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It has been shown that the distribution of relaxation times, H(lnz), in semi-logarithmic time scale can easily be calculated
numerically from the derivative of the relaxation function in semiloganthmic scale. In that, In 7, the abscissa, is divided into
N different segments of equal size, then H is considered to be a linear function of In r within each segment. The technique has
been applied to a Williams-Watts function as well as to the relaxation function obtained by photon correlation spectroscopy
from atactic polystyrene glass. It has been demonstrated that the relaxation functions can be precisely reproduced from the

calculated distribution functions.

Introduction

Recent development in light scattering technique has
made it possible to investigate the relaxational behavior of
amorphous polymers.'6 The result of a light scattering
experiment is usually obtained in the form of the correlation
function which can be expressed in terms of the relaxation
function.!2 However it has always been the most tricky pro-
blem how to extract the relaxation spectrum, i.e. the distribu-
tion of the relaxation times, from the relaxation function.
There are many equations suggested for expressing the ap-
proximate distribution of the relaxation times.”'® Some of
these equations work better on relaxation functions with nar-
row spectrum and others work better on relaxation functions
with broad spectrum. There are also some numerical meth-
ods proposed.!” Most of the numerical methods are too com-
plicated to be used practically. In this paper, using linear re-
gression analysis technique, a new method for numerical cal-
culation of the relaxation spectrum from the relaxation fun-
ction is proposed.

Theoretical

The distribution of relaxation times, or the relaxation spe-
ctrum, in semi-logarithmic scale can be expressed in the foll-
owing form®:

G(t)ZGeJrImH(ln o) exp(—t/7) dln 7 (1)

where G(t) is the relaxation function, G, is the equilibrium
value of G(t), H(In ¢) is the distribution function of the relaxa-
tion times, r is the relaxation time, and t is the time. Accor-
ding to Andrews'?, the approximate distribution function can
be obtained by computing the derivative of the relaxation
function:

H(n z)=-

4G (1)
! } (2)
1=T

dint

The common shapes of G{t) and H(ln ) are shown in Figure
1. By differentiating eq (1) with respect toIn t, one can obtain
the following:
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t On the occasion of 60th birthday of Professor Nung Min Yoon to
honor his distinguished work and devotion in organic chemistry and
in education.
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Figure 1. Common shapes of the relaxation function G(t) (see
eq.(1)) and the distribution function HQnr).
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One can expect that it would be easier to extract the distribu-
tion function from the derivative, D{t), rather than directly
from the relaxation function. Since D(t) already has
approximately the same shape as the distribution function, it
should be more sensitive to the change of the distribution
than the relaxation function is.

The numerical values of H can be calculated by fitting eq.
(5) to the experimental values of D(t). One way of doing it is
to divide x(=1nr ), the abscissa, into N different segments of
equal size and assume that H varies linearly within each seg-
ment as shown in Figure 2. Thus,
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Figure 2. The distribution function of the relaxation times, H(ln 7).
The abscissa, x=In 7, is divided into N segments of equal size,
Ax=Aln r, and H is assumed to vary linearly within each segment.
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Figure 3. (a) Williams-Watts function. (b) The shape of the distribu-
tion function calculated from the Williams-Water function,

F, (t)=f”lf(x,t)dx, (7)
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4 x is the width of each segment of x, X; is the lower boun-
dary of the j-th segment of x, and H;, is the magnitude of the
distribution function at X=X In equation (6) it is assumed
that the distribution function H(x) has a finite width and the
magnigude is significant only in the region of X<X<Xy,p
By rearranging eq. (6) the following expression can be ob-
tained casily.

D(t) =H,IF, (t)-rAXx‘F, (t) <, F, (t) AxI’ (t)4
+ 3 HIF, )+ F, () =%, ,F,_, (1))
=2 AX
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The relaxation function, G(t) is determined experimentally.
The approximate values of D(t)can be obtained from G(t) by
means of eq. (3), i.e.,

D) AG (1)

- Alln t)

(R
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F{t)’s and I{t)’s are evaluated by means of equations (7) and
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Figure 4. (a) The ralaxation function of atactic polystyrene at 97°C
(quoted from ref. 5) (b) The distribution function calculated from the
experimental relaxation function of (a).

(8). Therefore, H/s are the only unknowns to be determined
in eq. (9). Since D(t) is a linear function of H/s, linear regres-
sion technique can be applied to determine the magnitude of
H;’s. For this calculation a computer program has been writ-
ten in APL (a program language).

Results and Discussion

The common shape of relaxation functions of polymers
with a broad distribution of relaxation times may be express-
ed by the empirical equation of Williams and Watts?,

¢$(1)=¢(0) ¢ ' i)
0<p=1)

where 7 is the characteristic relaxation time, ¢(0) is the re-
laxation amplitude, and gis a constant which determines the
width of the distribution of the relaxation times. The tech-
nique has been tested on a Williams-Watts function as shown
in Figure 3. The shape of G(t) in F igure 3(a) is the Williams-
Watts function, and the shape of the distribution function cal-
culated from the Williams-Watts function is shown in Figure
3(b). In order to obtain the distribution function in F igure
3(b), the range of In r axis from (In 7,-16) to (In z,+7) has
been devided into 20 segments, and the linear regression
technique has been applied to find H/s of eq. (9). It is appre-
ciated that the 20-segment-fit gives so smooth a curve that
one can hardly recognize the discontinuity at the boundaries
between the segments. When the relaxation function is re-
generated from the calculated H,’s, it overlaps precisely on
the curve in Figure 3(a).

The technique has also been applied to a real polymer sys-
tem. The relaxation function of atactic polystyrene shown in
Figure 4(a) is quoted from Lee et al’s work® in which photon
correlation spectroscopy was used. The distribution fun-
ction, H(ln 7 ), calculated from the relaxation function is
shown in Figure 4(b). In this calculation the range of In 7 axis
from -11.2 to 0 has been divided into 14 segments and linear
regression technique has been applied to obtain H;’s in eq.
(9). It is interesting to note that the distribution function has
a small shoulder on the left end of the curve. This is due to
the fast relaxational process which is discussed in Lee ef al’s
original work®, The relaxation function regenerated from the
calculated values of H /s overlaps precisely on top of the ex-
perimental relaxation function.

This technique is very similar to the histogram method
developed by Chu et al*? for the calculation of the distribution



408 Bull. Korean Chem. Soc., Vol. 8, No. 5, 1987

of the diffusion coefficients. The main difference of this tech-
nique from Chu et al’s is in the idea that the distribution fun-
ction H be calculated from the derivative of the relaxation
function, 7.e. from egq. (3), but not from eq. (1). It should be
pointed out that this technique, just like the histogram me-
thod of Chu et al®, can also be applied to the calculation of
the distribution of the diffusion coefficients in solution.
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Kinetic Studies on Bromine-Exchange Reactions of Antimony
Tribromide with a-Phenyl-n-butyl and a-Phenyl-i-butyl
Bromides in Nitrobenzene

Sok Hwan Rhyu’ and Sang Up Choi®
Department of Chemistry, Sogang University, Seoul 121. Recetved July 6, 1987
The rate of bromine-exchange reaction between antimony tribromide and e-phenyl-n-butyl bromide in nitrobenzene has been

determined, using antimony tribromide labelled with Br-82. The results indicate that the exchange reaction fcllows the first-
order kinetics with respect to the organic bromide, and either the second- or first-order kinetics with respect to antimony tri-

bromide depending on its concentration. The third-order rate constant obtained was 7.50 x 10-2 12mol-2s-1 at 28°C. Similar
study on the bromine-exchange reaction between antimony tribromide and a-phenyl-i-butyl bromide has also been carried
out. The results of the study show the same kinetic orders as the ones observed with e-phenyl-n-butyl bromide. The third-
order rate constant observed was 2.40 x 102 12mol-2s-1 at 28°C. The activation energy, the enthalpy of activation and the
entropy of activation for the two exchange reactions mentioned above have been determined. The reaction mechanisms for

the exchange reactions are discussed.

Introduction

In the previous papers of this series, S we reported the re-
sults of kinetic studies on the bromine-exchange reactions
between gallium bromide and alkyl bromides in nitroben-
zene. The alkyl bromides(RBr) examined were methyl, ethyl,
n-propyl, i-propyl, n-butyl and i-butyl bromides. From the re-
sults of these studies, it was concluded that all the bromine-
exchange reactions followed the second-order Kkinetics with

1 Based on the Ph. D. thesis of Sok Hwan Rhyu, Sogang Universi-
ty, Seoul, 1987. Presented at the Asian Chemical Congress '87
Seoul, June 29-July 3, 1987.

} Present address: Department of Chemistry, University of Ulsan,
Ulsan 690

respect to gallium bromide and the first-order kinetics with
respect to the alkyl bromides examined.

Rate = k,[GaBr]*[RBr]

It was assumed that the exchange reactions between gallium
bromide and the alkyl bromides took place through the fol-
lowing reaction schemes (S denotes the solvent molecule):

S +Ga,Brg =——=S: Ga,Brg
S +S: Ga,Brg = 2 S: GaBry
RBr +S: GaBr, == R%'Bre’: GaBr;+9S

R Br¢” : GaBr; + S: GaBr; Slow , R+Ga,Br; +$
S +R*Ga,Br; =— RBr +S: Ga,Brg



