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In order to ease the treatment of anisotropic potential when developing the variational RRKM theory, we applied
Fano-Racah’s recoupling theory to the multipole-multipole interaction, resulting in the great simplification of the aniso-
tropic potentials. The treatment appears as a generalization of Keesom transformation in case of dipole-dipole interac-
tion and provides us with great insights to the characteristics of tensorial interactions in the multipole-multipole

interaction system.

Introduction

Recently, there have been considerable interests' in fast,
neutral gas phase reactions with no potential barriers along
the reaction coordinates. The interest derives from their im-
portant role in areas such as atmospheric, combustion and
interstellar chemistry. Another source of interest is the pro-
gress in the experimental methods for detecting small
concentrations of very reactive molecules such as free radi-
cals.

The reaction rate constants for these reactions have often
been found to decrease with increasing temperature.! Recent
Rice Ramsperger Kassel Marcus (RRKM) variational calcula-
tions>* have produced the same trends and several qualita-
tive explanations are available now. We also succeeded in
solving the variational RRKM equations analytically under
some reasonable constraints and under the long-range po-
tential of type V(R, )=R*A(f2).° Here Q stands for the
angular variables and A(Q2) is the anisotropic part of the
potential. For the fast neutral gas phase reactions with no
potential barriers, it is believed that long range potentials
play an important role® Long-range potentials result from
multipole-multipole interactions. They are tensor forces and
have a complicated angular denpendence. Simple long-range-
potentials that ignore the complicated angular dependence
have thus enjoyed the frequent employ.

Long ago, Keesom’ found an interesting transformation
that greatly simplifies the angular part of the dipole-dipole
interactions. Let us consider two dipoles A and B. Let (8,
&) and (8;, ¢2) be their spherical polar coordinates. The z
axis is directed toward each other. Then the angular depen-

dence is given by 2cos8; cos8,~— sinB,sin;cos(d;—¢,). By con-
sidering the transformation, 2cos8,=gcosy, sinf;=6,=gsiny,
Keesom shdwed that the angular dependenceis simplified
as gcos@. Thus Keesom transformation may be used to deal
with the anisotropic nature of the dipole-dipole interaction.

On the other hand, Fano and Racah® discussed the tenso-
rial nature of the dipole-dipole interaction in Appendix J
of their book. The final formula surprisingly resembles Kee-
som transformation. We find that the final formula is actually
equivalent to Keesom transformation. As Fano-Racah’s app-
roach can be easily generalized while Keesom transforma-
tion is not, we applied Fano-Racah’s recoupling theory to
the generalization of Keesom transformation. The result is
surprisingly simple and takes the equivalent form of the sim-
plest case of Keesom transformation. Our approach provides
the insight to the nature of the anisotropic aspect of the
multipole-multipole interactions which was not transparent
in the past.

Keesom transformation and recoupling theory

Let us first summarize Fano-Racah’s treatment of dipole-
dipole interaction. The dipole-dipole interaction can be writ-
ten as (see Appendix B. On the multipole expansion®)

V=GV Vo =@ 9V @

The last equality follows from —V,=V;=V that derives from
7=7,—7". Now we can utilize the recoupling theory to recou--
ple (;*V) and (i, V). We couple V and V together and i,

2 together:
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(i V)(fi- V) = [ [ VI ]OL [yt ] @
= Z[[Mlmuzm]“’[Vme]‘*)]“” X (1DOADOIADE(IDE). 2)

Now the recoupling constant can be related to 94 symbol®
o . . . . ol dr 2 g
(712]34|]13]24)=[(2]12+ 12+ 1213+ 1)(2g20+ 1] 2 ]'3 Ja 134 (.

Jus ju j
6]
The recoupling constant ((11)0(11)0/(11)2(11)% ) is obtained
as \/2k+1/3. We thus obtain the following relation

1

V=G V)G V),
_ A@ i, (0 erytyiol
3; 3 Ll et vVt o=

= Z[[plmmmjw. [vamja)]a)% @

[viUyiI}® g equivalent to Laplacian and 1/r is the solution
of the Laplacian equation. Thus £#=0 term vanishes. [VtV
VLU term also vanishes as is well known in vector algebra.
The reamining term can be simplified as follows

[VOVIIeL = [V X G2 = — ALV X7
— [V XTI, )

The first term becomes zero because the differential operator
lowers the rank by one and thus the rank of VX7 becomes
zero and has no second rank tensor elements. The second
term is simplified as

[VOve L= @AFXTIO=@ALEXES. )

The set of contrastandard components of % coincides with
the set of harmonic functions C{!! (8¢). The tensor [#Xu]®
has the set of contrastandard components [CM) X)),
From Eq. (J.10) of Ref. 8,

[c[lﬂ X C[lzJ][IJ =¢1+2={(1,00,0| IO)C“]. )
The electrostatic energy becomes

V= Ay@. My oNee:

— 1-}0 lhmcm:lm'llz[l] ®

The last equation resembles Keesom transformation. We will
show the equivalence between Eq. (8) and Keesom transfor-
mation.

Eq. (8) reveals that the equivalence may be obtained if
[ 1HCI 3] has polar coordinates (v, ¢2) and if we can find
the relation between its polar coordinates and those of ;.
Then 6 is the angle between it and [z as seen evidently
from Eq. (8). The relation between their polar coordinates
can be obtained by realizing the fact that y is the angle
that [,™MC® ] makes with the vector that connects the
two dipoles. The latter is just 7 (see Appendix B). The set
of contrastandard coordinates of # is just CM. Therefore,
let us consider the irreducible set of rank 0, [[j,HCt#]™
C[l]]EDJ'
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[[ul[llcfzj:][ljc[l]][o]
= [le[C[ZJC“]][U][OJ(((IZ)ll)OI 1@D1)0)
= [plUJ[CEZJCU]][l]][OJ

=(2010/10)[p,/’CtUI], )
In the familar scalar product notation, Eq. (9) becomes
o 211\ -
(2. 2 = .
[mC]m.3 \/5(0 0 O)ul %. (10)

According to Keesom transformation, ¢ may be considered
to be defined so that the dipole-dipole interaction energy
is given by gcosf/. Then as the dipole-dipole interaction
energy is given by Eq. (8), the magnitude of [p,(NC]!
is given by gpll\/l_(s. Eq. (10) may, accordingly, be written
as

711-(-) geosy= \/§( (2) (1) (1) )cosel= \/%—cosel. 1y

We thus get gcosy=2cos8,. In order to find the relation
between gsiny and sin®,, let us consider the recoupling that
yields the rank 1.

[[ul[l]c[ﬂ][l]c[l]][ﬂ
= Z[ul[ll[C[zjmcfk]][1]][1]((12)11)| 1(21)k)[1]

= Z[u;“JC“]]m(ZOIO|k0)((12)11 |1(21)k)1)
= [ MCH 120101 10)((12)11 1D 12)

The last equality follows from the parity restriction imposed
on 3j symbol. The recoupling constant ((12)11]1(21)&)™ can
be calculated by using the relation to the 6 symbol

Gregalf )P =(— 1Y1*2453%5 /(210 + 1)( 2+ 1){ ;n Iz ez }’.(13)
137 1
Then Eq. (12) becomes (py/10)[ 1,/ )C™]0, The contrastan-

dard set of rank 1 is related to the vector product as fol-
lows

[T — i i 19
Likewise,
[[ulfllc['l]][l](:[l]]“] = — ﬁ gm Sinw_ (15)

From Eqgs. (12), (14), and (15), we get gsiny=sin0,.
Generalization of Keesom transformation

Let us first apply Fano-Racah’s recoupling theory to the
dipole-quadrupole interaction. As shown in Appendix B, the
dipole-quadrupole interaction is given as

Vip= (ﬁl V)R, [vam]m%
= Z[[“EIJIQZDJ][k][v[l][v[l]Vm][z]][k]][oj
((11)0(22)01 (12)k(12)k)"". (16)

The recoupling constant is obtained as
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((11)0(22)01 (12)k(12)k) = (2% +1) {f 2 g} - (17)
Eq. (16) becomes
Vi= 1,_1_5 Z[MI[UQZ[Z'][”' [[VIV]@yijisl (1)

Let us first manipulate the second term of the right hand
side of the last equation.
[[vmvflljmvm(%)]m - [[vam]m(f’s)]m
— Z[V[l][Vm%]m]m((ll)Zl| l(ll)i)m
_Z[Vm[vm”]m]m( 1)*“\/5(_214-—){1 1 2} a9
[Vm( 5 )][ & = 1 o4 [Vm( ’13 ),m]m
=Loov/F+ Laxi?
= Ls0v/3+ 010110

=%cm(101o|20). 20)

Let us define solid harmonic functions C*1()=rC*}(0¢). In
Appendix C, we derived the following relation

[thlc[k](;')][kﬂ]: k(2k+ l)C[ﬁ—l](;:). (21)
By using Eq. (21), we obtain

B R PTEN La BU-) (31

[v( 75)6 2 (r)] 5 (1020130)C%%y.. @2)
Then

[[vmvm]m ’] 3f52 i (1020|30)C[3]6.3, (23)
and

[[Vme][zJle]m: -
4

1 /Z 112 -
53 35{1 3 2}(1020130)C B
(24)

As a whole, the dipole-quadrupole interaction becomes

Vl = (ﬁl . v)Qz[Z:l . [V[l]v[l]](z)_l_
r

_ Vlﬁ[Qz[zmeJ[s] .ClIx { _ %3\/_2;52{ } ; g }
(1020130)C™9}

_ )r‘@[Qz[zlpm][sl.cm_ (25)

Finally, we may transform the equation into a form of scalar
product of the multipole moment with the field at that posi-
tion generated by another multipole.

Vie=— A,@[szcmlm : u“k/%_«zl)ssl @31
=_ A’@ \/%—[tazlcm]m o, 26)
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Therefore, the anisotropic part of dipole-quadrupole interac-
tion is also as simple as dipole-dipole interaction as Keesom
transformation shows.

Now let us apply the same technique to quadrupole-quad-
rupole interaction and see whether there is still only one
kind of anisotropic interaction. As before, we will get the
following term after some recoupling:

[[Vme][2][vam][zjjml
4

_[[va[l]][zl[v[l] C[;(;) ]czz]m

- [[vmvm][zl[_:g C[l](;)c[ll(;)][zl][b]
= 3[[V[1lv[1]][2]%(1010| 20)6[2](;)]“]
— 3(1010| 20)[[V[1]Vm] [2]%0[2](;)] [h]’ @n
[[vmvm][zJ%CEzJ(;)]m = Z[V[”[Vm‘;}g(,‘m(r’)]m]m
((1D22]1(12))™, (28
[V[ﬂ;]s_c[ﬂ(;)][i] - — 5(1020| 30)7176[3](;)&'3‘ (29)

[[VEIJV[U][z]%c[ZJG:)][k] [ 5(1020| 30)((11)22| 1(12)0[&]
[Vm;l?crsj(;)]m. (30)

_7c
[V[ll;lic[sl(;)][k] - [_@ CR) + @Cm@]m

= 7= 1 92(1030/RCHO+VZICIR),. 3D
It is straightforward to show that only k=4 term survives.

[[viyineyiyijee L
r

= —5(1020(30)((11)22]1(12)3)™)(— 7)(1030|40)Cm(r)%. (32)

Here again only one type of irreducible tensor mediates the
interaction between two multipoles. Only maximum rank an-
isotropy compatible with triangular inequality is allowed.
Let us do the same thing for one more particular term,
octapole-quadrupole interaction. Then, we will show that the
same thing holds for any muiltipole-multipole interaction.

gyl g L
IS T

= — [11glilgl11703]} li] c[l](;.') 2] jed
[vitiylilyl ] A% A
— 3(101()[ 20)[[:V[IJVEIJV[U][3]%(3[2](;)]&]. (33)

If we recouple the last term, we have the following term
except constant factor,

[[vatujm[%crz]]m]m
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= —5(1020| 30)[[vam]m ctaj()]m&,

= —5(1020130)Y; [thvmgcm(r‘)][”Jf"]&-'g

=— 5(1020|30)Zl[vm[—%(1030|40)cm(r)]]“38.»'3&,o

= (~5)(—~7)(1020/30)(1030/40) 5C) /. 34

As we will show ih a general way, the last term is the irre-
ducible tensorial set. Thus in this case, too, the anisotropy
of the space that mediates the interaction between two mul-
tipoles is described by one irreducible tensor, the highest
rank among compatible ones with triangular inequalities.
Fano-Racah’s recoupling technique can be applied to gen-
eral multipole-multipole interaction. First we notice that

kB ks
P Y e et
M1, [vam...vm][mMuzJ_[vmV[u...Vm][m
kl kz
- terInien 10 [ [otgrna... w01 e[ Wi, . .gti Jreed Jced
[MkIMOaI]E | plilglil... v vilyil...y .

(35)

Keesom transformation and its generalization is based on
the following chain:

ol v ct v Ctz v el v
—r—v‘rs 7'5 ¢r7-_.)... (36)

Using the above chain, the second term in the sum of Eq.
(35) is reduced to the irreducible tensor. This can be proved
as follows:

2]

(11
=—(2k+ 1)_0_32 C["](r')+ @ Cle- 1](,’)

=ﬂ}:(2k+l)( 1+ 1-(10k01i0)- S

r?)+3
+4@1—_ Cle-11G)
— (k1]
= (- yEST LR E)ESD
[k+1]
e nyaETY L F k“)——c” ©

00O 3
13
+\/k(2k+l)c—rm;ﬂ— \/(k+1)(2k+) rﬂﬂ .37

Conclusion

In this paper, we have seen that anisotropy of the space
that mediates the interaction of two multipoles should be
of irreducible tensor type whose rank is the highest allowed
for the system. The absense of the lower anisotropies is
one of characteristics of Coulomb interaction. Keesom trans-
formation is derived as its simplest case. It might be an
interesting application to apply the techniques developed in
this paper to the potentials whose forms are not given by
multipole-multipole interactions.
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Appendix A. On the standardization

When we use the formulas in Fano-Racah’s book, we have
to be careful on the standardization. Many formulas derived
there are specific to the standard sets defined there. Unfor-
tunately, their standard sets are not the one of people’s
choice. Condon-Shortley’s one is more widely adopted. Also,
either this kind of problem seems not emphasized much or
not well recognized. Let us first describe the difference bet-
ween Condon-Shortley and Fano-Racah convention. The for-
mulas that depend on the standardization and thus need
care when used with the usual spherical harmonics will be
described later.

Both convention are same in that J; and J, operators are
taken as real and J, imaginary. With such choice the phases
of the eigenfunctions of J; are still at our disposal. In Con-
don-Shortley convention phases are determined by

L Y=t/ —m)+m+1)Y 1. (3®

Let us denote the undetermined phase of the spherical har-
monics by a,, namely

[ @+1)—m)

Yiu = 4An{l+m)!

] P (cosB)e™®. (39)

If we apply L. =#*(3/09+icot®(3/9¢)) on Y:, and make use
of the recurrence relation among P/”, then we get

L Y=t ST=m) A+ DY 1. (40)
O +1

Condon-Shortley phase a, thus satisfies

O —1.
o +1

“4Dn

One solution may be a,=(-—1)*, which was the actual choice
of Condon-Shortley.

Fano-Racah used D,(n) for the unitary matrix U that trans-
forms the cogredient sets into contragredent ones in order
to fix the phases. As Fano-Racah’s book does not show ex-
plicitly why they multiply # to the Condon-Shortley’s spheri-
cal harmonics to make them contrastandard sets, we will
give the derivation of it here.

For the real set, U matrix is 1. For the linear substitution
A that transforms the real set into the spherical harmonics,
U changes into

U=A*UA"'=A*A"", 42)

Now for the conventional spherical harmonics

Vig 1=Fy/ s sinbe®,
Y= \/4—311 cosd, 43)

the substitution A is obtained by the following relation

1 1
Yu —72- 75170 Y Yu

Ym = 0 0 1 Y]_y =A YU (44)

1 1
Yio1 —75' 757 Y Y.
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Then U” is obtained as

1 1 1 1 _
—75-75170 —75072- 0 0 -1

v=l o o0 1 —7151—.0—71§= 01 0
715 7150 0 1 0 ~10 0
(45)

This U’ is different from D,(n). Now we want substitution
¢A so that

001
v =(c‘)2U'=(O -1 0). (46)
100

Two solutions {, —i of ¢ are possible. The former is the
choice of the Fano-Racah’s book. Thus in order to have U
as the rotation matrix about y axis, the standard set of spher-
ical harmonics should differ from the Condon-Shortly one
by a multiplication constant #.

In Fano-Racah’s book, formulas that contain U/ matrix are
subject to the choice of the sets. For example, the following
formula

/2 + 1[a99]O=g®- b9, “n
should be modified for the Condon-shortley sets as
(— /2 + 1[a79]O = g0 0, (48)

The reason for the change is that the right hand side of
the above equationis invariant under substitution while the
left hand side of the equation suffers from change under
the substitution c¢(=#). Let the set a” be related to the Con-
don-Shortley set a by a”=ca®. Then [a?6?]® becomes c*[a?
B?1®, On the other hand, a”+b% should be invariant under
substitution by definition. Another nontrivial example occurs
when we try to relate [a?¥]® to the vector product. Here,
the source of the problem is the same as above. The vector
product is invariant under any substitution while [g?p%]"
is not. Thus we encounter the imaginary number in such
a connection when the Condon-Shortley sets are used:
La®BP]®= —4/\/2(xXy). If Fano-Racah’s standard sets are
used, the imaginary number does not appear.

Appendix B. On the multipole expansion

Let us consider the electrostatic potential energy between
two charge distributions p; and p;. Here it is assumed that
two charge distributions are far apart. The electrostatic po-
tential is given by

_ [_;&E)p:G)
v=[ PR g, 49)
%, and X, are vectors measured from the origin O. Let us
consider the vectors 7, and 7, measured from the centers
of each fragment. If 7y and 7 are the vectors of the centers
of fragments measured from the origin O, then x,=%,+7y
and x;=7;+7». Since two charge distributions are far apart,
we can make a Taylor expansion:

Chun-Woo Lee
1. 1 1,4 1 .
=Ty P e
1 1 - .15 _1
Vi, ==+ V= V= (50
P "1'='2'=0 y TV VY 0

Then the electrostatic potential may be rewritten as
V=gqu'2 +41(ﬁz'vz)"17+42(ﬁ1'vx)%+@1’V1)(ﬁz‘vz)_:‘"'
+{[ 069G VG| -+ . 6D

The general term has a rather inconvenient form. The pref-
errable form maybe the following

Mlltl). [VV° . .V]!Iel)M(kz). [VV . .v](kz)_ (52)
Let us show that this is the case for £,=2 and k,=1:

Vz—15[-”6‘1'V)(;x‘V)P(;l)d;lf(;z'V)p(;z)d;z]%- (53)

We now want to apply Fano-Racah’s recoupling theory. Ac-
cording to this theory, we first rewrite the scalar products
of two vectors to the zeroth-rank irreducible tensors of direct
products of two spherical tensors. Namely, 7,-V=1/3[r"
vit]io) Beware that this relation depends on the convention
of the sets. In particular, it only holds for the sets of Fano-
Racah convention. On this understanding, let us first simplify
the integrand of the first integral of V,...

@ v)(;-‘l. V)= Z[,,‘[ljrl[ﬂ](k). [vilyli]®, (54)

As n! equals CH
[r (U100 = [C,10C, 1]

="*17%(1010120)C, = — \/igaw A3@cl[”8.z.

(55)
Then by using the fact that [V[”V[‘]]“”%-:O
j(;x . V)(;l . V)P(;l "= Ag[fcl[ﬂ rl)d;l] . [vam.]m%
= ASE Q,L0- [V[”Vm]m%, (56)

where the quadrupole moment is defined as Q"= [C,Zp())
dr.. As a whole,

V2—1=(Qx[2]' [V[”Vm]‘z))'(ﬁzV)%. (67

Appendix C. Action of gradient operator on
solid harmonics

The result of the application of a gradient operator on
a solid harminic can be obtained in analytic forms by making
use of the following definition of the solid harmonic:

)
% = TouaC?, (58)

where a4 is the vector of length zero defined as
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d=(—z:2+z-% —i@s% 2.3, 22,2.), (59)
and ¢w,(2) is defined as

_ Z+k +qz_k—q
¢kq(2)—7m!« (60)

If we differentiate both sides of Eq. (58), we obtain

é (E.;')(k—l)

3 i)~ 2@V, 61)

If we make the coefficients of ¢u(2) of Eq. (61) zero, the
following relations are obtained:

V= — = gCp i
VE’PC,,[H ./ (J +(1)(1'?2+q -1 C(]EEI 1 62)

On the other hand, by the well known vector coupling theory,
v,/MIC,! can be decomposed into irreducible products [v'!!
C™*)],, ™ with the expansion coefficients given by the Wig-
ner coefficients as follows:

qu[ﬂcq[k:! = Zl((]-q'kq |Kq +qf)[v[l]C[k]]q+<;()
=(1g'kqlk—1g+¢)[VICH ] . (63)
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From Egs. (62) and (63), we obtain Eq. (21).
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Generalized Multichannel Quantum Defect theory (MQDT) was implemented to the vibrational predissociation of triato-
mic van der Waals molecules in the previous paper [Bull. Korean Chem. Soc, 12, 228 (1991)]. Implementation was
limited to the calculation of the scattering matrix. It is now extended to the calculation of the predissociation spectra
and the final rotational distribution of the photofragment. The comparison of the results with those obtained by other
methods, such as Golden-rule type calculation, infinite order sudden approximation (I0S), and close-coupling method,
shows that the implementation is successful despite the fact that transition dipole moments show more energy depen-
dence than other quantum defect parameters. Examination of the short-range channel basis functions shows that
they resemble angle-like functions and provide the validity of the I0S approximation. Besides the validity of the
latter, only a few angles are found to play the major role in photodissociation. In addition to the implementation
of MQDT, more progress in MQDT itself is made and reported here.

Introduction

Photodissociation provides a wealth of information on mo-
lecular dissociation dynamics, as it may be visualized as a
half collision process. Traditionally the total dissociation
cross sections as functions of the photon energies were mea-
sured. However, in an increasing number of recent experi-

ments, final state distributions of the photofragments have
been measured. Such experiments were made possible by
the availability of powerful light sources and by the develop-
ment of efficient detection methods like laser induced fluore-
scence or resonance enhanced multiphoton ionization, and
so on. Reliable intermolecular potentials have been deduced
from such sophisticated experimental data. Details of photo-



