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Based on the collisional time correlation function (CTCF) formalism, Kim and Micha derived a simple expression
which gives nascent rotational state distribution of molecules after collision with fast atoms.® The expression is valid
when the collision time is short and the collision is impulsive in nature. This expression has been applied to analyze
the experimentally measured, state resolved rotational distribution of CO, in various types of vibrational levels, i.e.,
(00°1), (01'1), (00°2), and (10°0/02°0). The theoretical distributions obtained from this CTCF based expression can
represent the experimentally measured rotational distributions remarkably well, and have been found to be much
superior to those obtained from other simple theories such as Boltzmann distribution, prior distribution, breathing

ellipsoid model, and phase space statistical calculation.

Introduction

State resolved vibrational and rotational excitations result-
ing from the collisions between hot hydrogen atom and dia-
tomic or triatomic molecules continues to be of great interest
to both experimentalists and theoreticians alike."? Hydrogen
atoms with large, well defined kinetic energy around 1 to
3 eV are generated by laser photolysis of small hydrogen
compounds such as HBr, HI and H,S2 These nearly monoe-
nergetic, hot atoms are then led to collide with the target
molecules, and the resulting nascent vibrationally and/or ro-
tationally excited state populations of the scattered molecules
are probed with a variety of experimental techniques.!

Since hydrogen atom has no internal degrees of freedom,
the only possible energy transfer channels are of translation
to vibration and/or rotation types (7—V, R) and other comp-
licating channels such as V/R—V/R cannot occur. This fact
greatly simplifies the experimental analysis of the product
quantum states. Especially interesting from a theoretical
point of view are those collision systems for which product
rotational state distributions are well resolved, such as H
+C0,* H+CO,* D+CO,"5 H+NO,® and H+H,0.”

There are many theoretical methods available which can
be employed to predict or analyze the final vibrational and/or
rotational distribution of the product molecules. They cover
the whole spectrum in complexity and difficulty from classi-
cal to quantal and from dynamical to statistical treatments.
If a very accurate potential energy surface is available, one
can perform classical or quasiclassical trajectory calcula-
tions.® In most cases, however, potential energy surfaces
which are accurate enough for extensive trajectory studies
are very rare. The other methods one can employ to explain
the experimental rovibrational state distribution of the scat-
tered molecules are statistical and based on simple Boltz-
mann type distributions, breathing ellipsoid model,'**? surp-
risal analysis,®~% or phase space theory.*%

There is another, quite simple way to tackle this problem,
which is through the collisional time correlation function
(CTCF) formalism.?~3 Based on this formalism Kim and
Micha derived several simple expressions which can he used
to analyze the experimental rotational distribution of the
molecules with zero® or non-zero® internuclear axial compo-
nent of the total electronic angular momentum after colli-
sions with fast, monoenergetic atoms. These expressions can

be applied to molecules with a thermal distribution of initial
rotational states, and are valid when the collisions are short
and repulsive in nature. They applied these expressions to
H+CO%2* H+CO0,* and H+NO® collision systems and
obtained excellent agreement with the experimental results.
When the collisions are not fully repulsive in nature, they
were forced to invoke a supplemental statistical distribution
based on surprisal analysis in order to satisfactorily explain
the experimental results. >

In this work, we apply the CTCF based expression to
H+CO; collision system in which the rotational state distri-
butions for many final vibrational states, (00°1),6~" (01'1),%2
(10°0/02°0),"* and (00°2)" have been reported in detail. In
fact this system is experimentally most extensively studied
one. Since many vibrational states having different character
(symmetrical stretch, antisymmetrical stretch, bending, and
overtone) are involved, this system offers a good opportunity
to test our theory.

Theory

Since the essential features of the collisional time correla-
tion function (CTCF) formalism and the procedures for de-
riving the cross section for scattering into a final rotational
state /' are given in detail elsewhere,”” we present here only
the brief summary of the theory which is necessary to inter-
pret the experimental rotational distribution.

According to the CTCF formalism, the double differential
cross section ¢ with respect to scattering angle € and the
amount of energy transfer ¢ is given by

d’sc _ dos
dedQ ~ dQ
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1)

where {g) is the average energy transfer and {(A€)?) is the
square of its dispersion.

Typical collision experiments with fast H atoms have been
carried out using target molecules initially at thermal equi-
librium. They can be analyzed for specific electronic vibra-
tional transitions, for which the final rotational distributions
are presented as functions of the final rotational energy E,
or quantum number (/') rather than as a function of the
amount of energy transfer € as in Eq. (1). Therefore, one
should modify Eq. (1) to obtain an expression in terms of
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E;, for a cross section which has been averaged over the
initial rotational state distribution. Treating the initial rota-
tional quantum number J as a continuous variable, one ob-
tains

ds [~ d’c [ de
dE dQ udsdﬂ( )“"(’) d. @)

Here unprimed and primed quantities refer to the initial
and final states, respectively, and w, refers to the distribution
of initial rotational quantum numbers J. We separate the total
energy E,, into electronic vibrational plus rotational terms,
and obtain the following relations

£=(Ew +E)—(E,+E)=eats, (3a)
=E,'—E. (3b)

&=E/'—E, (3c)
w,=(2J+1) exp[ —E,/(ksT)] (3d)
E,=Bhc[JJ+1)], (3e)

where B is the rotational constant of the molecule, 2 the
Planck constant, and ¢ the speed of light.

For hyperthermal collisions for which the kinetic energy
is in the range of a few eVs, most of the transferred energy
goes into electronic and vibrational excitation and only a
small fraction goes into rotational excitation. Hence the colli-
sions are rotationally quasielastic so that, for a given electro-
nic vibrational transition, one can use Eq. (1) in what follows,
letting

e—(ey=&—<e», {(Ae))={(Ae)®. @
Then Eq. (2) becomes
”
T
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where ¢, depends on J.
Introducing the following dimensionless parameters and
variables

a;={(A&)>/ (ks T, (6a)
1=E,/(ksT) (6b)

the integral in Eq. (5) reduces to a simple form

I=p ftexp[-—(%)z} exp(—x) dx, @

where the parameters & and z are defined as

b=Bhc/(ksT) . 8a)
2=(E,' e/ (ksT). (8b)

The integral I can be evaluated analytically to obtain
I=(/a/b) exp|Z—z2)( 2)1 erfc(s), ©)

where erfc(f) is the coerror function of argument

t=(a,—2)/\/2a,. (10)
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Therefore, the double differential cross section as a function
of the final rotational energy E,’ is given by

d’c__ _ p 1140 (@ (&) _E/
dEaq - B g exp( 2 v hT kBT)

erte (ot~ 2 )|

=Aexp<a1 + % -—x') erfc[(a1+a.—x")/\/2a;]
=Af(x") (11

where A is the combination of all the preexponential terms
in Eq. (11), and g, and x' are dimensionless quantities de-
fined as

a,=<g,)/(kgT), (123)
2'=E//(keT) =] (' + 1)Bhc/(ksT). (12b)

Equation (11) gives a compact expression for the double
differential cross section, which can be applied to cases
where angular distributions have been measured. It is not
any longer a Gaussian distribution, but instead a distribution
of E,' values that peaks at intermediate value of x’ and tapers
off at both small and large z’.

A similar expression can be adopted to interpret gas phase
experiments by integration over scattering angles. Integrating
Eq. (11) over the solid angle © and assuming that the de-
pendences of a; and a4, on scattering angles are weak for
hyperthermal collisions, one obtains

ddg _ dgfgn ao=( jAdn)ﬂx) A'fx, (13)

where A’ is another constant independent of E,’.
Finally, the scattering cross section for the final rotational
state J' can be obtained by numerical integration,

()= thf . ( )(2]'+1) ar

=A"f X +1). (14)

Therefore, o(J') can be expressed as a function of the final
rotational quantum number J' and of three parameters a,,
a;, and a; as follows:

o'V =as(2] + 1) expla, + %2— —x')

X erfcl(a1+az—x)/(v/2a5)] (15)

with 2’ given by Eq. (12b)

The essential features of the final rotational distribution
are determined solely by the parameters @, and a,. The third
parameter @3 is a scaling factor which is necessary to fit
the experimental distribution usually expressed in an arbi-
trary, relative scale.

In order to test our approach, we could proceed in two
ways. The first would be to calculate the three parameters
a; from first principles and to predict the final rotational
distribution. This would requite detailed knowledge of the
interaction potential and extensive trajectory calculations.

The second way, which is less rigorous but much easier,
would be to fit the theoretical curve to the experimental
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Figure 1. Rotational distribution of CO, (00°1). @ experiment
(Ref. 7) ; curve a, this work (CTCF); curve b, Boltzmann distri-
bution, T,=1270 K (Ref. 7); curve ¢, phase space statistical calcu-
lation (Ref: 13); curve d, prior distribution (Ref. 7).

data to see whether the functional form of our distribution
is satisfactory, and also to compare the energy quantities
obtained from the best fit to those from the experiment.
In view of the simple nature of our approach, here we choose
the second procedure to test the derived distribution, and
proceed as follows.

From the experimental rotational distribution, one obtains
the relative population for each /' and minimizes a chi square
function of the parameters {a;, i=1 to 3}=a defined by

2 N N/—N({'; a) ]2

(@)= ;[—J—LW , (16)
where N, is the experimental relative population for final
rotational state /', AN, is the standard deviation in the mea-
sured values of Ny, and N(J'; a) is the theoretical distribution
for a given set of the parameters a. The computer program
we have used requires AN;’s as input together with /' and
N/. In cases where AN;’s are not reported in the experi-
ment, a constant percentage value has been assigned to all
N;’s. The actual magnitude of the constant itself, however,
does not affect the final result.

We have used the numerical procedure of Levenberg Mar-
quardt,®~% to obtain the best fit parameters. The iterative
process to obtain the best set of a values was carried out
“until two successive iterations gave yXa)'s within 1073 of
each other.

Results and Discussion

In a number of papers®™" Flynn, Weston, Jr., and their
coworkers determined the detailed rotational state distribu-
tion of various vibrational levels of CO, after collisions with
hot H (or D) atoms. They first obtained hot H atom (E,=2.3
eV) by UV photolyzing (A=193 nm) H,S molecules. The hot
H atoms are then led to collide with CO, (00°0) whose initial
rotational states are in equilibrium with the experimental
temperature (T}) to produce the rovibrationally excited CO,
(mn'p, J') probed by time resolved diode laser spectroscopy.

We applied our CTCF based expression, e, Eq. (15), to
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Figure 2. Rotational distribution of CO; (01'1). © (odd J), @
(even J') experiment (Ref. 12) ; curves a, this work (CTCF) for
odd J', curves b, for even J. — when the same value of errors
are assumed, -+ when the same percentage errors are assumed;
curve ¢, breathing ellipsoid model for even J' (Ref. 12).

the experimental data and obtained the best fit curves by
use of the iteration method mentioned in the previous sec-
tion. Here, we report our theoretical analysis results for the
nascent rotational state (J') distribution of CQ, in the final
vibrational levels (00°1), (01'1), (00°2), and (10°0/02°0).

CO; (00°1). The rotational state measurements for the
final antisymmetric stretching vibrational state (00°1) are re-
ported in a series of papers5 ™ We used the data given
in Ref. 7 for our theoretical analysis since only there experi-
mental error limits are given for every data point. The re-
sults are presented in Figure 1 together with those predicted
from some other simple theories. From the figure it is quite
evident that the CTCF based expression can satisfactorily
represent the measured rotational distribution. Other simple
distributions such as Boltzmann distribution (7,=1270 K),
phase space statistical calculation,®® and prior distribution’
can not represent the measured distribution very well. Espe-
cially, they all fail and give grossly overestimated distribution
when the final rotational quantum numbers (J') are large.

Our best fit parameters for (00°1) state are @;= —0.678,
a;=4.34 and a;=0.0499. Besides the general shape of the
theoretical distribution curve, rotational quantum number at
which the distribution shows its maximum (/',.), average
rotational quantum number {J7), average rotational energy
{E,"> and its dispersion {(AE, *>"? can be used to character-
ize both the theoretical and the experimental distribution
and/or to judge the goodness of the fit.

For this vibrational state ['ma {7, <E,> and {(AE,))'?
are 31, 27, 716 X107 % joule, and 4.63X10°% joule for the
experimental distribution and 29, 29, 8.17X10"% joule, and
6.27 X 102 joule, respectively for the CTCF based theoretical
distribution. The two sets of characterizing parameters agree
with each other quite well.

CO; (01'1). The final rotational distribution in the com-
bination bend stretch (01'1) vibrational state is given in Fig-
ure 2. In this vibrational state both even and odd rotational
states are possible, and the experimentally observed distri-
bution shows even-odd oscillations. These oscillations are
a consequence of the doubling of rotational levels due to
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Figure 3. Rotational distribution of CO, (00°2). @ experiment
(Ref. 14); curve a, this work (CTCF); curve b, phase space statis-
tical calculation (Ref. 14).

coupling between the nuclear rotational motion and the de-
generate bending vibrations in CQO,, and the requirement
that the nuclear spin rovibrational wave function of CO, be
symmetric with respect to exchange of oxygen nuclei.? Clary
et al. calculated similar oscillations for low energy rovibratio-
nally inelastic scattering between He and C0,.%¥~* The first
experimental observation of this phenomenon was made by
Herschberger et al. in CO, (01'0) state.*

Since only one error bar is given to both odd and even
experimental distributions and our fitting procedure requires
error limits for all data points, we tried two different ap-
proaches in actual fitting. In one approach we assigned the
same absolute value of error, while in the other the same
percentage error to all the data points.

As can be seen from Figure 2, the two approaches give
essentially the same results and reproduce the experimental
distribution very well. Therefore, in further discussion, we
present the results only for the theoretical distribution for
which the same percentage errors are assigned. Also shown
in Figure 2 is another theoretical distribution (curve ¢) for
even J' rotational states predicted by the breathing ellipsoid
model,""** which is in rather poor agreement with the experi-
mental distribution compared with this work. The fitting and
energy parameters for CTCF based theoretical distribution
are as follows. Odd J' distribution: a;= —2.66,a4,=17.7,a;=
0.0054; J'ax =135 (35), /> =33(27), <E,>=1.07X10"% (7.28 X
1072 joule, {(AE,"Y>V?=7.97X10724(9.33X 102" joule. Even
J' distribution: 2,=1.01, ¢;=9.97, a;=0.0061; J'...=42 (48),
Jr=38 (32), <E/>=131X10"% (887X107%) joule,
{AE,™12=821X10"% (6.27X 10" %) joule. The values in
parentheses are those for the experimental distribution.

CO; (00°2). Khan et al. reported the nascent rotational
distribution of CO, in the overtone antisymmetric stretch
vibrational state after collision with fast H atom,”' and their
experimental data are presented in Figure 3. Also shown
in the same figure are the theoretical distribution curves
obtained from CTCF based expression and from phase space
statistical calculation. It is evident from the figure that the
former reproduces the experimental distribution much better
than the latter. In fitting Eq. (15) to the measured distribu-
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Figure 4. Rotational distribution of CQO. (10°0/02°0). ® experi-
ment (Ref. 13); curve a, this work (CTCF); curve b, Boltzmann
distribution, 7,=747 K (Ref. 13); curve ¢, phase space statistical
calculation (Ref. 13).

tion, we used the error limits when available. When they
are not available, we assigned percentage errors which vary
gradually according to the rotational quantum number bet-
ween the values explicitly given in the figure.

The fitting parameters for Eq. (15) are a,=1.92, ¢,=3.77,
and a3=0.0354. The quantum numbers and energy parame-
ters which characterize the theoretical and experimental dis-
tributions are as follows. As before, the values in parentheses
are those for the experimental distribution.

T nax=42 (38), (/> =38 (38), {E,’>=1.23X10"% (1.20 X 10~%)
joule, {(AE,Y>V2=6.69X10"2 (640X1072Y) joule. The two
sets of the values agree with each other extremely well

CO; (10°0/02°0). In Figure 4 are shown the experi-
mentally observed nascent rotational distribution of CQO; in
the Fermi mixed symmetric stretch/overtone bend vibratio-
na! levelL.” Three types of theoretical distributions are also
presented in the same figure. The experimental distribution
peaks at /'~ 26 and is quite well fit by 747 K Boltzmann
distribution and also by CTCF based expression (this work).
The phase space statistical calculation, however, does not
represent the measured distribution well. In fitting Eq. (15)
to the experimental distribution we assigned the same 20
% error to all the data points. We deem this error reason-
able, and think that the calculated distribution will not be
affected very much by the actual value of the error limits.
This has been verified in the case of CO; (01'1) distribution.
The fitting parameters for Eq. (15) are ¢,=—5.10, a,=17.0,
and a;=0.0648.

Even though the Boltzmann and the CTCF distributions
look qualitatively almost the same, their relative superiority
can be judged by the energy characteristics. Experimental
distribution: [ .x=26, {J>=28, (E/>=752X10"% joule,
((AEY>12=651X10"% joule. CTCF distribution: J wax=28,
J=30, <E,>=9.09X10"% joule, {(AE,Y>V2=757X10"%
joule. Boltzmann distribution (747 K): Jnax=26, {J'> =28,
CE,>=1.03X10"% joule, <(AE,)»Y2=1.03X10"* joule.
Therefore, the CTCF distribution is slightly better than the
Boltzmann distribution in representing the experimental dis-
tribution.
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Conclusion

The collisional time correlation function based expression
has been applied to analyze the nascent rotational state dis-
tribution of CO; in several vibrational states after collision
with fast H atom. The simple expression can represent the
experimentally observed rotational distribution in the dif-
ferent types of vibrational levels, (00°1), (01'1), (00°2) and
(10°0/02°0) remarkably well. The CTCF distribution has also
been found to be superior to other distributions derived from
other simple theories such as Boltzmann distribution, prior
distribution, breathing ellipsoid model, and phase space sta-
tistical calculation.
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