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lution, so it seems that these approaches are complementary
to each other at least for n/2 pulse shaping. It would be
illuminating to compare the numerical results from these
two approaches. Work along this line is under way.
Acknowledgment. This work was supported by a 1994
institutional research fund from Sunmoon University.
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We present a theoretical formulation of diffusion process on solid surface based on multidimensional transition state
theory (TST). Surface diffusion of single adatom results from hopping processes on corrugated potential surface and
is affected by surface vibrations of surface atoms. The rate of rare events such as hopping between lattice sites
can be calculated by transition state theory. In order to include the interactions of the adatom with surface vibrations,
it is assumed that the coordinates of adatom are coupled to the bath of harmonic oscillators whose frequencies are
those of surface phonon modes. When nearest neighbor surface atoms are considered, we can construct Hamiltonians
which contain terms for interactions of adatom with surface vibrations for the well minimum and the saddle point
configurations, respectively. The escape rate constants, thus the surface diffusion parameters, are obtained by normal
mode analysis of the force constant matrix based on the Hamiltonian. The analysis is applied to the diffusion coeffici-
ents of W, Ir, Pt and Ta atoms on the bcc(110) plane of W in the zero-coverage limit. The results of the calculations
are encouraging considering the limitations of the model considered in the study.

Introduction

Diffusion of atoms and molecules adsorbed on solid surfa-
ces is an important and interesting phenomena both from
a conceptual and a practical points of view.'? It is the primary
mechanism of mass transport on solid surfaces. Surface dif-
fusion plays a key role in the growth of thin films, the for-
mation of epitaxial layers, and the catalytic reaction occurring

on metal surfaces.

The migration of adsorbed atoms on solid surfaces have
been studied extensively both experimentally and theoretica-
lly. In recent years, the development of the field ion micros-
cope (FIM) allows one to image the metal substrate surface
in atomic resolution.'*® Several elementary atomic processes
on surface have been studied in detail with FIM : surface
diffusion of single adatoms and small clusters, adatom-ada-
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tom interactions, site-specific atom-substrate interactions, and
adatom-lattice interactions. One can directly observe random
walks of single adatoms and measure diffusion coefficients
quantitatively. In molecular dynamics simulations of surface
diffusion,”™ one can follow the motions of individual atoms
- in detail, thus providing a test for approximate dynamical
theories. Diffusion coefficients and activation energies can
be easily calculated in the simulations. Several versions of
transition state theory and quantum correlation function
theory have also been used to study the mobility of heavy
or light atoms!*~1®

Experimental results indicate that the character of surface
diffusion, in particular the diffusion mechanism, can vary
depending on the substrate and the orientation of the sur-
face. For example, simple hopping between adjacent sites
often gives ways to adatom-substrate exchange.!? In the case
of diffusion on relatively smooth surfaces such as bcc(110)
or fcc(110), it may be safe to assume that diffusion occurs
via jumps from one adsorption site to another. In the present
study, we theoretically investigate the diffusion of a single
metal atom on the bec(110) surface of a tungsten(W) sub-
strate. We assume that the motion of the adatom consists
of independent, randomly oriented, hops between adjacent
binding sites. The motion obeys the random-walk statistics
and the diffusion constant is given by"

lZ
D= o0 Rrop ¢y

where [ is the distance between binding sites, d is the dime-
nsionality of the diffusional motion and &, is the rate of
independent hops. In the simple transition state theory
(TST), kuyp is represented as®

khop = nkaST, (2a)
krsr=v exp(—E,/ksT). (2b)

where v is the prefacter in the Arrhenius form of TST rate,

E, is the difference between the energies at the saddle point-

where the transition state is formed and at the well mini-
mum on the potential energy surface. », is the number of
binding sites accessible for a single hop and ksT is the Boltz-
mann factor. The calculation of TST rate is based on the
assumption that no recrossings or multiple jumps occur and
the adatom makes randomly oriented single jumps. It is also
assumed that the escape frequency v is independent of tem-
perature. The Arrhenius parameters for the diffusion cons-
tant are given by

D=D, exp(—Es/ksT), (3)
2
=% @3b)

E,=FE (saddle point)—E (well minimum). 3c)

We will show that the Arrhenius parameters for surface dif-
fusion coefficient can be obtained by using multidimensional
transition state theory.

Surface diffusion of single adatom results from hopping
processes on the corrugated potential surface and its ran-
dom-walk-like motion is affected by the surface vibrations
of lattice atoms. It is necessary to include the coupling of
adatom motion to surface phonon modes for the evaluation
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of surface diffusion parameters. The change of surface pho-
non modes by the introduction of an adsorbed atom is igno-
red. The frequencies of phonon modes are calculated by
treating the surface vibration in the limit of classical mecha-
nics. The purpose of the present study is to calculate the
diffusion parameters from the jump rate by using multidime-
nsional TST®? based on the Hamiltonian constructed to inc-
lude the terms-for the interaction of adatom and surface
vibration modes.

The remainder of the paper is organized as follows. Brief
reviews of theoretical backgrounds for multidimensional TST
and lattice dynamics are presented in the following section.
In the third section, the evaluation of the escape(jump) rate
is explained in terms of (i) method of determining well mini-
mum and saddle point; (ii) Hamiltonian constructions appro-
priate for two configurations; (iii) rate constant expression.
Results of model calculations for several metal atoms on W
surface are given in the last section with some discussions.

Theoretical Backgrounds

Multidimensional TST. We consider a metastable sys-
tem consisting of a reaction coordinate coupled to vibrational
degrees of freedom. In TST, the reactant, product and saddle
point geometries at which the gradient of potential energy
vanishes are first located. The TST rate is given in terms
of the product of all stable mode frequencies at the minimum
and the inverse product of stable mode frequencies at the
saddle point, respectively.20#

€

krsrfll— = -

g exp(—BEy) @

2| 2

T~ |1
S

where A’s are normal modes eigenvalues {(A??>0, i=0,-,
1L {=®)?<0, W®)?*>0, i=1,---, v}, obtained from the force
constant matrices, and y is the number of the coupled har-

-monic oscillators.

As a model case, we consider a particle of mass M, whose
coordinates x is coupled bilinearly to the bath of harmonic
oscillators. The total Hamiltonian H of the system and bath
is then of the form??*

=L v+t S mlitrorer ] @

Here ‘bath is composed of harmonic oscillators with mass
{m;} and frequencies {w;} and C/s are constants for coupling.
The normal mode eigenvalues entering the transition state
rate may be evaluated vig a normal mode analysis of the
full Hamiltonian at the saddle point and at the well mini-
mum. The potential Ul(x) is approximated at the well mini-
mum as Ux)=(1/2) Mw*(x+x0)?, x,>0, and at the barrier
by Ux)=E;—(1/2) Mo’ The total Hamiltonian may be
written in the vicinity of the well minimum and the barrier
in a separate form as a sum of (y+1) harmonic oscillators.
Using standard techniques, we first transform to mass-
weighted coordinates and then diagonalize the (y+1) by (y+
1) force constant matrix K. If we denote the second deriva-
tive matrices at the saddle point and at the well bottom
as K® and K“, respectively, one can prove the following
identities for the determinants of K® and K@.2%
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Table 1. The Morse potential paremeters®

Material U, (V) e d d @A)
w 0.9710 1.3850 3.053 (3.253%)
Pt 0.7102 1.6047 2.897
I ’ 0.8435 1.6260 2.864
Ta 0.7504 1.1319 3.346

*This value is used for the calculation of the phonon frequency
of the substrate surface.

det(K”)= — (A" 1 A\OY=—wy’ 11 o (6a)
i=1 i=1
det(K(a)):O\o(a))z ﬁ ()\i(a))zz (.002 ﬁ (Di2 (6b)
i=1 i=1

then we can recast Eq. (4) as®%
A e
krsr= - FXD( BEs) (N

which is just the result obtained by Grote and Hynes.” Con-
sidering the average motion of the particle in the vicinity
of the barrier, Grote and Hynes found that on the average
the particle is not moving on the bare barrier whose imagi-
nary frequency is w, but rather on an effective barrier whose
imaginary frequency is A®. Pollak®® modeled the generalized
Langevin equation (GLE) vie a harmonic bath by using the
Hamiltonian of the form as in Eq. (5) to show that the reac-
tive frequency A® is exactly an imaginary frequency of a
barrier that has been modified by the bath.

On the application of the above formalism, the motion of
adatom on the surface can be regarded as the motion of
a particle coupled to the bath of harmonic osciilators whose
frequencies are those of surface phonon modes. The change
we impose on the above formalism is that the particle coup-
led to the harmonic oscillators can move in three-dimensio-
nal space instead of one-dimensional coordinates. Then, what
we are to obtain is an Hamiltonian expression which contain
the coupling coefficient C/’s calculated explicitly. From that
Hamiltonian we obtain A® through a normal mode analysis
and calculate the hopping rate.

Lattice Dynamics. The bcc(110) surface of tungsten
is chosen for the calculation. Only the first layer of surface
is considered and the effects of second layer and below are
ignored. The number of surface atoms included in the calcu-
lation is 11X11=121.

Interaction potential between the surface atoms is assumed
to be a pairwise additive Morse potential:

V;=U,{expl —2&(;—d)]1—2expl — & —d) ]} ®

where #; is the distance between atom : and atom j and
U, & d are constants characteristic of the pair of atoms.
The interaction between the adatom and the surface atom
is also assumed to be a pairwise additive Morse potential.
The parameters U,, & and d are determined based on the
bulk lattice constant, cohesive energy, and compressibility.
The values used in this study are shown® in Table 1. For
two atoms of different kinds, we use the value which is ari-
thmetic mean of corresponding two parameter values.

We briefly review parts of the theory of lattice dynamics®~%
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Figure 1. bcc(110) surface considered in the present study. A
small shaded square (M) indicates the binding site minimum and
the area enclosed by a rectangle is viewed in Figures 2. and
3.

used in this work. In the absence of adatoms, the mean
positions of atoms of a surface are arranged in a regular
array. The lattice site is specified by primitive basic lattice
translation vectors a;, a; as shown in Fig. 1. The index of
lz}tﬁf:\e atom is (3, #,), which we will refer to collectively
as’'n. We denote the equilibrium position vector of the lattice
atom in the simple lattice by I,=na;+ noa,.

The interatomic potential is assumed to be central force
potential, depending only on the magnitude of the separation
between atoms. Then the total potential energy W of clean
surface is of the form:

W=

|

2 2 0m) )
n m(xn)

where 7, = U2+ 2l m + )2, bw=1,—1,, and u,,=u,
—u,. Here I, is lattice translation vector and u, is displace-
ment vector from its equilibrium position. In this work the
central force potential ¢(7) is the Morse potential of the form
as in Eq. (8).

The total potential energy W of the surface is assumed
to be some function of the instantaneous positions of all
atoms. In the harmonic approximation with respect to the
atomic displacements, W is expanded as follows:

W=Wytg 3 3 Walum) un) um)  (0)
with
N W
Weslon,m) =~ ey o b

where a and B refer to x or y, and subscript 0 means evalua-
tion at u=0. If we recast the expansion coefficients in terms
of pairwise potential,®

Wap(n;m)= —dog(n;m), nm, (12a)
Wasln,m)= mg”) daplin;m) (12b)

where
outrm={1% le-Looi+Low}| | a
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l a 4 1 !
outm =12 lr)—To0lf| | asn
We introduce the Fourier transform of the reduced displace-
ment w(n)=\/]\7 u(n) as
-1 K-
wan) =75 2fulexplik-1,) 14

Then we can represent the dynamical matrix, which is real
and symmetric, as

D)= A%ZWaﬁ(o;m) explik-1,)

1
™ { mgm @u(Oim) = méO) ¢aﬁ(0“;m) COS(k.lm)} o

From this matrix we can calculate eigenvalues, @2(k), 2>
(k) and corresponding eigenvectors, (¢,'(k), ¢,'(k)), (e,%(k), e,?
(k)), which satisfy the orthogonality and closure conditions

Desk) el W)=8y, Dek) eg(k)=5, (16)

From the normal coordinates, Qy(k), defined as
fal)=e,' (k) Qu(k)+e (k) Qx(k) an

we obtain the real normal coordinates as follows:

Zf(k)=%[Qs<k)+Qs*(k)J=—\/1——2—EQs(k>+Qs(—k)J (182)

Zss(k)=%[Qs(k)-Qs*(k)]=%[Qs(k)-Qs(—k)] (18b)
The Hamiltonian for the clean lattice is then given by
H=1 S SZ:01+ L Y Selwizmr 9)
2 £>0 7s 2 k>0 75

where k>0 signifies that k is summed over the permitted
wave numbers lying on one side of the line through the
origin of the reciprocal lattice plane.

Any displacement of lattice atom can be represented as
linear combinations of surface vibration modes:

u) =/ 7o S LedGOHZ0) costhb)~ZR) sinth-1)
+e 2(k){Z:2(k) costk+1,)—Z2(k) sin(k-1,)} (20)

Therefore the interaction energy expression between adatom
and surface vibrations can be constructed from the atomic
displacements, u(n).

Escape Rate

Well minimum and Saddle Point. We consider a sin-
gle adatom adsorbed in the clean surface. For implementing
TST, we need to define the reaction (diffusion) pathway and
identify the transition state. Even for single atom diffusion
we must consider the behavior of the neighboring substrate
atoms in addition to the adatom itself. It is the configuration
of all atomic positions which defines the well minimum and
the saddle point positions on potential energy surface. One
should consider the interactions between adatom and all the
atoms on the surface in order to determine the well mini-
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Figure 2. The well minimum configuration of an adatom on
the bce(110) surface. Four atoms indexed 1, 2, 3, 4 are permitted
to relax.

Figure 3. The saddle point configuration of an adatom on the
bee(110) surface. Four atoms indexed 1, 2, 3, 4 are permitted
to relax.

mum and TS configurations.

As an approximation, only four nearest neighbor surface
atoms of adatom are permitted to relax and all the other
atoms are fixed at their lattice sites. The four atoms permit-
ted to move for the determination of well minimum configu-
ration are different from those for the saddle point configu-
ration. The two cases are shown in Figures 2 and 3. As
indicated in the figures, only atoms numbered 1 to 4 can
move. The remainder of surface atoms are numbered from
5 to 121.

From symmetry, the adatom position corresponding to the
well minimum is the four-fold site and the saddle point is
halfway between two adjacent four-fold sites. So only the
z-coordinate of the adatom is to be determined. In determi-
ning the position of adatom and the displacements of four
surface atoms in the neighborhood, we consider the following
potential function V,:

N 4
V= Zl U, {expl —2&'(x;i—d")]— 2expl — & i—d) 1} + Zl Vi(21)
= =

V= 3 Ufewl~20-d)]-2 el &6~} 22)
=]

where U,’, &, d' are parameters for the interactions between
the adatom and a surface atom, while U, & d are those
between two surface atoms. x;=|q—r;| refers to the distance
between the adatom and surface atoms and y;=|ri—ri| to
that between the movable surface atom and the other surface
atoms. Then V, is a function of nine variables: z-coordinate
of the adatom and the displacements of four neighboring
surface atoms. One can find the values of these variables
which minimize the V, in the saddle point region and well
minimum region separately. The activation energy for escape,
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Table 2. The Arrhenius parameters

Adatom/Surface Theoretical Experimental [ref.]
W/W(110)
D, (cm?/s) 4.175%X10~* 2.1x1073 [4]
E; (kJ/mol) 5151 83.26 [4]
Pt/W(110)
D, (cm?/s) 3.539X107* 3%107° [6]
E; (kJ/mol) 50.36 65 [6]
Ir/W(110)
D, (cm?/s) 5.543x107* 1X107% [5]
E, (kJ/mol) 54.31 676 [5]
Ta/W(110)
D, (cm?/s) 4.206X107* 4X1072 [4]
E; (k]/mol) 40.90 75 [4]

E,, is obtained as the difference of interaction potentials at
two configurations:

E,=V, (at the saddle point)—V, (at the well minimum)
23

For the cases of the four adatoms, W, Pt, Ir, Ta, on the
surface of W(110), the calculated values of E, are given in
Table 2.

Hamiltonian Expression. Hamiltonian expressions
near the well minimum and the saddle point can be con-
structed from the configurations determined as in the prece-
ding section. We first consider the saddle point configuration.
The coordinate of the adatom can be expressed as

q= ( cosf+q,, sme—i-qy, b, +qz> (24)

where b is the z-coordinate of adatom at the saddle point
and ¢, ¢,, ¢. are displacements from the saddle point confi-
guration.

The interaction between single adatom and lattice atoms
of the surface is given by Eq. (21). As an approximation,
we fix all the surface atoms at their lattice sites except four
nearest neighbor surface atoms of 1 to 4 around the adatom.
Then we can write the interaction potential in terms of the
displacements of the adatom and the four surface atoms.
The Hamiltonian which is valid near the saddle point con-
sists of the following terms:

H=H,+H,+H, (25)

where H, is the Hamiltonian for the surface atoms, H, is
the Hamiltonian for the adsorbed atom and H, represents
the coupling between the adatom and the surface atoms.
We take the Hamiltonian expression of clean two-dimensio-
nal lattice, Eq. (19), for H,. The expressions of H, and H,
can be written by using the potential energy expression for
the interaction between adatom and surface atoms obtained
as above.

We use M to denote the mass of adatom and m the mass
of surface atom respectively and introduce the mass-weigh-
ted coordinates of adatom, g=+/Mg. We also substitute the
linear combinations of surface phonon modes, Z,'(k), Z,'(k),
Z4k), Z2(k) for the surface atom displacements as in Eq.
(20). Then, the total Hamiltonian can be recast as follows:
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zz[zsoo]u ZZcosz(k)[ZS(k)]ZnL 2@+’ +4)

k>Ors k>0 7s

+ V()
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oM A8 gy g A et
1 1

+ g gt A8 s

+° mAZ/IN Z { *(k) icxuc cos(k+I)
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+e00) Z Cpy costl-B}Z:00g,
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+e;(k)zlcm sin(k-l,»)}Z;(k)gz (26)
where
_ SZV __&V .
xx | xy'“ sq xsqy |0v » (273)
SZV ¥V
Ca=—55—| , Co= -,
o P v el @70

with the subscript 0 meaning the evaluation at the saddle
point configuration.

From this Hamiltonian expression at the saddle point, we
can make the [3+2(N—1)]1X[3+2(N—1)] force constant
matrix, K®, whose elements are second derivatives of the
total potential energy evaluated at the saddle point. Diagona-
lizing the force constant matrix, K%, we can obtain the eigen-
values, {—Q®)?<0, A®?2>0, i=1, -+, 2N+1}. The relation
for the determinant corresponding to Eq. (6a) is

det(K®)=~ 0,OF T WOF
i=1
=M, kno o (ko (ke ko (k) (28)
>

with

I @9

S
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where values of elements, M, are calculated in the course
of eliminating the upper elements of symmetric matrix, K®.
Detailed expressions are given in the Appendix.

So far we have considered the normal mode analysis at
the saddle point. Exactly the same procedure is repeated
" for the well minimum. In this case the coordinates of the
adatom can be expressed as

q=(—%+%cos9+qx, %sin@-i—qy, bw+qz> 30)
where b, is the z-coordinate position of adatom at the well
minimum and g,, q,, ¢. are displacements from the well mini-
mum configuration. Repeating the same procedure as before,
we can obtain the Hamiltonian expression for the well mini-
mum as in Eq. (26) with different coefficients. In this case
the second derivatives are evaluated at the well minimum.
From the Hamiltonian for the well minimum, we can obtain
the force constant matrix, K9, whose eigenvalues are {(A)?
>0, 1=0, -**, 2N+ 1}. The relation for the determinant corre-
sponding to Eq. (6b) is

det®®)= 11 AP =M, oMo/ @it 6D
i=0 >0

where M, is 3 by 3 matrix which is obtained exactly the
same procedure as M,.

Rate Constant. If we substitute Egs. (28) and (31) in
Eq. (4), then the rate of escape is represented as follows:

)
frsr =2 \/_—“fw‘f;exm—Eb/km 32

By comparing Eq. (2) with Eq. (32), we can obtain the surface
diffusion parameters.

Results

The calculated values are given in Table 2 together with
corresponding experimental values obtained by FIM experi-
ment.*® The calculated D, values are slightly less than 1073,
which is the typical value of pre-exponential factor for the
surface diffusion. When the size of surface is increased, the
unstable mode frequency changes only slightly under the
condition that the size of surface is not too small. When
the size of the surface layer is increased from » by.n to
(n+1) by (+1) for n larger than 6, the unstable mode
frequency increased by the factor of 107° or 107% In our
calculation, D, and E; are calculated independently in cont-
rast to the experimental procedure. If we permit the more
surface atoms to relax in the calculation of activation energy,
then the more accurate values of E, can be obtained. But
our main focus in this work is on the prefactor, D,, of the
Arrhenius form of rate expression, which represents the dy-
namical aspects of the process while the activation energy
reflects the static feature.

Some of the discrepancies between calculated and experi-
mental values may result from the effects of the atoms in
the second layer which we ignored. It can be argued that
the interaction of the adatom with the second layer atoms
located just below the adatom is more effective than with
the edge atoms of the first layer. The presence of the second
layer or several layers below the first layer may also influ-
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ence the vibrating motions of first layer atoms even in the
cases where the atoms below the first layer are fixed. One
can test these effects in the computer simulation studies.

We are primarily interested in the application of the for-
malism of the multidimensional TST using the Hamiltonian
which involves the system-bath interactions. Our application
is for the surface diffusion process on the solid surface. Con-
trasted to the motions of solvent molecules in liquid phase,
the motions of the atoms of the solid surface are relatively
in order. As shown in this work, it is possible to determine
the coefficients of the coupling between the system and bath
explicitly for the motion of adatom on the solid surface. In
this aspect, Tsekov and Ruckenstein’s work® has some rela-
ted features to this work. They considered Hamiltonian con-
taining the linear coupling between the adsorbate and the
substrate. But the effect of the phonon mode on the motion
of the adsorbate is treated through one parameter, Debye
frequency, wp. We do not reduce the effect of the surface
vibrations on the motion of the adsorbate to a few parame-
ters. The characteristic feature of this work is that each vib-
ration mode of the surface is considered in detail and the
coefficient representing its interaction with the adsorbate is
determined explicitly.

In the dynamic process considered here, the adsorbed
atom is activated by the interaction with the surface vibra-
tion, crosses over a barrier to a nearest binding site, and
then relaxes at that site. These series of motions are activa-
ted process and the barrier crossing step is a rare event.
So our result is not applicable to the surface diffusion at
high temperature. More meaningful comparison would be
made with the molecular dynamics simulation results using
the same potential function. The results of present calcula-
tions are encouraging considering that the parameters used
in the Morse potential are derived from bulk thermodynamic
data and only the first layer of the surface is included.
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Appendix

To calculate the determinant of the force constant matrix,
we eliminate the (n, m) elements of the matrix (1<n<3,
m>4). If we multiply the mth raw with —A,,./0 (k) where
A, is the element of mth raw and nth column of the matrix
A,,=A,»), and add this product to the nth raw, then we
can eliminate the (s, m) element. Repeating this procedure
for 1<n<3, m>4, then determinant M, is obtained as Eq.
(29) with M,, as follows. Calculation of M, is exactly the
same.

A
Mw:—ﬁ

4 4
“m MN Z 2 TR {exl(k) k; Cpucostk-1) +e,'(k) 2:1 Cyiycos(k- Ii)}

X {e,‘(k) Zi Cpicostk-1)+e,' (k) Z Cyycos(k: I;)}

2> el 3 Cusinte ) +6/®) 3 Crsinth- 1}

>0 @
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X {e,,l(k) ﬁ Casintk- L) +e, (k) ﬁ C,,,ysin(k-li)}
=1 i=1
2
o MN,E; o2 {ex (k) 3: Cpircos(k-I)+e,%(k) i Cpicoslk: I)}
x4 3 Cpucosth-By+2) Y Cpycosth-)}
=1 =1

2
g9 1 ® fe2 Z CpasinGk- 1)+, k) Z Cposine-1)}

x{elw0 Z Cpasintk-I)+e, (k) Z Cposintie- )}

where p=x, ¥, z and ¢=x, ¥, 2
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The resonance width may be directly determined by solving an eigenvalue equation for width operator which is
derived in this work based on the method of complex scaling transformation. The width operator approach is advanta-
geous to the conventional rotating coordinate method in twofold; 1) calculation can be done in real arithmetics and,
2) so-called B-trajectory is not required for determining the resonance widths. Application to one- and two-dimensional

model problems can be easily implemented.

Introduction

Resonance phenomena occur in various physico-chemical
processes including - electron-molecule scattering,! simple
gas-phase reactions such as H+H,? Thus they play impor-
tant roles in understanding chemical reactions from the dy-
namical viewpoint. In addition, attempts have been made to

relate resonance states with the transition state of chemical
reactions®* The resonance phenomena are generally descri-
bed as the sharp variations of cross sections at certain ener-
gies E (resonant energies) and are related to the existence
of nearly bound states.’

Theoretically resonance can be accurately determined as
the pole of scattering matrix® Evaluation of the scattering



