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ly applied on the preparation of a monolithic forsterite-
PMMA nanocomposite. The monolithic composite prepared
had very good optical transparency, and largely improved
mechanical characteristics relative to the inorganic coun-
terpart, and most of all it was machinable. The mechanical
property of the composite had hybrid characteristics of
those inorganic and organic moieties. Doping of the opt-
ically active materials (either ions or macromolecules) into
this new forsterite-PMMA nanocomposite is in progress,
and some dopants have been successfully incorporated into
this host material, which would be dealt in forthcoming re-
port.
Acknowledgment. The support of the Korean Sci-
ence and Engineering Foundation (K-N96048) is ack-
nowledged with gratitude.
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Nitric oxide (NO),! known to be the smallest biomolecule
up-to-date, is involved in various physiological activities
such as vasodilation® and tumoricidal and bactericidal ac-
tivities.> More interestingly, it mediates a signal transduction
in the brain.* Due to these diverse biological actions, the
NO precursors have been a main subject of interest in the
treatment of NO-related diseases. Furoxan (Furazan N-Ox-
ide) I has been known to release NO by interacting with a
thiol compound such as cysteine and glutathione in vivo.’
We also reported the NO generation from various furoxan
derivatives by the electron impacted fragmentation.® The
biochemical mechanism for NO generation from the furox-
an, however, is not explored exactly in the molecular level.

To probe such a biochemical mechanism and to develop a
potential NO-precursor for biomedical study, we designed
thiol containing furoxan derivatives Ila and IIb expecting
the NO generation by the intramolecular sulfide-nitronate in-
teraction.” Here, we wish to report a synthetic method of
the furoxans Ila and IIb containing protected thiol.
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The furoxans Ila and IIb were prepared through dim-
erization of the corresponding nitrile oxide as a key step.
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The synthetic scheme for the furoxan IIb is shown in the
scheme. Initially, 1,4-butanediol (5 g, 50 mmol) was con-
verted to the aldehyde 2 (2.7 g, 32%) by PCC oxidation fol-
lowing the selective protection of mono-hydroxyl group.
The addition of hydroxylamine to the aldehyde 2 and a sub-
sequent treatment with N-chlorosuccinimide in DMF gen-
erated the N-hydroxyiminoyl chloride 3 as reported by
Howe and coworkers.® The furazan ring was formed by the
dimerization of the nitrile oxide which was generated in situ
from the iminoyl chloride 3 in 34% yield.’ Since the iso-
lation of the diol 5 was not easy due to its high solubility
in water, the least amount of water was used for the depro-
tection of furoxan 4. Through repeated column chro-
matography (5% MeOH/CH,Cl,), the diol 5 was obtained in
73% yield. The diol 5 was reacted with p-TsCl and po-
tassium thiolaceatate by sequence to produce furoxan ITb in
65% yield."™"" The similar synthetic scheme was applied to
prepare the furoxan (Ila).">"

Treatment of the furoxan IIb with NaBH, (2.5 equivalent)
generated the corresponding thiol-containing furoxan in low
yield.* Also, the cleavage of furazan ring was confirmed by
the NMR spectroscopic data. Currently, a mechanistic study
for the potential NO-generation from the furoxans Ila and
IIb is in progress.

As a conclusion, furoxan derivatives Ila and IIb con-
taining protected thiol were designed and prepared for the
first time as mechanistic probe of NO generation via the in-
tramolecular thiol-nitronate interaction.
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