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In medicinal chemistry field, the biochemical pathways, involved in 7-transmembrane domains G-protein coupled receptors
(GPCRs) activation, are commonly studied to establish the activity of ligands towards GPCRs. The most studied steps are the
measurement of activated GTP-a subunit and stimulated intracellular cAMP. At the present, many researchers defined agonist
or antagonist activity of potential GPCRs drugs employing [**S]GTPyS or [*H]cAMP as probes. Recently, the corresponding
lanthanide labels Eu-GTP and Eu-cAMP as alternative to radiochemicals have been developed because they are highly sensitive,
easy to automate, easily synthesized, they display a much longer shelf-life and they can be used in multilabel experiments. In the
present review, the receptor-drug interaction by europium employment for studying the biochemical pathway of GPCR activation
has been focused. Moreover, comparative studies between lanthanide label probes and the corresponding radiolabeled compounds
have been carried out.
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1. INTRODUCTION

Luminescence is defined as emitted radiation by a chemical
species, molecule, or atom. It occurs when an electron re-
turns to the electronic ground state from an excited state,
loosing its excess energy as a photon. Electronic states of or-
ganic molecules can be grouped into singlet and triplet state.
The singlet state is characterized by the presence of all the
electrons with their spins paired, while the triplet state dis-
plays one set of the electron spin unpaired (see Figure 1).

The phosphorescence and fluorescence light emissions
are the main phenomena belonging to luminescence (see
Figure 2).

Phosphorescence occurs when the excited electron in the
singlet state undergoes intersystem crossing to a metastable
triplet state and then to the electronic ground state with
the emission of a photon. Since this phenomenon originates
from the lowest triplet state, it shows a decay time approxi-
mately equal to the lifetime of the triplet state (from 107* to

10 seconds). Therefore, phosphorescence is often character-
ized by an afterglow which is not observed for fluorescence.

Fluorescence occurs when the molecule returns to the
electronic ground state from the excited singlet state by emis-
sion of a photon and the lifetime of an excited singlet state is
approximately from 10~ to 1077 seconds. To date, many bi-
ological and medical applications are based on fluorescence
properties of pharmacological tools. These compounds per-
mit to visualize single step activated in cell biochemical path-
ways, to estimate changes in functional and structural prop-
erty cells, and to appreciate the modification of their molec-
ular complexes involved in biological systems.

Indeed, the fluorescence spectroscopy is one of the most
important applications for monitoring the molecular inter-
actions at the single molecule level and now widely used in
biological research.

In particular, the receptor-ligand interaction study,
which represents the starting point of drug discovery in
medicinal chemistry field, could be better performed by
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FIGURe 1: Singlet states (all electrons in the molecule are spin-
paired) and triplet states (one set of electron spins is unpaired) in
excited molecules.
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FIGURE 2: Possible physical process following absorption of a pho-
ton by a molecule; A = absorption; F = fluorescence; P = phospho-
rescence; processes involving photons = continue arrows; Radiation-
less transitions (v = vibrational relaxation, i = intersystem crossing,
¢ = internal conversion) = dotted arrows.

fluorescence resonance energy transfer (FRET) and biolumi-
nescence resonance energy transfer (BRET) techniques.

At the present, this study is carried out employing radi-
oligands that display some limitations due to the safety, the
storage, the handling, and the disposal of radioactive mate-
rials; other limitations are due to the difficulties to perform
analysis in living cells. The development of lanthanide-based
assays to assess receptor-ligand interactions is improving the
characterization and the evaluation of potential new drugs
and pharmacological tools discovery [1-3].

Lanthanide labels are an alternative to radiochemicals be-
cause they are highly sensitive, easy to automate, easily syn-
thesized, they display a much longer shelf life, and can be
used in multilabel experiments.

In the present review, the receptor-drug interaction by
europium employment for studying the biochemical path-
way of GPCR activation will be focused.

The lanthanide series comprises the 15 elements with
atomic number 57 through 71 as depicted in Figure 3. The
complexes of some lanthanides such as Samarium (Sm?*),
Europium (Eu®"), Terbium (Tb*"), and Dysprosium (Dy>")
are known to be luminescent; their ions emit fluorescent light
of specific wavelengths when coordinated to specific ligands.
The lanthanide ions in solutions or in complex possess lu-
minescence properties because of the transitions within 4f-
shell. The excitation of lanthanide ions occurs at the expense
of the intramolecular energy transfer from excited organic

molecule to lanthanide ion. The sensitization of lumines-
cence of lanthanide ions in complexes with organic ligand
allows their application as luminescence probes to establish
the structure and the properties of biological objects.

The major advantages of lanthanide labels are (i) ul-
trasensitive and specific signal, (ii) low background, (iii)
amenability to automation, as well as (iv) stability and safety.

The specific signal from the lanthanide is due to the long
lifetime of the excited state that can be temporally sepa-
rated from the nonspecific signal [1-5]. Typical lifetimes of
background fluorescence from plates, reagents, or cells are
ranging from picoseconds to microseconds [6, 7] while lan-
thanide lifetimes are from 0.2 to 1.5 milliseconds. Thus, the
excited state of lanthanides is long lived. This gives the advan-
tage of being able to excite the label, to delay measurement
of the emission signal until the background fluorescence has
completely decayed, and then to collect the specific emission
signal from the lanthanide. This delay period leads to an ul-
trasensitive and specific signal which can be time averaged.

Lanthanides excitation occurs in the ultraviolet region
while the emission is in the visible spectrum as depicted in
Table 1.

The emitted light is at a longer wavelength (lower en-
ergy) than the absorbed light since some of the energy is
lost because of the vibrations; the difference in wavelenght
between positions of the band of the excitation and emis-
sion is termed Stokes’ shift as depicted in Figure 4. The large
Stokes’ shift (greater than 200 nm) of the lanthanide ions
contributes to the low background signal since there is mini-
mal crosstalk between excitation and emission signals. In ad-
dition, the emission peak is very sharp allowing tight limits
for the excitation filter sets. These features make this method
amenable to use with multiple labels, since Eu, Sm, Dy, and
Tb have different excitation and emission profiles and dif-
ferent decay times. Hence, multiple assays can be performed
in a single well, thus greatly reducing the number of time
and reagents needed. Finally, not less important is the safety
of fluorescent probes instead of radiolabeled probes. Indeed,
fluorescent probes do not have the drawbacks of radioactivity
such as the production, delivery, and disposal of the radioac-
tive materials; the relatively short shelf life of some radionu-
clides; and the long signal acquisition times required to reach
the desired sensitivity.

To detect lanthanides by time-resolved fluorescence (TR-
F) in biological assays, a sensitization is necessary. For this
purpose, organic chromophores are covalently attached to
the lanthanide chelate. The chromophore acts as an antenna
which absorbs light. This energy is transferred to the lan-
thanide excited state and emitted as a fluorescent signal. Since
water molecules will deactivate the lanthanide ion, an ideal
chelator will saturate the coordination shell of the lanthanide
to prevent water from binding.

The lanthanide chelators are divided into two groups:
photoactive and nonphotoactive subclasses. A photoactive
chelator is useful because firstly, it provides the attachment of
the chromophore to the lanthanide facilitating energy trans-
fer; secondly, it protects the lanthanide from coordination
with water, and it permits the attachment of other reactive
groups [8]. An alternative approach is to use nonphotoactive
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Periodic table of the element
H He
Li | Be B|C O| F [Ne
Na|Mg Al|Si|P|s|cCl|Ar
K |Ca|Sc|Ti|V |[Cr|Mn|Fe|Co|Ni|Cu|Zn|Ga|Ge|As| Se|Br|Kr
Rb|Sr | Y | Zr|Nb|Mo| Tc |Ru|Rh|Pd|Ag|Cd|In|Sn|Sb| Te| I |Xe
Cs | Ba Hf|Ta| W|Re|Os| Ir | Pt |Au|Hg| T1 |Pb | Bi | Po| At |Rn
Fr | Ra Rf [Db| Sg| Bh|Hs|Mt| Ds|Rg
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
38.91 | 140.12 | 140.91 | 144.24 | 146.92 | 150.36 | 151.96 | 157.25 | 158.93 | 162.50 | 164.93 | 167.26 | 168.93 | 173.04 | 174.91
| Ac|Th| Pa| U |Np| Pu|Am|Cm|Bk|Cf| Es |Fm|Md|No| Lr|
FIGURE 3: Periodic table of the elements visualising lanthanides.
TaBLE 1: Lanthanides spectroscopic data.
Lanthanide Aexcitation (1M) Aemission (M) Visible spectrum region
Tb 320 545 Green
Dy 320 572 Yellow
Eu 340 615 Red
Sm 340 642 Red
The most common chelators used in monitoring li-
Stokes” shift gand-receptor interactions are Eu-chelates of diethylenetri-
< ? aminetetraacetic acid (DTTA) and diethylenetriaminepen-
taacetic acid (DTPA). These chelates, used for protein label-
Absorption Emission ing, bear an isothiocyanate group which reacts with the e-
% amino lysine residues. As depicted in Figure 5, DTTA and
g DTPA form a stable complex with Eu®* by their four and five
. carboxylic acid groups, respectively [9].

In most assays, to obtain a measurable TRF signal, the
lanthanide must be released from the nonphotoactive chela-
tor and must be transferred to a fluorescent chelator con-
tained within the enhancement solution.

Wavelength (1)

FIGURE 4: Stokes’ shift.

chelators which should be stable, hydrophilic, and capable
of releasing the lanthanide after the addition of an enhance-
ment solution because in this case the fluorescent chelator is
contained within this solution.

2. LANTHANIDES APPLICATIONS

The lanthanide chelates have found applications in biomed-
ical assays starting from radiotherapy based on some samar-
ium isotopes, nuclear magnetic imaging, specific cleavage
of DNA or RNA, and for sensing of various analytes and
conditions. Europium chelates have been used for sensing
several determinations, such as, pH [10], temperature [11],
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F1Gure 6: GPCRs activation cycle.

light doses, phosphate with unsaturated europium chelate
[12], glucose by time-resolving imaging [13], catalase by us-
ing tetracycline as enhancing ligand [14], neurotoxic agents
for bioterror monitoring [15], and anesthetic agents using a
dried strip reagent [16].

The photoluminescence of lanthanides is largely applied
in bioanalytical assays especially in the field of clinical im-
munodiagnostic and for evaluating receptor-ligand interac-
tions.

Two of the most frequently applied technologies for
these purposes are the dissociation-enhanced Lanthanide
Fluorescent ImmunoAssay (DELFIA), a heterogeneous as-
say technology based on fluorescence enhancement from

PerkinElmer and homogeneous Time Resolved-Fluorescence
Resonance Energy Transfer (TR-FRET) (TRACE) from
Brahms.

DELFIA has been used for the analysis of different bio-
chemical pathways by monitoring second messengers (cal-
cium, cAMP) for the study of G-protein and kinases activa-
tion and for cell viability determination.

3. EVALUATION OF BIOLOGICAL PATHWAYS INDUCED
BY RECEPTOR-DRUG INTERACTION

The interaction between G-protein-coupled receptors
(GPCRs) with drugs activates specific cell pathways. GPCRs,
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also known as seven transmembrane receptors (7-TM re-
ceptors), are a large family of eukaryotic transmembrane
receptors that activate several pathways and are involved in
many diseases. GPCRs are characterized by three subunits «,
B, and y; and the « subunit, in the nonactivated state, binds
GDP. GPCR stimulation by agonists leads to the dissociation
from the « subunit of the GDP and to its replacement
with GTP. This GTP-G, complex detaches from the Py
subunit and both of these complexes can lead to downstream
signaling. These activities are modulated in cells by GTPase
activity that allows the G-protein subunit to return to its
inactivated GDP form, hydrolyzing the GTP as depicted in
Figure 6.

The first biochemical step is monitored by quantifying
the amount of GTP associated with the membrane. To date,
the amount of GTP produced by GPCR agonist activation
has been evaluated by binding experiment using [*>S]GTPyS.
Nowadays, several research groups start to use fluorescent
probes to phase out radioactivity-based methods.

DELFIA GTP-binding assay is directed to the measure-
ment of GPCRs activation in membrane preparations em-
ploying a nonhydrolyzable GTP-Eu-label. This method is
a time-resolved fluorometric assay based on GDP-GTP ex-
change on Ga subunit followed by agonists GPCR activation.

As shown in Table 2, (-)-epinephrine activates a,4-ad-
renergic receptor (AR), displaying ECsy = 4.7 nM and ECs
=25nM in the Eu-GTP and [**S]GTPyS assays, respectively
[17]. Superimposed results were obtained by (-)-epinephrine
in 5,-AR binding experiments (ECsp = 65nM and ECsy =
67 nM, in the Eu-GTP and [**S]GTPyS assays, resp.).

Engstrom et al. reported that the stimulation of neu-
ropeptide FF receptor (NPFF,) by (1DMe)Y8Fa resulted in
binding of GTP to the receptor with ECsy = 6 nM for Eu-GTP
and ECsp = 17 nM for [**S]GTPyS [18]. Quinpirole, full ag-
onist at dopamine D3 receptors, displayed the same potency
(ECsp = 25nM) in both the assays [19, 20].

These results suggest that the Eu-GTP binding assay is a
reasonable alternative to the traditional [*>S]GTPyS binding
assay, and that lanthanides are replacing radiolabeled tradi-
tional methods to characterize the biological pathways linked
to receptor-drug interactions.

For a more wide application of Eu-GTP assay, this
method should be studied on several GPCRs subtypes.

Eu-GTP and [**S]GTPyS assays are usually used on
cloned cell lines and this is an advantage with respect to the
use of animal tissues. The employment of cell lines in some
cases constitutes a limit because of the low receptor expres-
sion and/or the presence of other GPCR system quenching
the signal. More specific and amplified signals (see Figure 7)
can be obtained detecting cyclic AMP (cAMP) or kinases on
living cells.

cAMP is an important second messenger mediating sev-
eral physiological responses of neurotransmitters, hormones,
and drugs. cAMP is formed by ATP, and its intracellular
concentration is regulated by two membrane-bound en-
zymes: adenylate cyclase (AC) and phosphodiesterase. The
cAMP concentration in cells is stimulated by the activation
of adenilate cyclase, responsible for the ATP conversion into
cAMP upon ligand binding to GPCR (see Figure 8). The
first method directly measuring the cAMP levels is based on
radioisotopes using scintillation proximity assay (SPA) tec-
nology [21-24]. An alternative method is DELFIA. This as-
say is intended for the quantitative determination of cAMP
in cell-culture samples. This method is a solid-phase time-
resolved fluoroimmunoassay based on the competition be-
tween europium-labeled cAMP and cAMP of the samples
for the binding sites of cAMP-specific polyclonal antibodies
from rabbit. A second antibody, directed against rabbit IgG,
is coated to the solid phase, allowing the separation of the
antibody-bound and the free antigen. The addition of an en-
hancement solution to each sample permit the dissiociation
of the europium ions from the labeled antigen into solution,
where they form highly fluorescent chelates with the com-
ponents of enhancement solution (see Figure 8). The fluo-
rescence detected is inversely proportional to the amount of
CAMP in the sample.

Eu-cAMP constitutes a suitable alternative to the com-
mon radiolabeled method, [*H] cAMP, commonly used to
evaluate the accumulation of cAMP in cell line overexpress-
ing f3-AR.

As listed in Table 3, ECsq values for three reference com-
pounds, isoproterenol, epinephrine, and norepinephrine on
B3-AR, by using [*H]cAMP [25] are superimposed (ECsp =
3.9, 49, and 6.3 nM, resp.) with those obtained with DELFIA
(ECsp = 5.8, 31, and 5.5 nM, resp.) [26].

These results suggest that also in this case, the Eu-cAMP
binding assay is a reasonable alternative to the traditional ra-
diolabeled binding assay.

Moreover, fluorescent probes have also been developed
to study the activity of some protein kinases. The protein ki-
nases are a class of enzymes classified as PKCa, PKCp, and
PKCy, each having a specific function. These enzymes re-
move a phosphate group from ATP and covalently attach it
to one of the three aminoacids having a free hydroxyl group
(serine, threonine, and tyrosine) chemically modifying other
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FIGURE 8: cAMP assay by europium measurement.
TasLE 2: Eu-GTP and [**S]GTPyS assays comparison.
- 35
Receptor subtypes Reference compounds Fu-GTP [PSIGTPyS
ECSO, nM
oA Epinephrine 4.7 25
B> Epinephrine 65 67
NPFE, (1DMe)Y8Fa 6.0 17
Ds Quinpirole 25 25
TaBLE 3: Eu-cAMP and [*H]cAMP assays comparison. Never In Mitosis Arrest- (NIMA-) related kinase 2, also
5 known as Nek2, is a serine/threonine kinase required for cen-
["HlcAMP Eu-cAMP trosome splitting and bipolar spindle formation during mi-
ECso, nM tosis. Nek2 phosphorylates a large centrosomal linker pro-
Isoproterenol 3.9 5.8 tein called c-NAP1 (centrosomal Nek2-associated protein 1),
Epinephrine 49 31 which subsequently triggers the release and separation of du-
Norepinephrine 6.3 5.5 plicated centrosomes [27]. Nek2 has been demonstrated to

proteins. This phosphorylation usually results in a functional
change of the target protein. In this way, kinases regulate
the majority of cell pathways involved in signal transduc-
tion. Protein kinases are turned on or off by phosphorylation
(sometimes by autophosphorylation) by binding of activa-
tor or inhibitor proteins. Disregulation of kinases activity is
a frequent cause of several diseases such as cancer because
kinases regulate many aspects that control the cell growth,
movement, and death. Currently, several quantitative and
sensitive nonradioactive in vitro assays such as DELFIA for
monitoring kinases activity and kinases phosphorylation are
reported in literature. Herein, the detection of Nek2, Insulin
receptor, and IKK complex is elicited.

be concentrated primarily in the centrosomes of rapidly pro-
liferating cells. High expression of Nek2 compared to normal
tissue has been observed in lung, colon, and breast carcino-
mas as well as B-cell lymphomas. Downregulation of Nek2
and overexpression of a kinase-defective dominant negative
enzyme result in (i) lack of centrosome separation, (ii) de-
fective spindle formation, (iii) increased apoptosis, and (iv)
decreased cell proliferation. Thus, targeting Nek2 in tumour
cells by a small molecule inhibitor may have the same phe-
notypic consequences. For this kinase, two different DELFIA
assays have been developed. One method uses a peptide iden-
tified within c-NAP1, the other one employs Nek2 enzyme as
a substrate to monitor autophosphorylation.

DELFIA resulted in a useful assay to monitor changes
in kinases phosphorylation instead of the traditional mea-
sure of radioactive phosphate incorporation or the use of
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phosphokinase antibodies (ELISA and Western blot). For ex-
ample, the insulin receptor (IR) is a tyrosine kinase com-
posed of two extracellular a subunits and two transmem-
brane  subunits. Insulin action starts by its binding to the
a subunits of the IR, and causes conformational changes that
lead to autophosphorylation of the  subunits and activation
of the receptor tyrosine kinase [28]. Moreover, DELFIA assay
can be easily adapted to monitor changes in the phosphory-
lation status of other cellular proteins.

IKK complex consists of two kinases, IKKa and IKK},
and of the regulatory nonenzymatic scaffold protein IKKy
also known as NEMO (NF-«B essential modifier) [29-33].
IxB phosphorylation by IKK results in the degradation of
IxB, allowing NF-«B to translocate to the nucleus and acti-
vate transcription of a variety of genes. Many studies have
indicated that activity of IKKf is directly related to TNFa«
activation, whereas IKKe is critical for the development of
the skin and skeleton during embryogenesis. To elucidate the
mechanisms by which NF-«B is activated, it is important to
have an effective assay to examine different pathways. Tra-
ditionally, IKK activity has been measured by a radioactive
kinase assay utilizing [**P]ATP or [*2P]ATP as a donor. For
monitoring substrates phosphorylation, DELFIA resulted in
sensitive and efficient nonradioactive assays to detect multi-
ple kinase activities simultaneously, including IKK [34].

4. CONCLUSIONS

Lanthanide labels constitute a perspective in medicinal
chemistry field for studying the activity of potential new
drugs towards GPCRs. To date, few results relating to Eu-
GTP and Eu-cAMP and comparable to the corresponding ra-
diolabeled probes are available. With respect to radiolabeled
method, these new tools display several advantages such as
the endocellular pathways investigation in living cells, the
high sensitivity, the long shelf life, the amenability to au-
tomation, the safety, and last but not least, they represent the
novel green biochemistry. At the present, it is important to
investigate Eu-GTP and Eu-cAMP impact in several GPCRs
in order to better define the potentials of lanthanide labels in
medicinal chemistry field.
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