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We have formulated a theory for describing the time-dependent rate of the photolytic radical recombination reaction
occuring in a viscous medium. The recombination after flash photolysis consists of an initial geminate-pair recombina-
tion phase followed by a slower balk recombination phase in which radicals from different parent molecules encounter
via diffusion and combine, In most theories of photolytic radical recombination reactions, however, only the dynamics
of a single geminate pair was considered and the intervention of surrounding radicals in the geminate pair dynamics
was neglected. The present theory treats the interplay of the geminate-pair and the bulk recombinations within a
unified framework. Numerical calculations show that prediction of the present theory differs significantly from that

of conventional theories.

Introduction

A few years ago Lee and Karplus' proposed a general
theory of diffusion-influenced reactions, which is based on
a hierarchical system of many-body Smoluchowski equations
for the reactant molecule distribution functions. There, in
treating reactions of the type

k
A+B ?’ o (L1)
we have assumed that thermal dissociation rate of C mole-
cules is comparable to the combination rate of A and B mo-
lecules. Hence, initially we have nonnegligible concentration
of A and B molecules.

However, in the case of photolytic radical recombination
reactions, the initial concentrations of A and B molecules
may be practically zero before the onset of photodissociation
and the dissociation rate coefficient &, should include both
thermal and photolytic contributions. To treat such cases we
have to extend the previous formalism.

There are three issues that will be addressed in the pre-
sent work. First, in most theories of photolytic radical recom-
bination reactions®~ ', only the dynamics of a single geminate
pair was considered and the intervention of other radicals
in the geminate pair dynamics was neglected. Hence a uni-
fied theory to deal with both the geminate recombination
phase and the onset of bulk recombination phase (i.e., when
the nongeminate recombination dominates) must be pursued
especially to understand the intermediate to long time reac-
tion dynamics. Recently, there have been a few attempts'! ™!
to deal with this aspect of photolytic radical recombination
reactions. However, the treatments involved some unappea-
ling aspects from physical viewpoints. For example, validity
of the theory of Agmon and Szabo! is limited to the pseudo-
first-order case, namely where one reactant, say B, is present
in excess over the other, say A. Furthermore, their theory
involves an assymption that the geminate and bulk bimole-
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cular rebindings are independent, which is not true in gene-
ral.

Second, in all previous theoretical treatments of photolytic
radical recombination reactions’ ', it has been assumed that
all radicals are produced at =0 by a &-function-like light
pulse. But the photolysis pulses employed in experiments
may not be very much shorter than the recombination times
so that some convolution of the &-function pulse result and
the time profile of light pulse is necessitated to compare
the theoretical prediction with experimental results. An im-
plicit assumption in such approaches is that newly generated
radical pairs will be in the same dynamic environment on
the average. This assumption may be appropriate if the ex-
ternal photolytic radiation is so weak that its perturbations
on the radical population and distribution are very small.
But the assumption fails when the radical concentrations ac-
cumulate considerably under a photolysis pulse with long
duration. A similar situation has been discussed recently in
the case of diffusion-influenced fluorescence quenching®. In
the present theory, we consider explicitly a photolysis pulse
of finite duration from the beginning.

Third, in most theories of photolytic radical recombination
reactions, contribution from concurrent generation of radicals
by thermal dissociation was neglected. We find that in some
cases as examined below this contribution should not be
neglected especially in the analysis of intermediate to long
time kinetic data of photolytic experiments.

In the present work, we extend the previous formalism!
for treating reversible diffusion-influenced reactions to incor-
porate the above-mentioned aspects in the photolytic radical
recombination reactions. The paper is organized as follows.
In section 2 we present a general theoretical framework for
describing the radical recombination dynamics following pho-
todissociation. In section 3 we obtain a formal expression
for the time-dependent recombination rate coefficient and
evaluate it analytically for a simple case in which the poten-
tial of mean force and the hydrodynamic interaction between
the radicals may be neglected. In section 4 we then explore
the implications of the present theory, in contrast to the
conventional theory, via the numerical calculation of the va-
riation of the radical concentration with time.
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Kinetic equations

Suppose that there are Nj molecules of species A and
Nj molecules of species B. These numbers include the bound
ones in C molecules. We than label molecules of species
A and B as A; (=1,2,--,N9) and B; (=1,2,--, N, respec-
tively, and introduce the following probability density fun-
tions:

P, (ryt)=probability density that the molecule A; is in the
unbound state and is located at rq at time t;
Pg(rg,)=probability density that the molecule B, is in the
unbound state and is located at rz at time t;
Pyig(rarst)=probability density that both A; and B; are
in the unbound state and are located at ry
and rp, respectively, at time t;
Pej(re,.Qct)=probability density that at time ¢ A, and B;
form a bound molecule C that is located at
rc with orientation Qg;

Puiaprarq’ rst)=probability density that at time ¢ A, A,
and B; are in the unbound state and are
located at r4, ri' and rs, respectively;

Pacylrarc,Qc,t)=probability density that at time ¢ A; in the
unbound state is located at rq and A, and
B; form a bound molecule C located at
rc with orientation Q;

and so on. As the notation implies, we are neglecting any
orientational anisotropy in molecules A and B. This neglect
may be justified if the molecules are small and have spheri-
cal shapes so that their reorientational motion occurs very
rapidly compared to the diffuisive translational motion.

The evolutions of the one-particle probability density fun-
tions P,; and Pg; are governed by the following kinetic equa-
tions’:

N
_éat_PA,‘(rA:t):LA Py(ra)— fl J'd"Bch SSalrars|Ze)
£

N
X Paplrarst)+ Z fdrnch S?B(Zc‘m.m:f)P cilZed)
j=1

1
| | M
0 Pofrnt)=Lo Pyra)= 3. [araze Siytenrs)zo)
"
XPus(rars+ 3. [dridZe SEEclrursPe,Eoh)
=1
@

Each term on the right hand sides of eqs. (1) and (2) has
the following physical meaning. Ls (Lp) is the Smoluchowski
operater governing the thermal evolution of the one-particle
probability density funtion P, (Pg) in the absence of reaction.
The sink function SSy(rarslZc) represents the depopulation
rate of the unbound molecules A and B at r4 and rg due
to the formation of a bound molecule C with configuration
Zc=(rc,). The sink function SPP(Zclrars;t) represents the
dissociation rate of a complex molecule C with configuration
Z into unbound molecules A and B at rq and rp. We will
assume that these sink functions can be represented by

SSrarsl ZO=FE. 8(rc— R)8(cosBc — cosP,)(ac — a,)8(rps — 0)/0?
3)
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S Irars)=E, 8(rc— R)S(cosBc— cosp,)8(ac — 0,)8(rss — 6)/c?
+k,(t) 8(rc—R)S(cosPc—cosB)d(ac—a)8(rpa—os)/ce  (4)

where (7g4,B0,) are the spherical polar coordinates of rgy
(=rg—ry), and R is the center-of-mass coordinates of the
unbound A-B pair. (B¢,ac) (=) are the angles representing
the orientation of the C molecule formed from the A-B pair.
¥ in eq. (3) is the parameter measuring the recombination
rate of the A-B pair at the separation of rga=o. In eq. (4),
the first term on the right hand side represents the contri-
bution from thermal dissociation of C, while the second term
that from photodissociation. As denoted, the separation of
a photodissociated A-B radical pair is o; which may be diffe-
rent from the separation o of a thermally dissociated pairt’®.
In general we have o,2c. While %! is a constant, k() and
thus S22 may vary in time since the photodissociation rate
depends on the radiation intensity.

Similarly, the evolution of the probability density funtion
Pc; is governed by

0 PeZeti=Le PoZeh [ariars SE@lrursit) Pezen

+jd",4dfg SgB(rA,rBIZc) PA,‘B,‘(’A,'B;t) (5)

The two-particle probability density function P,z evolves
in turn according to

—:;7 Pusfrarst)=Las Pypfrarst)

—J’dlc SSerarslZ0) Pagslrarst)
+dec SgB(ZC“AJ'BIt)PCij(ZCyt)

N
- ﬁl fd"A'ch Sﬁg(rA’,rBIZc) Paaplrard rpt)

141

N
- kﬁ J drs'dZc Siy(rars'|Z0) Paps(rarsrs't)

kat

N
+ Ii J'dzcdm' SBZclrd ruit) P aiciraZed)
T&i

+ ﬁ deCdrB, Sé‘B(ZC“'A,rB,;t) PycyrsZc )
ki

6

Here Lsg is the Smoluchowski operator governing the evolu-
tion of the two-particle probability density function Paz; in
the absence of reaction. The second and the third terms
represent the disappearance and regeneration of the A;-B;
pair due to formation and dissociation of the complex mole-
cule Cj; respectively. The fourth and fifth terms involving
the three-particle probability density functions account for
the removal of either A; or B; due to the competitive reaction
with a third molecule other than A, and B; On the other
hand, the sixth and the seventh terms represent the changes
due to the recovery of either A; or B; by the dissociation
of a complex molecule formed with a third molecule.
Higher order equations governing many-particle probabi-
lity density functions can be written down in a straightfor-
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ward manner, but the solution to the whole hierarchy of
kinetic equations is difficult to obtain. To truncate the hiera-
rchy at the level of two-particle kinetic equations, we need
to approximate the three-particle probability density func-
tions in terms of one-particle and two-particle probability
density functions. In the superposition approximation*'"!8, we
may write

Paaprard rst)=P wirsd) Pay(rat |rg) Pugped' tlre) (D)

Here Pas(ratirs) denotes the conditional probability density
that A; is at ry at time f given that By is at rs. Pag,(ra rs)
is defined similarly. In passing we note that in terms of
this conditional probability density the two-particle probabi-
lity density function can be expressed exactly as

Pag(raxst)=Pslrst) Pusratlrs)=Paral) Pgurstirs) (8)

We then introduce various concentration (number density)
fields that are related to the particle distribution functions
as follows:

Ca(rst)=the number density of A molecules at r4 at time ¢

= gi Pyrat) ©)

Cp(rs, t)=the number density of B molecules at rg at time ¢
~p

= 2. Pylrsd) (10)
=

D(Z,t)=the number density of C molecules with orienta-
tion Q¢ at ry at time ¢

= .ﬁ }ﬁ Pei(Zct) (11)

Cawp(ratirs)=the number density of A molecules at ry at
time ¢ given that B; is at rg

N,
= é PA,‘(B)’)("A,”"B) (12)

and so on. Kinetic equations governing the evolution of these
concentration fields may be obtained by summing egs. (1),
(2), (5) and (6) for all reactant molecules. We make the
usual assumptions that (i) the volume V of reaction vessel
is large enough and the shape is such that surface effects
may be neglected, (ii) the initial distribution of reactant mo-
lecules is an equilibrium one except for a specific correlation
between each geminate pair of A and B molecules, and (iii)
there is no external field. We will then have

Calra)=[AL; Cslrs)=[B]; ®ZcH)=[Cl/an  (13)

where [a] denotes the uniform bulk concentration of species
o at time ¢. Also with such experimental conditions, the con-
ditional concentration fields, Cagy’s, are statistically equiva-
lent for all ;j and depend only on the relative separation
[rg-ral; that is,

Cagpratlre)=Cap(rsat) =[A] paslrat) (14)

where we have also introduced the nonequilibrium pair cor-
relation function pas(rzst) which characterizes the relative
distribution between unbound A and B molecules at time f.

With these assumptions, summing eq. (1) over i=12,-",N§
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2 [A)=L, (4]~ [drdze S5, Z0puotrand LATEB]
o [dzZedry SE@elrarinICY (15)

Since Ly=D, V5, where D, is the diffusion coefficient of
A, and [A] is independent of r,, the first term on the right
hand side drops out and eq. (15) reduces to the familiar
rate law,

% [A]= —kOLAIBI+EGLC] (16)

Here the time-dependent bimolecular recombination rate coe-
fficient £(f) and the unimolecular dissociation rate coefficient
k(f) are defined by

kA= f drodZc S5y(rarsl Zo)pas(rea)
=4k, pas(ot) an

kD= [dZedrs S Zclrart)
=k +k,() (18)
In the absence of external radiation, we have
k)=k=k, (19)

which identifies the thermal dissociation rate parameter ;
as the equilibrium rate constant for C—>A+B reaction. Sum-
ming eq. (2) over j or summing eq. (5) over { and j gives
the same rate equation as eq. (16):

d __d rq_
7[3]— & [Cl=—krDO[AIB]+EB(C] 20)

To evaluate the bimolecular rate coefficient kA¢), we need
an explicit expression for the noneqlilibrium pair-correlation
function pap. The kinetic equation governing the evolution
of pas 1s in turn obtained from eq. (6). Summing eq. (6)
over 7 and j gives

% {[A][BJPAB(VBAJ)}:[A][B] Laspas(raat)
_fdzc Sgg(rAyrBtZC)pAB(rBA,t) [A][B]

1
+—i;dec S Zclrars;t) [C]

N AR M
_J.d'A'dZC Sgg(rA'vrBIZC) i i [é Paapfrars rst)
g o

N N N
~farsaze S5m0 i ﬁ ﬁl Pasyss(rarars )
k£
~

Ny
+J-dzcdm' S’éB(ZCIrA',rB;t) Z % PA,‘CZJ("AZCJ)

=1 j=1 II
MM N
+de¢dr3' SéB(ZdrA.’B';t) Zi Z kz:l Pyp(raZet)
=1 = =1
k£

21)

Terms involving the triple summation of three-particle pro-
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bability density functions can be manipulated by using the
superposition approximation eq. (7). For example, we have

M W N
Z Pyaplrars rst)
=1 =1 11; ‘l

N N N
fi Pg(rst) ﬁi Paylrativ) lﬁ Puygy(ra tlrs)
/= i= =

i

N N
- f Pylrst) ﬁ Puiwplratlrg) Pagp(ra’ £lrg)
1= =1

=[B] Cagfrsat) CA(B)(rBA'yt)_FO(@)
Z[BIAT? paslrast) pasas' b) (22)

where 7ga=lrs-rsl and rp'=lry"-r5)l. The term denoted by
O([A1[BI/V) has the magnitude comparable to [A1[B1V
and can be neglected in the V—o limit. A similar manipula-
tion gives

N N N
kZl Pagalrarsrs D=TAIBY? pasraat) paslras”t)

=1 j=1
L$5]

(23)
where 75.”"= |rs-r5'l. The triple summations in the 6th and

the 7th terms on the right hand side of eq. (21) can be
in turn manipulated as

- B
2 2 [Z; Paicyf(raZc,t)

i1 J-1
#!

N

Z
o
)

N

PLIJ(ZC )] Z Picpra, HZO)

I
RiNgs

-
i
-
¥,

Il
c’gé
4%

PoZet) (A pacleat| Zc)

-

1
#l

ZD(Zc ) [A] paclratlZe)
=== [CIAT puctrat|Z0) (24)

and

M f ~g
2. Z PB,C,,,<rBzc,t):~ [CILB] paclrst!Ze)  (25)
1 ;1

Here PA,.(c,j)(m,tIZc) denotes the conditional probability den-
sity that A, is at r4 at time ¢ given that C;; is at the configura-
tion Zc. paclratlZc) is the nonequilibrium pair correlation
function between A and C molecules; that is, [A1pac(rat| Zc)
gives the number density of A molecules at ry given that
a C molecules is at the configuration Zc. ppc(rst|Zc) is defi-
ned similarly.

Substituting egs. (22)-(25) into eq. (21) and using the rate
law given by eq. (16) together with eqs. (17) and (18) defining
the rate coefficients kAt) and &,(t), we obtain

[AJ[BJi passad)=(ANLB] Laspastrant)
~[41(B] #20u0)

pAB(7 Bat)

y 8(rsa—o) S(rpa—o0y)
+k et [C] +kp(t)——4mdz [cl
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+hOLAILC] {paclrat| Z)— paslrsat)}
+EAOIBILC] {pacrst| Zo)— pasraad)} (26)

The experimental situation we address in this work is
as follows. For t<0, the system is in the thermodynamic
equilibrium state. Although there may be a case in which
the equilibrium constant for the combination reaction is so
large that (A]=[B]= 0 we can define the equilibrium pair
distribution function g{y(rs4) between A and B molecules in
any cases. Hence we have

Pas(rea,t) ‘—‘gﬁ(m) for ¢<0; 27

% Pas(rsal) =0 for ¢<0. 28)

For ¢>0, the system is irradiated and C molecules begin
to dissociate to give appreciable ammounts of [4] and [B].
We can then divide eq. (26) by [A1[B] to obtain

% Par(7eal) = Lappap(rpa ) — bi—2A——2 8(784 DAB(?’BA )]
, rpa—o) Srpa—0o4)
1F ¢(t)*4n02 TR0 ¢(t)ﬁ4no§
+k( o) LA {pactrad) Z) — pas(raat)}
k(6 o) [B] {psclrst| Zo) — pas(raat)}  (29)
where

o=[CIAIB]. (30)
Expression for the Rate Coefficient k/t)

When [A] and [B] is not too large, we may neglect the
5th and 6th terms on the right hand side of eq. (29)". Then
the equations we have to consider are

kAt)=4nk, p(o0) 31
% p01)=Lo(r)p(rt)— SPp(r.t)

6(7 o) S(r—oy

RO 5 kOO — =% Ao (¢>0) (32)
d

To simplify the notation we have left out the subscripts AB

and BA from pag and 7g.(=|rs—r4l), respectively, and have

introduced
S0)=[aze SSutraml 20=K250- @)

Lo(r) is the reduced Smoluchowski operator' for the relative
motion of A and B, and is given by
—(_0 E) [i _d. ]

Lin=(-2 + 2oL +p-2 vy (30
where d(#) denotes the relative diffusion coefficient, which
depends on r if the hydrodynamic interaction between A
and B is to be included, and U(r) is the potential of mean
force. B=1/ksT with the Boltzmann constant k5 and the ab-
solute temperature 7.

If U(r) has a very steep potential wall at r=g0, p(f) must
satisfy the reflecting boundary condition,
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fao-& +p-L v} _ =0 (35)

By the definition given by eq. (14) p(r¢) approaches unity
as » goes to infinity,

lim pFrH=1 (36)

The initial condition for p(,¢) is that given by eq. (27); that
is,
plrt=0)=g?r)=expl — U] (37
where we omit the subscript AB also from g&(r).
A formal solution to eq. (32) is given by

p(’,‘ t) — er[Lo(r)—S(r)] p(’,’ 0)

t _ 3(r—o) c) Sr—oy)
Lot~ SV (4 —
+[a e ot~k 22 4y =y 25 o }
(38)
Using the operator identity’®, eq. (39a),
e’m+3):dA+j;dt er(A«B) Be(I*tM (39&)
:e‘A+J;dt gl VA B gtitH (39b)

and noting that Ly»)p(r,0)=Lo(r)g®(#)=0, we can rewrite the
first term on the right hand side of eq. (38) as

et[Lo(r)—S(r)]p(r,O) — g(2)(r)_ J’ ;d'c et[LO(v)fs(r)i S(T)g(Z)(T) (40)
Putting eq. (38) and (40) into eq. (31), we obtain a formal

expression for the rate coeffiient kAf):

kAt)=4nk, p(c, )
- f dr SPIp0D)

— ! a1-K, ot - 91AG)
+(k§q)2f0 de KJ'oUt—at—-0AM @)

Here kﬁq is the recombination rate constant that would be

observed if the pair distribution between A and B were main-
tained at equilibrium, and is given by

kf,q=4rrk,/- £%(0) (42)
K., is the equilibrium constant,
K"'J = qu/ k:q (43)

where k[, =k] as noted in eq. (19). The function a(¢) is defi-
ned by

al®)=k,0O)/k,, (44)
A(t) and Af(x), which will be called the memory kernels,

contain information on the reactive pair dynamics and are
represented by the following expressions:

AM= J‘ dr S(e™"Srg® ) (45)
A/(t)Zjdr S(r)e"""% “6)
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where

L@)=Lolr)—S0) A7

and

We now investigate the structure of the memory kernels.
Using the operator identity, eq. (39b), iteratively with A=L,
and B=—S()=—k, S(), we can write

AQ= [drSer Srg)
K, [drs) [ dres rsetsoge) @9

Egs. (45) and (49) for A(r) may be rewritten in the form
8= [arst) [ane o[ 242 Jstrag?i
= f drS(r)fdr,ed (’)[8(’772’0) ]S(r )g?(ro)

[ dv[arse) [are- e[ DEZD T

1

X Jangwrd[ 20 Ystrgon) (50)

Introducing the Green's functions for eq. (32) in the presence
and in the absence of reaction,

Grtrtlry=cr 2E=3] 51

0

&(r—rp) ]
— o)
G(rtlro)=e [ o= (52)
and performing the space integrations with S(») given by
eq. (48), we rewrite eq. (50) as

AR)=g%0)"!' Gi(o,tlo)
=g%0)"! Glotlo)

fdrlfg‘”(o) ' Glot—11l0)][g®P0) ! Grlomlo)]
(53)

Taking the Laplace transformation of this equation [the Lap-
lace transform of any function f(f) will be denoted by f(z)],
we obtain

AD=[1+KA@)] ' A2) (54)
where
A@)=g%0) " Glo,zl0) (55)

The same procedure can be applied to obtain the expression
for As2):

A)=[1+K, A1 [g%c)" Glo,2l0)] (56)

Explicit expressions for A(tr) and A/x) have been obtained
only for a very simple model case. We assume that the pote-
ntial of mean force U(r) vanishes for r2¢ but goes to infinity
for »<o. We also assume that the hydrodynamic interaction
between A and B is negligible so that d(») is simply given
by the sum of the diffusion constants of molecules A and
B; ie., d#)=D4s+Dg=D. In this simplest case, the Green’s
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function G(rzl7,) can be readily obtained:

Grzlry)= 1 {—1 [exp(‘-a|7*rn|)

4T1D77’() 2(1
—exp(—alr+r,— 20))}
]
1+ao

+ 7 exp(—atr+r—20)} (57)

where a=(z/D)"2. Therefore, the expression for A(z) in eq
(54) becomes
A@) =LK, + k) +hoo/D)2] ! (58)
where kp=4noD Inverse Laplace transformation gives
A=k, ' D"/)(1/n)2—A QAI] (59)

where A=[1+ (¥, /ky)1(D"*/5), and we have defined the fun-
ction Q(y) as

Q@)=exp(y’) erfcy) (60)
Applying the same procedure we obtain
Ade)=k; (D¥*/o)o/o)E2+A) " expl —(0a—o)e/D)"] (61)
which gives
Al =k, (DV*/o)(o/0s) exp(—BY/4h)
x|ty (5B +ar)| (62)

where A is the same constant as given above and B=(c,~ o)
D*l/zl

Model calculations

We will consider a general situation where an excess of
B molecules may be present at t=0; that is,

[B]():CB+[A]U (63)

where Cp is the concentration of free excess B molecules
before the photolytic radiation is turned on and the subscript
0 denoting the values at {=0. We assume that initially the
excess B molecules, Z.e., which are not derived from C mole-
cules, are distributed randomly with respect to A molecules.

The initial concentration of A molecules is then given
by

1 G G

where C, denotes the total concentration of A molecules that
are present either in the bound molecules C or as the free
molecules; that is,

Co=[A+[Cl=[A]+[C] (65)
The rate equation (16) governing the time-dependence of

the concentration of unbound A molecules can be written
in the form

% [A)= —kO[AYCs+ [AD+ROC—~[AD)  (66)

Expression for the time-dependent forward rate coefficient
kAt) is given by eq. (41) with the memory kernels A(r) and
Afr) given by egs. (59) and (62), respectively. The reverse
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rate coefficient k,(f) is given by eq. (18) and depends on
the radiation intensity. We can therefore investigate the re-
combination kinetics for a given system once the irradiation
function a(f) [see eq. (44)] and the motional and reaction
parameters, D, o, oy qu and £k, are provided.

In many experiments, the photolytic radiation cannot be
represented as a 8-function pulse. Therefore, in the conven-
tional approach one tries to fit the experimental data to the
convolution of the &-function result with the radiation profile

21620, that is, it is assumed that

[A1=[41y+ [ e B@ICL Suntt—) 67)

where the first term [A],, on the right hand side denotes
the equilibrium concentration, and the second term the no-
nequilibrium contribution due to the photolysis; dtk,(t)[C].
is the number of A molecules created by photodissociation
of C molecules between times t and t+dt and S..{¢—1)
is the survival probability that an A molecule created at time
T has not recombined with any B molecule until time ¢. A
subtle assumption that is made in evaluating S, ({—1) is
that A molecules just created are surrounded by an equilib-
rium distribution of B molecules except for a correlation
with the geminate B molecule. This assumption renders the
survival probability of A molecules depends only on the time
(t—7) elapsed since its creation regardless of when they are
created. However, as the formulation presented in section
2 shows clearly, this assumption may be invalidated.

It is usually further assumed that the photolytic radiation
is not so intense that variation of [C] with time can be
negligible; ie., [Cl, in eq. (67) is assumed to remain con-

stant
[Cl.=Co—[AL=C, (68)
By substituting eq. (68) into eq. (67) with the relation
ky()=Fk;, o), (69)
one obtains
[AT-[AL,=Co,, [dt a Sentt—0) (70)

We compare the numerical prediction of eq. (70) with that
obtained by numerical integration of eq. (66) written in the
form

AL — b OYOLCs+ YOI+ O0 - Y0 b

where Y()=[A1/Co. By the mean value theorem we have

Y- ) =Yt
— (1~ W RACHYWDLCa+ Col (D] — k(1 - YD1V 2)

where #7 denotes a time between ¢ and #.1. The value of
k(7) is assumed to be given by

=R 0) +htt 0)/2=R {1+ S lal) +at. 0]} (73)

The values of Y(7) and kAt7) are determined by a prediction-
correction algorithm. We first put
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YEH=ZYOuwH=Y) (74)
and
kA= }0’(t'f'):kr(t;) (75)

to calculate an approximate value of Y at f;.,, denoted as
YO, ), from eq. (72). An approximate value of k& at #i.y,
denoted as k{”(f.1), is then calculated from the following
equation:

Bt ) =K~ W[ 1=K, oAt~
swr[ K o@a@A o

=K~ ¥ =Ko de At

FEY DK oal) [ a0 a0
1= )

where #,=0. We have assumed that ¢{) and a(f) vary much
more smoothly with time than A(f) and A[#) so that when
the time step size is small enough they may be assumed
to vary linearly with time in each time step. The integrals
involving the memory kernels may be evaluated analytically
if the expressions given by egs. (59) and (62) are assumed
for A(f) and AA?), respectively:

t+ 1 H+1—4
dt A(t,*l—t):j dt AT
4 ti+1-4+1
:\Il(t1+1_t1)—\y(ti+1'tj+l) 77
1 ti+1-4
J dt A;(t,ﬂ—r):_" dtv ALD)
Y4 ti+1-4-1
=Wt —8)— Wt 1) (78)
where
Y(t)= (K, +kp) '[1— QA)] (79)

‘I’I(t):;’—f;l—-exp(—Bz/M)[Q(%Bt’”z)
oq

—n(%Brwsz)] (80)

where A=(1+K/kpXD"*/c) and B=D "*(c,—o) as before,
and the function Q(y) was defined by eq. (60). Values of
o(f}) and a(f]) are assumed to be given by

o)) =Low) + ol 1)1/2 @1
ait})= La)+alt+1)]1/2 (82)

The values of Y@ .)) and k/”(t.1) are then used to give
better approximations to Y(7) and kA7)

YDz YO =[Ye)+ YO 0172 @3
=R =Lt) + 1) ]/2 &0

These values of Y(¥7) and kA{f7) may then be used to obtain
better approximations to Y(t.:) and kd¢+1), and so on. The
iterative procedure is continued until the relative change
in the value of Y(t:) is less than 1072 or so.

Pseudo first-order case. In Figure 1, we compare the
numerical predictions of the present theory with that of the
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Figure 1. K,, dependence of the variation of [A] with time
in the pseudo first-order case. Values of model parameters used
in the calculation are described in the text.

conventional theory as obtained by eq. (70). The values of
input parameters ¢, D and k/eq are those e§timated for the
protoheme-CO system at 280 K¥; c=15 A, D=94X10"°
cm?/s, K,=50X10"" cm’/s, Cp=45X10"* M, and Co=50
X 10~5 M. The value of kp is taken to be 2ncD rather than
4neD for the reason described by Szabo et al®. The irradia-
tion function defined by eq. (44) is assumed to be given
by

alt)=£f{/t) exp{ - %[(t/tL)2 - 1]} (85)

The value of ¢; representing the width of the photolytic pulse
is set equal to 2 ps. The magnitude of the radiation intensity
parameter £, is adjusted such that the fraction of photolyzed
molecules has the peak value of 0.0100 (i.e., ([A)mu— [A1)/Co
=0.0100 where [A],. and [A], denote the peak concentra-
tion and equilibrium concentration of A molecules, respecti-
vely). In the present theory values of additional parameters
o, and K[,,,(:kﬁq/k:q) are needed. We assume that o,=o¢ and
the value of K., is adjusted to fit the experimental data®.
In Figure 1, the solid curve obtained with K,,=10X10° M"!
gives the best fit to the experimental data. It should be noted
that the value of f, has been adjusted but that it is not a
free parameter since it must have a fixed value to give the
known fraction of photolyzed molecules. Since experimental
data on the actual fraction of photolyzed molecules are not
available to us, we have simply assumed that ([An..—[A1.)
/C;=0.0100 in obtaining Figure 1. As K,, is increased with
K., fixed, the photodissociation rate constant £,() [=F a®)]
decreases for a given value of f,. Hence in order to give
the same fraction of photolyzed molecules, the value of f,
needs to be increased as K, increases. It is amusing that
the adjusted value of K,, is in agreement with the known
experimental value?, K,=5X10* M"". Figure 1 shows that
K., should be the key parameter required in the analysis
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Figure 2. Dependence of the scaled decay curves on the inten-
sity of photolytic radiation in the pseudo first-order case. Values
of model parameters used in the calculation are described in
the text.

of the time-resolved kinetic data of photolytic experiments.
Nevertheless, no previous theories have dealt with this as-
pect properly. Finally, the deviation of the dot-dashed curve
in Figure 1, which is calculated by the conventional theory
[eq. (70)], from the experimental data shows that the con-
voultion integral expression may not properly describe the
data obtained using a photolytic pulse with finite width. The
values of parameters o, D and k|, were obtained in ref®
from the fitting of long-time data to the expression of the
survival probability,

Senl =S =Foo®) Foima(?) (86)
where
iz [ kp A ’
ro-( e aws] e

Q

el 5

Foimalt)= eXp{ “CB< K, +kp (Rly+kyy D

x(2me—1+ 000 | 89)

Figure 2 shows the effect of photolytic radiation intensity,
gauged by the parameter f,, with the value of K,, fixed at
20X10° M~L Values of parameters other than f, and K,
are the same as in Figure 1. As the radiation intensity in-
creases, the curve decays more rapidly. Nevertheless, no
previous theories have dealt with this aspect properly.

Figure 3 shows that the concentration effect on the decay
curves may not be appreciable in the pseudo first-order case
where Cg>>C,, although the curve appears to decay a little
faster for a larger value of Cy. Except that K,,=2.0X10° M},
£,=266X107, and the value of C, is varied, values of other
parameters used in the calculation are the same as in Figure
1.

Figure 4 displays the variation of the decay curves for
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Figure 3. Dependence of the scaled decay curves on the initial
concentration of parent molecules in the pseudo first-order case.

Values of model parameters used in the calculation are described
in the text.
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Figure 4. Dependence of the scaled decay curves on the ratio
os/c in the pseudo first-order case. Values of model parameters
used in the calculation are described in the text.

different values of o, Except that K,=20X10° M™!, f,=
266X 107, and the value of o, is varied, values of other para-
meters used in the calculation are the same as in Figure
1. As expected, a larger value of o, gives the slower decay
of A molecule concentration.

Second-order case. Figure 5 displays the decay curves
of A molecule concentration in the second-order case with
Cp=0. The values of input parameters o, D, and k; are those
estimated for the iodine atom recombination®® %; ¢=4.32
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Figure 5. K., dependence of the variation of [A] with time
in the second-order case. Values of model parameters used in
the calculation are described in the text.
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Figure 6. Dependence of the scaled decay curves on the inten-

sity of photolytic radiation in the second-order case. Values of

model parameters used in the calculation are described in the
text.

&, D=20%10"° cm¥/s, and K,=2.0X10""" cm*/s. We assume
that 6,=0, and the value of K,, has been varied as shown.
The irradiation function a(¢) is assumed to be given by Eq.
(85) with #;=5 ps. The radiation intensity parameter f, is
adjusted such that the fraction of photolyzed molecules has
the peak value of 0.030 (i.e., ([ALuw—[A1:)/Co=0.030). The
initial concentration C, of C molecules before the onset of
photodissociation is set equal to 1.0X107* M. As in the
pseudo first-order case, the concentration of A decays faster
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Figure 7. Dependence of the scaled decay curves on the initial
concentration of parent molecules in the second-order case. Va-

lues of model parameters used in the calculation are described
in the text.
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Figure 8. Dependence of the scaled decay curves on the ratio

o,/c in the second-order case. Values of model parameters used
in the calculation are described in the text.

as the equilibrium constant K,, increases.

Figure 6 shows the effect of photolytic radiation intensity
on the shape of the decay curve. Except that K,,=1.0X10"
M™! and the value of f, is varied as shown in the figure,
values of other parameters used in the calculation are the
same as in Figure 5. As the radiation intensity increases,
the curve decays more rapidly.

Figure 7 shows that the concentration effect on the decay
curves should be large in the second-order case. As the ini-
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tial concentration C, gets larger, the curve decays faster.
Except that K,,=1.0x10"® M, £,=1.0X 10", and the value
of Cy is varied, values of other parameters used in the calcu-
lation are the same as in Figure 5.

Figure 8 displays the variation of the decay curves for
different values of o, Except that K,,=1.0X10"* M~} £,=1.0
X 10", and the value of o, is varied, values of other parame-
ters used in the calculation are the same as in Figure 5.
It is interesting that the scaled curve decays a little faster
at intermediate times when the photolytic separation o, is
larger than the thermolytic separation o than when ¢,=o.
Another interesting observation is that the curve has a hump
in the subpicosecond time region when a,>0. Although se-
vere experimental difficulties are expected to probe such
a short time region, observation of the hump will provide
a definite evidence that g;>o.
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