
destacking of the bases. Since several opposing effects may be involved a substantial downfield
shift for H8 is not diagnostic for N7 platination. In a report describing a cis-DDP inter-strand cross-
linked adduct of the present duplex the H8 resonances of the two platinated guanines are shifted
0.03 ppm and 0.34 ppm, respectively, relative to the native duplex [22]. A comparison of the proton
chemical shifts of the trans-EE and cis-DDP modified duplex shows remarkable similarities for the
three end base pairs on each side of the duplex.

The most pronounced shift differences for the nonexchangeable protons involve the
residues adjacent to G5, C4 and C6, and residue C16 complementary to G5. The imino protons
experience relativly large downfield shifts at the terminal G-sites, 0.58 ppm (Gll) and 0.35 ppm
(G20), respectively. For the central GC base pairs minor downfield shifts are observed for the imino
protons, except for the platinated G-residue which exhibit an upfield shift of -0.14 ppm. The imino
protons involved in AT base pairing exhibit downfield shifts, 0.50 ppm (T3), 0.22 ppm (T7) and 0.18
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ppm (T9), respectively. This variation induced by changes in ring current effects in the platinated
duplex is difficult to relate to specific structural features.

The proton chemical shifts of the methyl and the methoxy resonances of the iminoether
ligands, 2.58 ppm and 3.78,ppm, respectively, are almost identical to those of free trans-EE in
solution [23]. In the NOESY spectra there are two significant crosspeaks observed between the
duplex and the complex, namely between G5-H8 and the methoxy croup and the methyl group,
respectively. The corresponding G5-H8 CH30 distance of 4.5 was calculated by the 6

relationship using the intensity of the integrated crosspeak of the intraresidue methyl- H6 distance

)#rGI7 GI3
4+ II .r ..2+_c -c..,
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G
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Figure 1. Contour plots of the resolution enhanced H8/6 H1 "/H5 and H3’ regions in the 600 MHz
NOESY spectra of the unplatinated duplex d(CCTCGCTCTC).d(GAGAGCGAGG) (A) the trans-EE
platinated duplex d(CCTCG*CTCTC).d(GAGAGCGAGG) (B) and the platinated duplex on a later
stage (C)o In (B) and (C) crosspeaks of G5, C6 and C16 from the unplatinated duplex are marked
#, and + respectively. The sequential connectivities are indicated with broken lines for the upper
strand, solid lines for the lower strand-and dotted lines for the absent connectivities. The mixing
time is 200 ms and the temperature 295 K.

of thymine T3 as a reference. This observation gives an approximate localization of the ligand
relative to the duplex under the assumption that the iminoether ligands in the adduct retain the
configurations as determined in the solid state [23].

The magnetic equivalence between the two symmetrically related iminoether ligands
indicates a rapid exchange on the NMR time scale by rotation around the Pt-N7 and the Pt-
iminoether bonds. In the final model structure the dihedral angle CI-Pt-N/Pt-N-H was found to be
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106.The lack of bifunctional cross-linking by trans-EE may arises from steric crowding between the
bulky carrier ligands and the nucleotide residues.

Deplatination reactions
In the NOESY spectra of the platinated duplex weak crosspeaks that could not be

accounted for in the sequential assignment were observed at an early stage of the NMR
investigation. This is not uncommon for platinated duplexes, where minor species may normally be
present. However, during the next couple of weeks the intensity of these extra crosspeaks were
found to gradually increase (Fig. C) and a comparison with the NOESY map of the native duplex
indicated that a reversible deplatination of the duplex had taken place. This was subsequently
confirmed by an HPLC analysis of the sample several weeks later (Fig. 4) (vide infra). Evidently,
the high NaCI concentration (0.2 M) used in the NMR sample to stabilize the duplex had promoted
deplatination of G5*.
This unexpected result, showing that high NaCI concentration destabilizes the monofunctional Pt-N
bond, may be relevant for other NMR studies of platinated oligonucleotides since it is common
practice in this type of experiments to use high chloride concentration. Also in other studies
involving high NaCI concentration (e.g. salt induced B--> Z transition), the results should be
regarded with caution if platinum complexes are involved.
Molecular modeling

To further probe the influence of trans-EE on the duplex geometry, molecular dynamic
energy minimization calculations were carried out using the DISCOVER software [24]. In the
molecular modeling approach the G5-H8 CH30 (in the ligand) and G5-H8 methyl (in the
ligand) distances were set at 4.5 ,& and 3 ,&,, respectively, the G5-N7 Pt bond length at 2.0 , the
Pt CI contact at 2.3 ,&. Initially, the trans-EE complex was fixed in the geometry adopted in the
solid state [23]. In the docking process the imino ligands were treated as rigid bodies and allowed
free rotation around the Pt-N7 bond and the (imino)N-Pt-N(imino) axis, respectively. A stereo-view
of the refined molecular model is shown in Fig. 2 and a close-up of the trans-EE- DNA
environment is depicted in Fig. 3. The relevant contacts between the complex and the duplex are
indicated by dotted lines.

Two of the contacts shown in figure 3 were used as NOE restraints during the molecular
dynamics refinement. Due to partial overlap between the crosspeaks representing G5-H8 methyl
iminoether and G5-H8 G5-H1 ", respectively, the former distance is rather inaccurate. In the final
model a stabilizing dipolar interaction is established between the carbonyl oxygen on G5 and the
imino proton of trans-EE.
HPLC analysis

As mentioned above, a small fraction of the sample of the platinated duplex used for NMR
experiments was analyzed by HPLC several weeks after its preparation. The duplex was now
almost completely deplatinated as verified by the HPCL trace on the two native strands (I and II)
(Fig. 4A,C). In addition, several new isomers were present representing, most likely, platinated
species of the guanine rich lower strand. Evidently, the high NaCI concentration promotes
displacement of platinum from the upper strand and its migration to the lower strand (at least in
part), even at room temperature. In order to obtain more information on this apparently complex
reaction pattern the platination reaction was repeated; the single (top) strand (I) with only one
guanine (G5) was dissolved in acidic medium (pH 2.5, adjusted by HCIO4) and an excess of trans-
EE was added as powdered solid. The reaction between single strand DNA (I) and trans-EE was
then followed by HPLC at several time intervals for two days. After two hour more than half the
amount of the oligonucleotide was found to be platinated as manifested by one major peak in the
chromatographic trace (IM). The platination reaction was completed after 18 hour; however, two
additional species assignable to platinated single strands were detected by HPLC (11 and 12).
Apparently, a fraction of the first formed Pt-species is slowly transformed into two new species.
After two days at room temperature, a 1:1 equilibrium is established between (at least) two
platinated species. The species distribution curves for the reaction products are shown in Fig. 5.
One may notice that for the platinated double-strand oligonucleotide the sample free of NaCI did
not show sign of deplatination.

Discussion
Previously we have reported on the biological activities of platinum-iminoether complexes

and shown that the isomer trans-[PtCI2{E-HN=C(OMe)Me}2] (trans-EE) possesses antileukaemic
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activity greater than that of the cis congener and comparable to that of cisplatin [3,6]. Furthermore,
trans-EE did not exhibit cross-resistance with cisplatin in several human cancer cell lines [9],
suggesting that the mechanism of action of trans-platinum iminoether complexes might be different
from that of the cis-isomers.

Table 1. 1H NMR chemical shifts (ppm) for trans-EE platinated duplex: d(CCTCGCTCTC).
d(GAGAGCGAGG). The differences in chemical shifts between the platinated and unplatinated
duplex (> 0.05 ppm) are given in parenthesis. All shifts are referenced to the HOD resonance at
4.81 ppm, T=295 K. Hb and Hf represent the bonded and the free amino protons.

H6/H8 H2/H5 HI’ H2’ H2" Iq3’ H4’ Hb Hf H1/H3-’
/CH

C1 7.84 5.98 5.71 2.32 2.58 4.70 4.16 8.49 7.16
(0.27) (0.08) (0.12)

C2 7.73 5.71 6.08 2.21 2.59 4.86 4.26 8.46 7.12
(0,09)

T3 7.50 1.66 6.17 2.22 2.57 4.93 4.26
(0.06)

C4 7.54 5.68 5.83 2.20 2.69 4.97 4.26
(0.20) (0.09) (0.26) (0.11) (0.10)

G5 8.10 5.92 2.59 2.64 4.77 4.13
(0.17) (0.11 (0.08) (-0.25) (-0.28)

C6 7.68 5.43 6.09 2.21 2.30 4.81 4.29
(0.26) (0.08) (0.12) (-0.21) (0.09) (0.06)

T7 7.56 1.70 6.10 2.31 2.62 4.93 4.25
(0.07) (0.09)

C8 7.68 5.74 6.05 2.22 2.55 4.83 4.22

T9 7.53 1.78 6.16 2.24 2.55 4.92 4.22

C10 7.71 5.88 6.30 2.32 2.43 4.60
(0.11) (0.19) (0.12)

Gll 7.87 5.56 2.47 2.66 4.84

8.34 7.04
(-0.22) (0.11)

8.40 6.79
(0.27) (0.25)

8.52 7.22
(0.08) (0.15)

4.07 8.30 7.36
(-0.10) (0.19)

14.37
(0.50)

12.79
(-0.14)

14.05
(0.22)

14.11
(0. 8)

4.17 12.95
(0.58)

7.82 6.83
(-0.42) (0.56)

A12 8.21 7.78 5.96 2.78 2.89 5.07 4.43

G13 7.74 5.50 2.60 2.71 5.02 4.39’

A14 8.08

G15 7.65

6.02 2.64 2.87 5.06 4.46
(0.07)
5.85 2.46 2.70 4.98 4.41
(0.14) (0.07)
5.51 1.86 2.26 4.78 4.21
(0.12)
5.30 2.69 2.75 5.00 4.32
(0.13)
6.08 2.75 2.92 5.11 4.47
(0.07) (0.11) (0.06) (0.06)
5.64 2.54 2.68 5.01 4.38

C16 7.28 5.36
(0.07) (0.15)

G17 7.92

12.77
(0.07)

7.86A18 8.21
(0.12)

G19 7.70
(0.08)

G20 7.71

12.80

12.97
(0.09)

13.00

6.13 2.38 2.46 4.64 4.24 12.72
(0.35)

Coluccia et al. [3] have shown by replication mapping experiments that trans-EE blocks
DNA polymerase at guanine residues in the context 5"-NGA (N G or C) and thus exhibits
sequence-selectivity similar to that observed for monofunctional binding to DNA duplexes of other
transition metal complexes [25, 26]. In several studies of adducts between DNA and cis-or trans-
DDP a series of complex isomerization reactions has been observed in which both intra- and inter-
strand cross-links are produced. Interstrand cross-links are assumed to be the critical molecular
lesions able to inactivate DNA as a template for replication [27, 28]. However, it has been shown
that trans-EE has a greatly reduced ability to form such cross-links with respect to either trans-DDP
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or cis-EE and cis-DDP [6]. Thus, the antitumor activity of trans-EE may originate from a different
mode of action. In this respect the search for possible unpredictable interactions between the
iminoether ligands and DNA may be of particular relevance.

Fig. 2. Stereoview of the molecular model of the refined trans-EE monofunctional bound duplex
d(CCTCG*CTCTC).d(GAGAGCGAGG).

G5

OMe

Cl

Fig. 3. Close-up model of the trans-EE- DNA environment.
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Figure 4. HPLC chromatograms of the complementary single strands and II (A), trace of the
species after trans-EE platination of single strand (I) (B), and a trace of the NMR sample a few
weeks after the NOESY shown in Fig 10, showing the unplatinated complementary single strands
(I and II), using a MonoQ HR 10/10 (Pharmacia Biotech) column with a 0.3 to 1.0 M NaOI gradient,
containing 10 mM NaOH.
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Figure 5. Species distribution curves for the increasing platinated species (,& (IM), i (1), and
(1)) and the decreasing amount of unplatinated oligonucleotide (I) at pH 2.5, no salt, at room
temperature in HO.

The NMR data enabled us to localize the iminoethers relative to DNA, in a qualitative
manner. The key ligand DNA contact anchoring the iminoether to the duplex is manifested by two
crosspeaks in the NOESY map involving G5-H8 and methoxy and methyl group of the iminoether
ligands. The geometry optimization using the DISCOVER software resulted.in a model where the
iminoether ligand is located relative to the duplex in an energetically faVorable position, e.g. the
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guanine carbonyl G5-O is reasonably close to the imino proton of the second iminoether ligand.
However, the G5-O H-N contact mentioned above does not represent a regular H-bond, the
angle O-H-N being close to 900 The hydrogen bonding ability of the amine ligand has been
proposed to be of relevance to the cytotoxic efficacy of cisplatin.

From the model described above it is evident that the bulky carrier ligands of trans-EE
effectively prevent formation of bifunctional adducts of the type observed for the analogous trans-
DDP and also for cis-DDP. Thus, the intra- and inter-strand cross-linking lesions of DNA induced
by cis-DDP and assumed to be important for its antitumor efficacy, are not the critical lesions for
trans-EE. Other platinum complexes, e.g. [Pt(dien)CI]/, form monofunctional lesions with DNA, but
they exhibit no antitumor activity. On the other hand, a group of monofunctionally DNA binding
platinum complexes containing aromatic amine ligands were reported time ago to exhibit antitumor
activity. The mechanism for this activity was suggested to involve intercalation of the planar
aromatic ligand in DNA [29]. A scheme requiring intercalation does not appear likely for the
iminoether ligand. However from our model it is possible to estimate the bending the
oligonucleotide undergoes as a consequence of monofunctional platination by trans-EE at G5.
Excluding the first and the last base-pairs which are expected to be rather mobile, the helical axes
calculated for the upper and lower triplet of base pairs make an angle of ca. 45 This value also
corresponds to the dihedral angle between base-pairs of the upper portion of the oligo and base
pairs of the lower portion (average value ca. 50). Such a bending angle is comparable to those
observed for bifunctional adducts of cisplatin of both intra-strand and inter-strand types. Moreover,
the bending is towards the minor groove as found in cisplatin inter-strand cross-link [30-32] and not
towards the major groove as found for cisplatin intra-strand cross-link [33-36]. This result was
rather unexpected and we suspect it is the rigidity and planarity of the carrier ligand to be
responsible for it. Although warrant other confirmations, this large bending of the DNA could apply
also to other platinum complexes with large planar carrier ligands and could be responsible for the
high toxicity (and in some cases also antitumour activity) observed for some of these complexes
[37, 38].
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