318 Bull. Korean Chem. Soc., Vol. 8 No. 4, 1987

the reaction mixture was diluted with 14 m/ of methylene
chloride containing 5 mmol of the compound to be examined.
This makes the mixture 1 M in hydride and 0.25 M in the
compound under investigation. At appropriate time inter-
vals, 2 m/ of aliquots were withdrawn and quenched in a
THF-glycerin-2 N HCI hydrolyzing mixture. The hydrogen
evolved was measured volumetrically. For the reaction of
compounds with active hydrogen, the hydrogen evolved was
collected in a gas-buret and measured the volume of
hydrogen.

The reaction of 2-heptanone is described as a represen-
tative procedure. A 100-m/ oven-dried flask, equipped with a
sidearm and a reflux condenser, connected to a gas-buret via
a dry ice-acetone trap®. The flask was placed in an ice-water
bath and cooled down under dry nitrogen. To this flask
was added 6 ir:/ of 3.34 M ThxBHBr solution in methylene
chloride, and followed by addition of 14 m/ of 2-heptanone
(0.57g, 5 mmol) solution in methylene chloride. No hydrogen
evolution was observed. After 1 h at 0°C, hydrolysis of a
2-m! aliquot of the reaction mixture indicated 1.70 mmol of
residual hydride, which means that 0.60 mmol of hydride per
mmol of 2-heptanone had been used. After 3 h, the analysis
showed 1.505 mmol of residual hydride, which indicates that
0.99 mmol of hydride per mmol of the compound had been
consumed. After 6 h, the analysis showed no difference in
the residual hydride. These results are summarized in Table
2.

General Procedure for Stereoselectivity Study. The
reduction of 2-methylcyclohexanone is described here as
representative. To a 25-m! vial capped by a rubber septum
was added 1.2 m/ of a solution of ThxBHBr-SMe, in me-
thylene chloride (4 mmol in hydride). The vial was kept at
-23°C with the aid of a cooling bath. To this was added 1 m/
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of a 2 M 2-methylcyclohexanone solution in methylene chlo-
ride (at -23°C). The reaction mixture was kept at -23°C for
6 h. It was then hydrolyzed by the addition of 2 m/ of
methanol, and then treated with 1 m/ of 3 N NaOH and 0.5
m/ of 30% H,0,. The aqueous layer was saturated with
anhydrous potassium carbonate, and the organic layer was
subjected to GC analysis. The results are summarized in
Table 3.
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Experimental results for viscous flow of poly (»-methyl L-glutamate) solutions have been published elsewhere. The data of

s .11 ) _
7¥1[n]° are expressed by the following equation, ) A sinh'(g, (f/’“ﬂ) :/xp( C,?fz/”“TU} (A1)
21/ o

) (n)° f
where {7}/ and [n]° are the intrinsic viscosity at shear stress f and zero, respectively, A =Hml(1/CYxz/as)Ba/ o)), 7y viscosity
of the solvent, £, is the relaxation time of flow unit 2, c; is a constant related to the elasticity of flow unit 2. The theoretical
derivation of Eq.(A1) is given in the text. The experimental curves of [n}//[n]® vs. log f are compared with the theoretical
curves calculated from Eq.(A1) with good results. Eq.(A1) is also applied to non-biopolymeric solutions, and it was found that
in the latter case cy = 0. The reason for this is explained in the text. The problems related to non-Newtonian flows are discuss-
ed.

Introduction

Some theoretical treatments of the dimensional properties
of polypeptides in helix-coil transition region were given in
our previous papers,’? and the experimental results on in-
trinsic viscosities of poly(r-methyl L-glutamate) (PMLG)

solutions were reported elsewhere.? In this paper, an equa-
tion is derived by using the Ree-Eyring theory of viscosity,*
which is based on the absolute reaction rate theory, and was
successfully applied to polymer solutions, polymer melts,*
suspension systems,® metals, alloys,®’ thixotropic and dila-
tant systems.%%¢ The newly derived equation is applied to
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Figure 1. Energy barrier for flow.

the experimental data?® of intrinsic viscosities of polypeptide
solutions in the helix-coil transition region and to the data for
non-biopolymeric solutions. The comparison of the two
cases yields a strong support for the newly derived equation.

Theory

The energy barrier curve for flow is represented by a
symmetric curve ahb shown in Figure 1. A flow unit lies in
the energy minimum position a or bwhen there is no shear
stress f. Under shear stress f, however, the energy of the unit
increases by »°N in position a as well as in position b, where
N is Avogadro number, and «° = ¢$? which arises because of
the elasticity of the flow unit. There is another increase »°N,
in the energy of the unit in position ¢ whereas it decreases by
w*N in position b where w®=2A,A;Af /2, X,, A; and A being
the molecular dimensions appearing in Eyring’s flow equa-
tion,1%11 (see Figure 1) The nature of »°and »° will be con-
sidered later.

The activation free energy for forward flow AG; and that
of backward flow AG/ are represented, respectively, by

AG;=AG;— w*N— XX, A IN/2
and

AGI=AGs— w°N-+2AX, A, fN/2

The net rate of flow r is then expressed by the following
equation,

kT AG3; AG}
rzll(kf—kb):/\T [eXp(“ Ri:)—exp(_ RTb)]

where k,and k, are the rate constant for the forward and the
backward jumping, respectively, and A is the distance be-
tween two successive equilibrium positions (Figure 1).

From the above equation, the rate of shear § = /4, is
given by

kT - (AGi- o : *
-4 w(—A—w*y‘)][exp kT)—exp( kT)]

Ay Asf /2
=8 exp (kT) sinh (——k;,—i) (1)

where A, is the distance between two successive flow layers,
B is proportional to the relaxation time of the flow unit, and is
expressed by

_ oA KT~ 4GS
’9*[2,\. AT

)= (22— ko) ! (1a)
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The k, in Eq.(1a) represents the following quantity:

L KT - 4GS
T FPYRT

t.e., k, is the rate constant of jumping when there is no shear
stress.
Equation (1) is rewritten as

AA A, f/2
*—h‘—a—l‘ =sinh ' {#sexp

) (1b)

(7)) =af (2)

where @ =A2:;4,/2KT , and e ! is proportional to the shear
modulus of the flow unit. The relationship between stress f
and shear rate $ for the jth flow unit is obtained from Eq.(2),

fx*lsmh (815 exp(—m e)] (3)

a; kT

where f; is the shear strees acting on flow unit j, ¢; =
(AAz A4 /2kT); and 8; = [(A//\l)Zko]]-‘l. We assume that there
are three kinds of flow units: solvent unit 0, Newtonian unit 1
and non-Newtonian unit 2. Thus,

12

f:éo X¢f¢=Xofo+le|+x2fz (4)

where x; is the fraction of the area occupied by the jth kind of
flow units, and

1
fi=— 8

a,

and

e

f,—Lsmh Y8, exp( )]

a, kT
ie., in Eq.(4), units 0 and 1 are Newtonian, that is, sinh™! 8, s
=4, and uf=wf = 0 since the Newtonian units have no
elasticity. Thus, Eq.(4) becomes,

e

_ X X2
/90 + ﬂ15+ . sinh™ (8,5 exp( kT

)] {4a)

The viscosity 7 and specific viscosity 7, of the flow system
are given by the following equations, respectively,

sinh™ (8,8 exp (22 ))
_f _x X Xz kT
R T i (4b)

and
+_X1l9| 1+ legz
170 B:7m0

i)

nes—nr— 1= (%o

sinh™ (8,5 exp! (—

B2

where 84/a.= 1, is the solvent viscosity and 7 - (=7 /7.) is
the relative viscosity. Thus the intrinsic viscosity [7] [= hm
(7,/C), C = concentration] is represented by,

(4c)

. 1 llgl Xzﬂz
= - +——=-1+
(n) lim = (xo 70 0’2770)
L 1 % . sinh™ (8,5 exp (—>— kT )]}
cv0 C ay7o 8.5

sinh™ {8, § exp( k;"“)]

() -A{1-— : % (5)
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Figure 2. Flow curves of poly (y-methyl L-glutamate) (PMLG) solu-
sions at 25°C.

where
A=lim & (X281 (52)
c=0 C “a,7e
and
. f 4_le92
(7] —lc]glc (xo+al7]0 14 02770) {5b)

[7]° being the intrinsic viscosity at f — 0. By rearranging
Eq.(5), one obtains,

sinh™ (B, sexp (:ﬁ)]

()7 A kT

-l- [77]° t1- B

Here we consider the significance of ;. Unit 2 is a non-
Newtonian unit having an elasticity due to molecular chain.
Let G be the elasticity constant of the chain. When stress {
acts on the chain, an elastic energy w; is stored on the chain
which is represented by the following equation:

t (6)

e Se Sé
wz:f Gsds—=G %< (7)
\ 2

where s, is the critical strain at which the flow unit 2 jumps
into the next equilibrium position. The s, can be expressed
by
sm ot
cTa k2
where k, in the jumping frequency of the flow unit, and & is
proportionality constant. Thus,
e G 5
Wa 2 (a k; ) Cys (8 )
where c, is another proportionality constant which is equal to
(G/2)a/k,)%. Eq.(8) is originally derived by Hahn, Ree and
Eyring,® and successfully used to explain thixotropy and
dilatancy phenomena.®b¢
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Table 1*. Flow Parameters of PMLG with Various Fy at 25°C

F (n) A £ 210% 2105 Ty

# dl/g) di/g) (sec) (erg sec?) (cp)

0 1.142 0.58 8.63 0 6.164%
0.12 1.204 0.78 10.65 1.432 7.375
0.58 1.421 0.92 12.46 6.873 7.764
0.71 1.493 0.98 19.30 15.11 9.490
0.85 1.741 1.27 23.31 17.62 10.34
0.99 2.680 2.28 25.62 172.0 12.33¢

¢ In this table [7)?and 0o are experimentally determined values, and
A, B, and ¢, values are those determined by a non-linear regression
method. The molecular weight of the sample M,,=72,000. We
assumed that (7)0=[n] (atAP =0). ? Viscosity of dichloroacetic acid
(DCA) at 25°C. ¢ Viscosity of metacresol (MC) at 25°C. The other
7no’s are the viscosities of the mixed solvents of DCA and MC, which
yield the PMLG having the Fy shown in the first column.

Next the work w®=AA,A,{/2 is considered. This func-
tion is originally introduced by Eyring,'%*! and is well
known in the field of rheology. It is caused by the fact that
the flow unit exists in the flow potential field which helps the
flow while it retards the reverse flow. Thus w? is quite dif-
ferent from w: in its origin. The Hahn-Ree-Eyring theory of
thixotropy® is based on the fact that if «*¢is large enough, the
flow unit is destroyed.

In Eq.(6), s is replaced by f/7, since all the flow units in the
system flow with equal shear-rate § and since we are treating
a very dilute solution (lim C — 0), t.e., », = £f,/§ = f/$. Thus,
Eq.(6) is rewritten as

[ﬂ]f A sinh™ [/92 (f/ﬂo)exp (:Cz—fz/_ﬂ

TG Baf /70

where w: in Eq.(6) is substituted by Eq.(8). The superscript f
is attached to [7] to emphasize that the latter is the {5] at {.

kT )]}(9)

Applications

(A) Flow Curves of Poly(7-methyl L-glutamate).

The experimental flow curves,® [([7}/{n]%) vs. log f], for
poly(r-methyl L-glutamate) are shown in Figure 2, where F
(the helix content in the PMLG) is shown on each curve, and
shear stress f is expressed in the units of dyn/cm?, where f is
given by

f={AP+pgh)/ (R/2L) (10)

AP = external pressure applied to the viscometer, ¢ = densi-
ty of the sample liquid, h = the height of the liquid column in
the viscometer, g = gravitational constant, R and L are the
radius and the lengh of the capillary of the viscometer,
respectively. From Figure 2, one notes that the viscosity
decreases with increasing stress, i.e., that the flow
phenomena are non-Newtonian.

We apply Eq.(9) to the flow curves of Figure 2, the
parameters appearing in Eq.(9) are determined by a non-
linear regression method,12 and are summerized in Table 1.
The full curves are those calculated from Eq.(9) by using the
parametric values shown in Table 1. One notes that the
theoretical curves express well the experimental data. [Note:
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Figure 3. Flow curves of polyisobutylene dissolved in various
solvents at 25°C.9 More details of the curves are given in Table 2.
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Figure 4. Flow curves of polystyrene disolved in various solvents
at 25°C.9 More details of the curves are given in Table 3.

the theoretical curve of Fy = 0 in Figure 2 was calculated
from Eq.(9) with ¢, = 0; we use in this paper F; = Oas a
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Table 2%, Intrinsic Viscosities and Parameters of Polyisobuty-
lene in Various Solvents at 25°C

sample? _

M0 W o, A Byin, C, Solvent

No. dl/g) (dl/g) (cm?2/dyn) (erg sec?)

1 1.59 1.50 1.94 0.093 0.017 0 Benzene
2 1.59 290 2.50 0.42 0.021 0 Decalin
3 1.59 3.87 2.74 0.65 0.023 0 CgH5CH;
4 1.59 4.40 2.88 0.79 0.025 0 Isooctene
5 485 6.35 3.22 1.61 0.026 0 CgH iz

2 [n}e, M,, and ¢f (extension factor) are experimental data of
Passaglia et alS. A, B8,/n, and ¢, are those obtained by a nonlinear
regression method. ® The sample numbers 1 to 5 indicate also the
order of the solubility power of the solvents from poor to the best.
The order accords also with that of the ay.

synonvm of ¢, = 0.

We also applied Eq.(9) to the flow curves of poly(y-benzyl
L-glutamate) (PBLG),® with good result, but the details are
reserved for a future publication.

(B) Flow Curves of Non-Biopolymeric Solutions

Equation (9) was applied to the flow curves of non-
biopolymeric solutions, e.g., polyisobutylene (Figure 3) and
polystyrene (Figure 4). The experimental points in Figure 3
and 4 are the data obtained by Passaglia et al.? More details
of the curves are shown in Tables 2 and 3. By applying Eq.
(9) with ¢, = 0, we obtained the values of the parameters ap-
pearing in Eq.(9), and summarized in Tables 2 and 3. The full
curves in Figures 3 and 4 are those calculated from Eq.(9)
with ¢, = 0 by using the parametric values in Tables 2 and 3,
respectively. One notes that the theory and experiment agree
very well. From Tables 2 and 3, it is noticed that for the
organic polymers the elasticity factor ¢, in Eq.(9) is zero. The
reason will be mentioned in the next section.

Results and Discussion

(A) Thec, Factors for Biopolymers and Nonbiopolymers
We found in the above that the elasticity factor c, for
biopolymers plays a remarkable role in the flows while ¢, = 0
for the nonbiopolymeric solutions, polyisobutylene and
polystylene. The reason will be considered below.
Biopolymers, e.g., poly(7-methyl L-glutamate) and poly(7-
benzyl L-glutamate), have a peptide chain (-CO-NH-CHR-),,
which makes a helix, the intramolecular hydrogen bonds
formed in the peptide chain help the helix formation.4 For

Table 3.9 Intrinsic Viscosities and Parameters of Polystyrene in Various Solvents at 25°C

sample M,10°¢ [n1° ar A (A/[M9) B.1n, I solvents
No. (dl/g) dl/g) (cm?/dyn) (erg sec?)
la 3.22 1.35 2.35% 0.17(0.126) 0.027 0 CgH,2/CCly
(0.869/0.131)
1b 2.83 2.00 2.74 0.39(0.195) 0.014 0 CoHsCH/n-C;H g
(0.476/0.524)
2 2.82 4.40 3.57 1.20(0.273) 0.019 0 Toluene
3a 1.89 4.60 3.87 1.93(0.420) 0.043 0 Tetralin
3b 2.83 5.10 3.74 2.56(0.502) 0.020 0 Tetralin

@ [n]°, M,, and a sare experimental data.” A,8, /7, and ¢, are those determined by a non-linear regression method. ® The order of aindicates also
the solubility power of the solvents from poor to the best.“The parenthesized data indicate the values of A/[7]¢ which is dimension less.
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Figure 5. Relaxation time g, vs. helix content Fj;. The dots repre-
sent the 8, values from Table 1. Full curve is represented by Eq.
(11). '

the non-biopolymeric solutions such as polyisobutylene and
polystylene, the situation is quite different, they form ran-
dom coil structure,'* thus they do not show the elasticity
nature. This is the reason for ¢, = 0 for the organic

polymers.
(B) Dependence of £3 on Fy

We plot 8. values in Table 1 against Fy in Figure 5, the
curve is represented by

B:=8.4-10"*exp(1.92 F}) (11)
As mentioned previously [see Eq.(1a)],
_ A A (AGY),
B 2kt U RT ) (11a)

where (AG?), signifys the activation free energy for unit 2 at
f = 0 [see Eq.(1b)]. By equating Egs.(11) and (11a), we obtain,

Ao b aGY),
A 2T “PYTRT

from which the (AG?). is obtained as

(A—}fTﬁingz Fi+In((8.4-107) % Z—:TJ
we assume A,/A=1 and calculate (AGJ), at T = 298K and
Fy=1. Then (AG{), =14.9 kcal is obtained,. Similarly,
(AG), = 14.3 kcal was calculated at Fy = 0.5, both values
of (AG?), seem to be very reasonable, since according to our
experiences, for processes occuring at normal temperature
and pressure AG; rarely exceed 40 kcal.

8.4-107'exp(1.92 Fi)=

(C) Correction Factors in Non-Newtonian Flow

(1) Rabinowitsch Correction. The rate of shear s was ob-
tained from the volume-flow rate Q(V/t = 5.80 cm3/t) by § =
4Q/ny* which must be corrected by Rabinowitsch equation®®
to obtain the true rate of shear s, at wall, i.e.,

(

d log s+3)=

$
—(n+ 12
dlog | g nt3) (12)

str

s
4
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where f is the shear stress at wall, and is given by Eq.(10).

In order to obtain the factor n in Eq.(12), we plotted our
experimental data of log $ against log f, and obtained the
result that n = 1 for all the cases of Fy, in dilute solutions.
Thus, we found that our experimental rate of shear $ is near-
ly equal to s, [see Eq.(12)]. Accordingly, we use in this paper
s for §,,.

(2) Hagenbach correction. For shear stress f, the correc-
tion for the kinetic energy and the “‘end” effects must be con-
sidered by viscometry by a capillary flow. The Hagen-
Poisseuille equation (also known as Hagenbach-Couette
equation), which corrects both effects, may be written as!é

_ zR*'P _ mpQ

7T 8QIL+#R)  8rxL+n'R)
where n’ is a correction factor for the end-effect, and m’ isa
proportionality constant for correcting the kinectic energy.
The value of m’ may depend on the apparatuses and the li-
quids used, however, various authors reported the values of
m’ changing from 0.55 to 1.55.16 For the end-effect correc-
tion factor n’, it becomes unimportant at low shear stresses
<10* dyn/cm? and for the tubes for which L/R > 100.° Since
in our experiment, f < 10° dyn/cm? and L/R = 293.65, we
can assumed that n’ = 0. Then we can estimate the second
term on the right of Eq.(13) by assuming m’ = 1 which is
very reasonable (see above).

We consider the case of PMLG in metacresol (MC) sol-
vent in which the F, of PMLG is equal to 0.99 (see Figure 2).
We apply Eq.(13) to this case where AP = 6.0 psi. The P in
Eq.(13)is P = AP + hpg where h = 13.5 cm, thus P=4.27.
10° dyn/cm?, p being 1.034. By using the data Q = Vit =
5.8/70.13 = 0.0827 cm¥sec, L = 9.25 cm and R = 0.0315
cm, the first and second terms on the right of Eq.(13) are
calculated at 0.216 and 3.66 x 10~ poise, respectively, i.e.,
the correction term (the second term) is negligibly small com-
pared to the first term, the Newtonian viscosity term. Similar
calculation were performed in other cases of different
solvents and AP, and similar results were obtained always,
t.e., the correction term is negligible in our experiment.

From the results obtained by the calculations of Eq.(12)
and (13), the rate of shear $ and shear stress f (both at the
wall) can be represented by § = 4Q/rr3and f = PR/2L, ie,
any correction for the non-Newtonian flow is not necessary.
Then, one would wonder why the non-Newtonian flow
nature appears in the experimental curves of Figure 2 while
it does not in the Rabinowitsch equation. We consider the
reason for this question below.

In the Rabinowitsch equation, the correction factor n is
determined by the shape of the curves of log s vs. log f, and
we found n = 1 as already mentioned, i.¢., n is determined by
a double lograithmic plot. In Figure 2, however, [7}//[n]° is
plotted vs. log f, 7.e, by a semilograithmic plot, thus the
change in {7)//[7]° vs log f appeares more precisely than the
double lograithmic plots. This is the reason for the ap-
pearance of non-Newtonian character in the plots of [7)//[7]°
vs. log f{Figure 2) while the Rabinowitsch equation Eq.(12)
and the Hagenbach equation (13) show Newtonian character.

(3) Turbulence Effect. Generally at high shear rates, tur
bulent flow occurs. Thus, it will be interesting to see whether
it will occur in our case or not. We calculate the Reynold
number Re which is given by the following equation:17

(13)

Re— 229

n =R (14)
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We apply Eq.(14) to the solution of PMLG in MC, the con-
centration of which being 1.7 g/d/, and obtained Re = 7.97
by using the data, R = 0.0135 cm, Q = 0.0827 cm3¥sec, o =
1.034 g/cm3, and the Newtonian viscosity of the solution 7 =
0.216 poise.

According to the literature!”? laminar flow occurs
whenever Re < 1000. Comparing our value of Re = 7.97 to
the literature value, we conclude that turbulent flow does not
occur in our experiment.

(D) Remarks on Non-biopolymeric Solutions

In the above discussions, we are mainly concerned with
biopolymeric solutions. Now we are in a position to discuss
our results on non-biopolymeric solutions. Most of the pro-
blems, however, will be reserved for a future publication ex-
cept for the results shown in Figure 3 where the crossing of
flow curves appeared.

As one notes from Figure 4, the curves la and 1b, and
curves 3a and 3b cross with each other. The crossing occurs
by the interrelation between the parameters 8./7., (n)°
and A/(7 )°of the curves. See, for example, curves 3a and 3b:
for A./7n., curve 3a > curve 3b (Table 3), and the former
drops from the line of (])7/(n])°= 1 at the lower value of {
while the reverse is true for curve 3b. The reason is con-
sidered below.

To the polystyrene solutions (curve 3a and 3b), Eq.(9) is
applied where c, is zero as mentioned previously. When f is
very small, the braced term in Eq.(9) changes in the following
way:

. sinh™ 8, 1/7, B21/70
1 [ aluteu ot —{]- == =0 15
lim {1 B:£/70 } B2 f/10 } 15

thus (7)7/(7]° = 1 (see Eq.9)). If f increases, the above
relation (i.e., sinh™! g, /5, =8, /1. ) does not hold, thus the
value of (7)7/(5)° drops from unity. Stress ¢, at which
(#17/(» ) drops from unity, changes by the value of £:/7.,
t.e, £8,/70 is the smaller, the {f* becomes the larger, vice ver-
sa. (see Figure 4)

Next we consider the limiting value of the braced term in
Eq(9atf -« :

: inh™*8,f/n, . In(28,f/74)
1 LA L L LAY
flﬂ{ 1 ﬂzf/ﬂo ]flg“]’< 1 Ing/ﬂo } 1(153)
Thus Eq.(9) becomes
Ed
)7 A g (16)

(n)° nk

Let the limiting value of ()7/(n3° be L. Then by using
Table 3 and Eq.(16) the L values of the cases for curve 3a and
3b are calculated, respectively.

Ly, = 1-0.420 = 0.580
L, = 1-0.502 = 0.498

Thus curve 3a, for which 8: /7o = 0.043, has higher value of
L while curve 3b, for which 8, /7. = 0.020, has lower L; as a
result, the curves 3a and 3b cross at a point (see Figure 4).

Concerning the crossing of curves 1a and 1b, the situation
is exactly equal to the case of curves 3a and 3b. Thus it need
not any special comments.

(E) The Nature of Flow Units

It will be advisable to clarify the nature of flow units con-
sidered in this paper although fragmental explanation were
given in some our previous papers. See, for example,
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Figure 6. Mechamical model of the flow system composed of
generalized Maxwell moldel.

reference 4b.

Macromolecules, in general, moves by a segmental mo-
tion, the size of segments (the number of chain atoms z per
segment) was estimated in various ways for various cases.®
For the present case, however, Fox et al’s estimationls
seems to be most suitable. According to these authors z is no
more larger than 5 for poly(n-paraffins), while for poly-
isobutylene and polystyrene z is less than 10. We treated in
this paper the polymeric systems in which the number of
repeating units N, is changing from 600(PMLG) to 85000
(PIB). According to Fox ef al’s estimation, the number of
flow units is estimated as 200 per molecule (at least) in
biopolymeric systems, and as 500 per molecule (at least) in
non-biopolymeric systems. Some of these flow units are en-
tangled with each other whereas the others are in disentangl-
ed states. Under shear stress, these flow units move, the
disentangled flow units moving somewhat freely, ze., as
Newtonian units, while the entangled units flowing with
some difficulty, i.e., as non-Newtonian units.

Our model of the polymeric flow systems is represented
by a mechanic model in which Maxwell elements connected
in parallel as shown in Figure 6. Units 0 and 1, represent the
solvent and the Newtonian units, respectively, while unit 2
represents the non-Newtonian units with elastic spring. The
stress acting on the flow units f;, f; and £, are different, i.c, f,
<f, < f, whereas the rates of shear are equal, 7.¢.,, s, = 5, =
8,. These constraints are impressed in a high molecular
polymeric system by the fact that the corresponding flow
segments (or units) are connected to the backbone chain.
The solvent molecules are also attatched to the backbone
chain, thus the attached solvent molecules may be treated as
an ‘‘0” type element in Figure 6.

Previously we mentioned that the peptide chain (-NH-
CH(R)-CO-), in PMLG (or PBLG) makes a helix chain having
elasticity. The work-done w; (= c,5?) [Eq.(8)] is due to the
spring, and helps the jumping over the energy barier (i.e.,
reducing the barrier height). The molecular explanation for
this phenomenon is as follows: by the extension of the helix,
the included solvent molecules in the helix are expelled from
the helix-chain segment making it easier to flow, otherwise
the included solvent molecules move with the helix element
making the movement harder. In the mechanical model
(Figure 6), the abovementioned phenomenon corresponds to
the fact that the work s is used for loosening the dashpot.

It was found that PMLG Fy = 0 and ¢, = 0 in dichl-
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oroacetic acid (DCA) (See Table 1). This is explained as
follows: in DCA the entanglement juncture of PMLG (or
PBLG) becomes loose, thus the peptide chain looses the
elasticity and the helixity at the same time (i.e., ¢, = 0 and F,
= 0).

We also found that ¢, = 0 for polyisobutylene, poly-
styrene, etc. (Table 2 and 3). This is due to the fact that the
entanglement joints of the non-biopolymeric chains are not
tight compared to that helix chains of polypeptides. [Note: it
maybe noted that the 2-type non-Newtonian unit can work as
a non-Newtonian unit even after attaining the state c, = 0,
since this state signifys, only the state at which the entangled
juncture becomes loose.]
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Catalytic Reactions of 3-Phenyl-2-propen-1-ol with Perchloratocar-
bonylbis (triphenylphosphine) rhodium (I)'

Jeonghan Park and Chong Shik Chin*

Department of Chemistry, Sogang University, Seoul 121. Received April 27, 1987

Reaction of Rh (ClO,) (CO) (PPhgy), (1) with trans-CgHgCH = CHCH,OH (2) produces a new cationic rhodium(I) complex,
[Rh(trans-C¢H;CH = CHCHO) (CO) (PPh3),]ClO,4 (3) where 2 is coordinated throuth the oxygen atom but not through the
olefinic group. At room temperature under nitrogen, complex 1 catalyzes dehydrogenation, hydrogenolysis, and isomeriza-
tion of 2 to give trans-CgH;CH =CHCHO @), frans-CgH;CH=CHCH; (5) and CgH5CH,;CH,CHO (6), respectively, and
oligomerization of 2 whereas under hydrogen, complex 1 catalyzes hydrogenation of 2 to give C;H;CH,CH,CH,0H (7) and
hydrogenolysis of 2 to 5-which is further hydrogenated to CgHsCH,CH,CHj (8). The dehydrogenation and hydrogenolysis of
2 with 1 suggest an interaction between the rhodium and the oxygen atom of 2, whereas the isomerization and hydrogenation
of 2 with 1 indicate an interaction between the rhodium and the olefinic system of 2.

Introduction

Reactions of unsaturated aldehydes! and unsaturated

t Dedicated to professor Nung Min Yoon for this 60th birthday.

esters? with Rh(C10 (COXPPh,), (1) produce cationic four-
coordinated rhodium(l) complexes, [RhI(CO)PPh,),ICIO,
(L =unsaturated aldehydes and unsaturated esters coordi-
nated through oxygen atom but not through the olefinic



