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between AG?; and Gutmann donor number. If we assume
that the dissociative mechanism is predominant in acetoni-
trile, the figure of Strasser et al. tells us that AG#, will
be about 79 kJ/mol. This is 12-28 kJ/mol larger than obser-
ved AG* value, which indicates that dissociative mechanism
is improbable.
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A topological theory has been introduced to extend the theory of Balsara and Nauman to evaluate the entropy of
inhomogeneous polymer solutions. Previous theories have considered only the terms about the displacement of junction
points, while the present theory has obtained a more complete expression for the entropy by adding the topological
interaction terms between strands. There have been predicted the characteristics of the spinodal decomposition and
the interfacial tension of polymer solutions from the resultant expression. It is exposed that the theoretically predictive
values show good agreement with the experimental data for polymer solutions.

Introduction

Topological theories have recently played a great role in

studying various physical properties including the elasticity -

of polymers. The theories which have systematically studied
the rubber elasticity so far are the phantom network theo-

ries'™® headed by Flory ef al. and the topological network
theories” 2 headed by Iwata ef al. Since phantom network
theories have dealt with the energies of rubber elasticity
as only functions of the end-to-end distance between junction
points, and have not considered the effect of interaction bet-
ween chains by entanglement, these have recently retrogra-
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ded. On the other hand, topological network theories have
developed remarkably since these have explained very well
the effect of interaction between chains by entanglement.
Iwata has theoretically explained the various phenomena of
rubber elasticity by applying topological theories to the poly-
mer systems consisting of only a single kind of polymers.'°~!?
The models with which he has dealt are mainly confined
to the SCL (simple cubic lattice) ongs,"'~" and he did not
obtain detailed transformation matrices and related topologi-
cal contribution terms of entropy in conjunction with the
tetrahedral lattice (THL) model (called the body-centered
cubic lattice (BCL) model earlier by our previous work!).
He has analyzed the theory of Balsara and Nauman about
polymer solutions in view of topological approach. The ques-
tion of how the entropy caused by strands is bound up with
interaction between chains of polymer systems has systema-
tically examined in detail. Here, a topological theory for poly-
mer solutions has been evolved by assuming that the poly-
mer solutions have the structure of the THL model. It is
assumed that all the junction points of polymer solutions
form the THL model for some average time interval.

In the present work, the entropy term caused by interac-
tion between strands has been topologically derived based
upon the THL model. We have topologically extended the
theory of Balsara and Nauman by combining the obtained
topological entropy term with the entropy one caused by
displacement of junction points. In the result, a discrepancy
between the original theory of Balsara and Nauman and ex-
perimental data is removed. The theoretically predictive val-
ues are in good agreements with the experimental data.

THL Model

This tetrahedral lattice (THL) model has been known as
the body-centered cubic lattice (BCL) one by our previous
work.”® The distribution functions and transformation matri-
ces about the THL model had already been offered by our
previous work.*~® In the present work, the contribution
term of entropy caused by interaction between polymer
strands is derived from topological distribution functions by
assuming that the structure of polymer-solvent systems
forms a large aggregate of the THL model.

THL model is the one in which the junction points of
polymer networks are located at the points of a body-cen-
tered cubic lattice, and in which the arrangement of four
strands projected from each junction point always takes the
tetrahedral structure. The picture of the three dimensional
structure of the THL model is given in Figure 1, where
solid lines denote linearly compressed strands and small cir-
cles represent junction points. Here a word strand means
a polymer chain which joins two neighboring junction points.
A word junction point means the jointing part of strands
in the networks.

In the THL model, it is assumed that a polymer solute
chain aggregate is regularly arranged at the lattice points,
in turn with the solvent chain aggregate. For example, in
Figure 1, the black closed circles including A and C repre-
sent the sets of junction points of polymer solute molecules,
and the white open circles including B and D represent those
of polymer solvent molecules. Especially, in the case that
solvent molecules have lower molecular weight which does
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Figure 1. The three dimensional structure of the THL (tetrahe-
dral lattice) model, where solid lines denote strands and small
circles represent junction points. The black closed circles inclu-
ding A and C represent the sets of junction points of polymer
solute molecules, and white open circles B and D represent those
of polymer solvent molecules. A junction point, J., is plotted
as the junction point surrounded with a regular square. A junc-
tion point, J., is plotted as that with a regular triangle. The
length of BE, EF, and EG is all two without unit.

not form cross-link, the open circles represent the sites to
which the end point of solvent molecules attach. In short,
the network structure of the THL model is composed of
the aggregate of polymer solute molecules and the aggregate
of solvent molecules. In each chain aggregate, junction points
are classified into two categories according to the methods
of their combination with neighboring strands. One is the
set of junction points corresponding to the apexes of lattices
(e, the junction point surrounded with a regular square
of Figure 1), and the other to the body centers of lattices
(i.e, the junction point surrounded with a regular triangle
of Figure 1).

Let J.,’s be junction points of the former and J,4's the latter.
For either /.,'s or J./'s, two different spatial orientations per
junction point can be allocated in the way of combination
with four neighboring strands around a given junction point.
The effects of these two arrangements, however, are essen-
tially identical in view of contribution to the free energy
of the system, so it doesn't matter which of them is chosen
in going on discussing. In usual, it is convenient to select
a J, in the central part of the system as an origin of the
coordinates.

Conveniently, if the length of an edge of lattices is taken
as two without unit (ie, the distance of BE, EF, and EG
is all two in Figure 1), the coordinates of every junction
point can be readily described as the set of three components
having only values of integers. Figure 2 represents the char-
acteristic combination modes of strands around the general
junction points J,’s and J,.'s, and shows the spatial orienta-
tions of strands defined on the basis of a J,, in addition
to the coordinates of junction points.

Independently of /.. or J,4 if I is taken as a position vector,
the following equations give its components and their areas;

I=G 1 &)
i=—1, =I+1, -, I-1,1
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Figure 2. The characteristic combination modes of strands
around the general junction points J, (a) J. (b). This picture
shows the spatial orientations of strands defined on the basis
of a J,, in addition to the coordinates of junction points.

j==J <J+1, -
k=—K, —K+1,

/=17
 K-1 K ey,

where I ], and K all take the values of positive integers.
It is necessary to note that the components of every J. all
have values of even integers, and that those of every [
have only values of odd integers. The spatial orientations
of all the strands in the system are deduced to only four,
as plotted in Figure 2(b). Conveniently, let o; or o;;, (6=X,
Y, Z, and W) be a symbol which represents a strand. Then
the four spatial orientations of strands in the system are
defined as

X e=strand from J.G, j k) to JLt—1, j+1, k+1)
Y,,»=strand from J.(. 7, &) to J.G+1, j—1 k+1)
Z;»=strand from [.(, j &) to J,G+1 j+1, k—1)
Wix=strand from J..G, j, k) to Ju(i—1, j—1, k—1) (2)

The picture for these orientations is given in Figure 2(b).

The entropy term caused by interaction between strands,
AS,;, can be derived by using the contact distribution func-
tions of the THL model. The entropy change is called as
the topological entropy change of polymer chains. For the
THL model, the single contact probability between two
strands, g,(;), and the double one between two strands, A,(r,),
are given by® ¥

2
@ry=m* 3 Pu(O,In)
- 2 2
mr)=m g " 3 3 PulOulr) )

where m is the number of submolecules in a strand, and
7; is the position vector of the ith strand from the reference
junction point. P(O,lr.) is the single contact distribution
function between chains, and Pu(0O,,|7) is the double one
of the phantom network. P,(0,l7;) and P,(O,,|7;) are repre-
sented as

— 3K — K5/K.)
22

PO, 1r) = Gm*/ 20t Fu iKY exp| ) @

and

POy [7)=(9m?/ 4111,4{!.‘ {)iui'v:'AuiAvi||K e

exp( — 3K — KoK K>,) )

e ®)
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where /? is the root mean squared end-to-end distance of
the ith strand, and where #; and u," stand for positions of
an a segment of 7 strand and »; and »; stand for positions
of a b segment of the same strand. u;, v;, Au,, and Ay; have
the relation that w,=m—u, v;=m—v;, Aw,=lu,—u'l, and
Av,=lv,—v/|, respectively. K,;, K, and Ky of Eqgs. (4) and
(5) are given by

Vu,+ 1/vi+ 1/ Aui+1/Av, —1/Aui—/Av, )

Kl:( —1/Au;— 1/Av; Vu/+1/v+ 1/Au,+ 1/Av;

K :( 7al/;,'+fb/l)_,’ >
z rdul +r v

®

K=" u+r2iu +r %0, +rdv! — .— v, Vim+ —n")V/m

The Ky of Eq. (5) is a determinant of K,.
The number of distinguishable arrangements caused by
single contact among all the strands, €, is given by

ny-1
Q=amdT gy
n-1 2
=m) T (giam * 3 PuOIn)) @

n, being the number of lattice sites available to the (+ Dth
strand.

The number of distinguishable arrangement caused by
double contact among all the strands, {2, is represented
by

n1-1
=1/ _l:ll hy(r)

n1—1
)1 (@em ' 5 3 Puouln) ®
Evolving Eqs. (7) and (8) by following the procedure offered
in Refs. 10-15, the equations for £, and Q, are obtained
as follows;

Q.= QmeEm In((1—0)"*/(1—d—0.50%**) )]
and
Q= QmeEm In((1— )Y/ (1—¢—0.50%)"9) (10)

where ¢(r) is the local polymer volume fraction at » from
the reference point. The number of distinguishable arrange-
ments of the Flory-Huggins’s theory,’® Qzy, and the variable
& are given by

Q= (Um){z— 1" *} /1 an
e=(1/4) (Vo) @ n, (12)

where z is the coordination number of the lattice, », is the
number of the lattice sites, and « is the length of a strand.
The number 4 in the denominator of Eq. (12) represents
four directions of the strands attached to junction points.
Thus the total number of topologically distinguishable ar-
rangements caused by interaction among all the strands, £,
is given by

S}hm () 4_S]h
=QmEm In((1-9)"*/(1—6—0.50)") (13)

Eqg. (13) is one of the most important parts of our present
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work, and a very valuable expression obtained by expanding
the topological theory of Iwata to the THL model.

For phantom network theories, the entropy of polymer sys-
tems has been analyzed so far only by the contribution terms
caused by displacement of junction points. In topological net-
work theories, the change of entropy and free energy has
been more completely considered by adding the contribution
terms of entropy caused by interaction among strands to
those caused by displacement of junction points.

Eq. (13) has important meanings in the fact that it offers
the source of topological entropy based upon the structure
of the polymer network of the THL model. In the next sec-
tion, we consider how Eq. (13) contributes to expanding the
theory of Balsara and Nauman, how it removes the discrep-
ancy between theoretically predictive values and experimen-
tal data which the theory of Balsara and Nauman did not
solve, and how it explains good agreement between theoreti-
cal values and experimental data.

Topological Analysis of the Balsara
and Nauman’s Theory

This section is composed of deriving the mixed entropy
of polymer-solvent systems by combining the phantom net-
work entropy of junction points with the topological entropy
term of strands obtained in the previous section after obtai-
ning the entropy caused by displacement of junction points,
called the phantom network entropy. In the first place, the
process of deriving of the phantom network entropy by Bal*
sara and Nauman is described from now on.!”

Consider the polymer network of the THL model as an
aggregate of n lattice sites which contains a certain number
of polymer molecules. It is assumed that these molecules
are uniformly distributed throughout the » sites, except for
a small region centered around a lattice site. Now such a
small region is our system of interest. Let n, be the number
of sites contained in such a small region. It is necessary
to estimate the effect of the nonuniformity of the polymer
concentration on the entropic contribution of the lattice site
at o.

It is assumed that the concentration gradients are small
and the system is large compared with molecular dimen-
sions. Namely, the system contains a large number of mole-
cules. It is important to evaluate the number of ways of
adding the (i+ 1)th polymer molecule to the lattice consisting
of #n, sites, including the ; polymer molecules added previ-
ously. Molecules should be arranged in a way that establi-
shes and preserves the concentration gradient. In other wo-
rds, the number of available sites is not equal to the number
of vacant sites. Actually, larger proportions of vacant sites
are available at the points where the existent concentration
is high because it must remain high after the new molecules
are placed.

As offered previously, let m be the number of submole-
cules contained in a strand. The number of options available
to the first segment of the (+ th polymer chain is given
by (n (n,—im). The number of ways of arranging the (f+ 1)th
molecule, v;;, is given by

vir1=(m,—im) X 2(fy) X @—Dfz) X+ X @— D{f) (14)
| | —J | I | S
1st segme n2nd 3rd mth segment
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where f,; is the fraction of sites available to the nth segment
of the (+1)th strand and z is the coordination number of
the lattice. The local polymer volume fraction at » from the
reference, ¢(r), is assumed to be expressed as a Taylor series
in terms of the volume fraction at o."®

o =0,+[r VP, +1/2)[(r- VYD), (15)

For the THL model, the average volume fraction at a dis-
tance L from a randomly chosen lattice site can be expressed
as

DL)=Pay+ (1/4NV'D), L (16)

where @,y is the volume fraction averaged over the #, sites.
When a fixed concentration gradient is maintained, the frac-
tion of vacant sites which are available to a given molecular
segment decreases as the concentration increases and inc-
reases as the concentration decreases. For the THL model,
the fractiona! availability is given by

fi=1—im/n,— (1/4)(V'®);na’] an

where it is assumed that polymer strands are ideal chains
so that the average extension of n segments may be na?
a being the length of each segment. Therefore,
Vi+1= (na - lm)z[l - im/no - (1/4)(V2¢)ﬂ2](2 - 1)[1 -im/no
—(1/4)- (V*®),2a*]---(z— D[ 1—im/n,— (1/4)(V*D),ma’]
(18)
or

Vit1— [(no_ im)/(nom_l)]z(nn—'im + E)(Z—- 1)(nn_lm +2€)'“
@ Dn,—im+me) 19
where € is given by Eq. (12). Operating Eq. (19) so that

only terms of order € may be retained, consistent with the
assumption of small concentration gradients, we obtain

vir1=[,—imy*z— 1" m, ] [1+{€/(n,—im)}
{mGn +1)/2}] (20)

The total number of distinguishable arrangements, Q, is
represented as

n1—1
Qo =1/my) I vipy @1
i=0

Substitution of Eq. (20) into Eq. (21) on the condition that
the terms of order € are retained gives

1 (2= 2 )"1( € mim+1)
= (20 (1 =73
1 1 1
[na +n,,—m + +n,,—(n1—1)7n:|) @2
As known generally,
3 Lo0577215+1n nt— — - @3)
=k 2n

For large n, and n,, Q, can be accurately expressed as
_ 1 -1t )"1< € mim+1) [ n, ])

= ( " 1+ 2 In n,—nym
(24)
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In the case that m>1, Eq. (24) is transformed into
Q= Qel+(€ M/2In[1-¢]7Y (25)

where ¢ is the averaged polymer concentration in the n,
sites, and €y is given in Eq. (11).

Balsara and Nauman offered Eq. (25) as the core of their
theory, and regarded Eq. (25) as the equation from which
the entropy of polymer-solvent systems could be obtained.
As mentioned previously, however, Eq. (25) is only the parti-
tion function (the number of distinguishable arrangements)
of a phantom network theory obtained by the contribution
due to displacement of junction points. Therefore, the topolo-
gical partition, Eq. (13), must be added to Eq. (25) in order
to obtain the entropy of polymer-solvent systems more com-
pletely. Shortly speaking, the total partition function of the
mixed systems, £, is obtained by adding Eq. (13) to Eq.
(25). Namely,

Q=0+ Qo

=Qpf1+(€ m/2) n[1-9] D+ Qm €Em In((1—0)%/
(1 _6_ 0-562)5/4)

=Qp(1+(€ m/2) In[1-6]1"H+Qm € m(n[1-0])/
2—(5/4) In(1—6—0.5 o)

=Qp+(€ m/2) In[1—0] N+ € m(—n[1—0])/
2+(5/4) In[1—0—05 ¢?1° D)

=Qp(1+GE m/4) In[1-0—6%17Y (26)

Q of Eq. (26) is a position function indispensable to obtaining
the entropy of a mixed system. Eq. (26) has important mean-
ings in the fact that it is a more complete expression of
describing the entropy change of a mixed system, and an
equation of combing a topological network theory with a
phantom network theory. Similarly to the case of Eq. (13),
thus Eq. (26) is also one of important parts obtained in our
present work.

Letting 2, and Q, be the number of distinguishable ar-
rangements of the polymer and solvent molecules before
mixing, the total entropy change on mixing, AS, is given
by

AS=k(n [Qm/QQ]+In [1+GE m/4)
In{1—¢—05¢°}1) @0

where k is the Boltzmann constant.

Now consider the entropic contribution due to the lattice
site located at 0, AS,. Assuming slow spatial variations in
¢, this can be evaluated by dividing Eq. (27) by »n, and re-
placing ¢ by the local volume fraction ¢.

AS,= : (n [Qm/QQ]+1n [1— (GnamaVe/24)
In{1—6—05¢%}1) (28)

It is necessary to note that both V?$ and ¢ are now evaluated
at the reference point o. Neglecting terms involving €2,
then

Skma?

Ass:ASm_ 24

In(1— ¢ —0.56)V?% (29)

where ASgy is the Flory-Huggins's entropy of mixing per
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lattice site. Integrating Eq. (29) over the volume of the sys-
tem, V, the mixed entropy of an inhomogeneous system,
AS,, is given by®

ASn=[,[s(¢) — Skma’p/24(1— 6 — 0.50) 1dv (30)

where p is the number of sites per unit volume, and s(¢)
is the mixed entropy per unit voiume of the perfectly homo-
geneous mixture. An expression for the free energy of
mixing of the system, AG, can be obtained by combining
the mixed enthalpy of an inhomogeneous polymer solution
with Eq. (30). Expressing AG in the Landau-Ginzburg's form,
7 then

AG= Tg@+ (Vo1 Jds )

where g(¢) is the Flory-Huggins's free energy of mixing per
unit volume, and for the THL model % is represented by

2
x=%1 R—g [x+5/C2—20— 0] 32)

where yx is the Flory-Huggins’s interaction parameter, v; is
the molar volume of the solvent, and R; is the radius of
gyration of the ideal polymer chain. Generally, x can be re-
garded as the penalty related with the occurrence of gradi-
ents in a given solution. Eq. (32) predicts that this penalty
increases as the concentration of polymers increases, and
actually the penalty approaches infinity near the bulk state
(o—1).

Spinodal Decomposition of Polymer-Solvent
Systems

The characteristics of the spinodal decomposition of poly-
mer-solvent systems can be predicted by Egs. (31) and (32).
The analysis discussed here is based on the linearized
theory of spinodal decomposition by Cahn.® According to the
Cahn’s theory, the wavelength of concentration fluctuation,
Am, 1S given by

A =4nl —x/g"(¢) ]V (33

The A, of Eq. (33) plays a role of dominating the initial
stages of the decomposition of an unstable solution. g"(¢)
can be evaluated by the Flory-Huggins’s theory as follows;

0=l (34)

where T is the temperature of unstable solution, 7; the spi-
nodal temperature of the solution, and xr and ¥, are the
value of y at T and T, respectively. Combining of Egs. (32)-
(34) gives

Am=@nR:/3) O — x2 )/ [xr +5/2— 20— 9D} (35)
Assuming that
xr/xr=T/T; (36)
then
An=@2nRs/3V)(TYT— DAT/T+5/{xr,2— 20— 6317 (37)

Referentially writing down A, of the Balsara and Nauman’s
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theory, then
don=@nRe/3HUTST—DNT/T+ 3y, A=)} 12 (37"

Neglecting the entropic contribution of junction points and
strands in Eq. (37), the Van Aarsten’s equation for A, is
given as follows;

Am=(2nRe/3) 1= TyT] * (38)

Interfacial Tension of Demixed Polymer
Solutions

Cahn and Hilliard had already discovered the relationship
between interfacial tension and free energy of inhomoge-
neous solutions.'® According to their theory, the interfacial
tension, o, between two binary liquid phases a and B at
equilibrium is given by

(]
o=2[", [x Ag@)]™ do (39)

where Ag(¢) is the homogeneous free energy per unit vol-
ume of a mixture with concentration, ¢, referred to a stan-
dard state of an equilibrium mixture of a and B (see Ref.
18 for details). Letting o and B be the dilute phase and
the concentration phases, respectively, Ag(¢) about a poly-
mer-solvent system obeying the Flory-Huggins is represen-
ted as follows;

A= (L4 — )+ -0~ 10) 0)
where y, and Ji are scaled chemical potentials of the polymer
and solvent, respectively. u, and u, are given by

wp=1n ¢—(m—1)(1—0)+mx(1— o) (C3Y
w=In 1-0)+(1-1/m}o+y ¢ 42)

The values of p, and p, evaluated at equilibrium, p and
%, are given by

15 = (0" = py(0°)

1= (0% = 1(0°) (43
Combing Eq. (32) with Eq. (39) gives
_2RTR; (¥ 5 T —ue
T T e, J’w ([X+ 2—2¢—¢2][m(“’ W)

+-0) w-w))" do (44)

Referentially describing the interfacial tension, o, of the Bal-
sara and Nauman's theory in order to compare Eq. (44) with
their equation, then

2R T R; (¢
o= 6%, : J-oa ([X+

lfq, ][%(up—m)

+-0) w-w))" do (o)

Results and Discussion

The results of the Balsara and Nauman’s theory for poly-
mer-solvent systems are expanded by adding those of a to-
pological network theory of dealing with the interaction be-
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Figure 3. The h,(d) as functions of d, which is a distance be-
tween the centers of the strands, for the THL model. The solid
line represents the curves obtained by the Nose-Tan's sample
when the root mean squared end-to-end distance of a strand,
¢, is 0.32 m'”a, and the dashed one represents that by the Aars-
ten-Smolders’s when ¢ is 0.47 m'a.

tween strands in order to remove the discrepancy between
the original theory of Balsara and Nauman and experimental
data nearly to the zero it

It is assumed that the polymer-solvent systems considered
here are composed of the polymer networks of the THL
model. The detailed structure for these polymer networks
is plotted in Figure 1. The polymer network of joining the
junction points represented by black closed circles is an agg-
regate of polymer solute, that by white open circles is one
of solvents. It is regarded that the THL model offered here
is the reasonable structure of polymer networks when at-
tractive and repulsive force between chains are all conside-
red. In polymer networks of the THL structure, the way
of arranging of strands around junction points is plotted in
Figure 2. The core of topological network theories is in the
fact that the interaction between strands is regarded as the
principal contribution term to entropy and free energy for
polymer-solvent systems. Interaction between strands is clas-
sified into the term caused by single contact and that by
double. A central distance between strands is given by

lratrs —n—n'

d= 2 m”2 g

45)

where 7, and r,” are the position vectors representing both
end points of the a strand, and ;, and 7, those of the b
strand. g,(r) and Ah,(r) of Eq. (3) are readily transformed into
g,(d) and h,(d), respectively. In Figure 3, there are shown
the calculated curves of #,(d) about the Aarsten-Smolders’s
sample” and the Nose-Tan's sample® for the THL model
structure. In Figure 4, there are shown the calculated curves
of g;(d) about the Aarsten-Smolders’s sample and Nose-Tan’s
sample for the THL model structure. In Figures 3 and 4,
the solid lines represent the curves obtained by the Nose-
Tan’s sample when the root mean squared end-to-end dis-
tance of a strand, ¢, is 0.32 m'?g, and the dashed lines repre-
sent that by the Aarsten-Smolders’s when ¢ is 047 m'%a.
Since the value of ¢ of each sample strand is peculiarly de-
termined by various factors such as degree of polymerization,
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Figure 4. The g,(d) as functions of d, which is a distance be-
tween the centers of the strands, for the THL model. The solid
line represents the curves obtained by the Nose-Tan’s sample
when the root mean squared end-to-end distance of a strand,
g, is 0.32 m'?a, and the dashed one represents that by the Aars-
ten-Smolders’s when ¢ is 047 m'a.
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Figure 5. The fastest growing wave length, A, plotted as a
function of quench temperature. The black closed circles of the
picture represent the experimental values of Aarsten and Smol-
ders.” Three dashed lines represent the results of the original
theory of Balsara and Nauman for three values of xr,. The solid
line represents the calculated curve of our present theory for
the yr, value of 0.63.

concentration of solutions, temperature, and so on, the values
of ¢ of two sample strands differ from each other. It is self-
evident that the farther the distance between strands is, the
smaller the probability of contact between strands is. In fi-
gures 3 and 4, the value of h,(d) is greater than that of
2,(d) because the double contact probability is greater than
the single contact one due to the character resulting from
the relatively long length of a strand.

In Figure 5, the fastest growing wave length, A, is plotted
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Figure 6. Interfacial tension between demixed polymer solutions
as a function of the ratio of the polymer concentration in the
dilute phase to that in the concentrated phase. The black closed
circles represented the experimental data of Nose and Tan® for
the polystyrene-methylcyclohexane system (m=300). Three
dashed lines represent the result of the original Balsara and
Nauman'’s theory for three values of m. The solid line represents
the result of our present theory for the m value of 300.

as a function of quench temperature. The black closed circles
of the picture represent the experimental values of Aarsten
and Smolders® Three dashed lines represent the results
of the original theory of Balsara and Nauman for three val-
ues of y7. The solid line represents the calculated curve
of our present theory for the x5, value of 0.63. In other
words, three dashed lines represent.the results of Eq. (37'),
and the solid line the result of Eq. (37). From the comparison
of our present theory with the original Balsara and Nauman’
s, it is exposed that the discrepancy between the results
of the Balsara and Nauman’s theory and the experimental
data essentially results from the fact that the Balsara and
Nauman's theory did not include the effects of interaction
between polymer strands in calculating the entropy of poly-
mer-solvent systems. The experimental sample related with
Figure 5 is a 15% (by weight) solution of poly(2,6-dimethyl-
1,4-phenyleneether)[PPE] and caprolactam. The values of
parameters used in calculation are such as R;=0.02 pm,
#»=0.15, x7,=0.63, and ¢=0.47 m'?a. From Figure 5, we see
that the effect of interaction between strands is larger at
the higher quench depth than at the lower quench depth.
It is judged that such an aspect results from the fact that
for the higher quench depth the time interval about rear-’
rangement of polymer networks so the probability of interac-
tion between strands is greater.

In Figure 6, there is shown interfacial tension between
demixed polymer solutions as a function of the ratio of the
polymer concentration in the dilute phase to that in the con-
centrated phase. The black closed circles represented the
experimental data of Nose and Tan? for the polystyrene-me-
thylcyclohexane system (m=300). Three dashed lines repre-
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Figure 7. The free energy curves obtained from Egs. (30), (31),
and (34). The solid line represents the result of the Nose-Tan's
sample, and the dashed one represents that of the Aarsten-Smol-
ders’s sample.

sent the result of the original Balsara and Nauman’s theory
for three values of m. The solid line represents the result
of our present theory for the m value of 300. In other words,
three dashed lines represent the results of Eq. (44'), and
the solid line the result of Eq. (44). Comparing our present
theory with the original Balsara and Nauman’s, we see that
the discrepancy between the results of the Balsara and Nau-
man’s theory and experimental data is essentially caused
by the fact that the Balsara and Nauman's theory did not
include the effects of interaction between polymer strands
in calculating the entropy of polymer-solvent systems. The
experimental sample used in Figure 6 is demixed polysty-
rene (molecular weight=37,000)-methylcyclohexane. Such
experiments were carried out by Nose and Tan,? and they
measured the interfacial tension as a function of temperature
in addition to the coexistence curve for the system. Thus
there can be deduced the dependence of the interfacial ten-
sion on the composition of the two phases at equilibrium.
The fact that the ratio of the densities of polystyrene to
methylcyclohexane in solution has the value of 1.4 is used
in converting polymer weight fractions to volume fractions.
the values of parameters or constants used in calculation
are such as R;=027 m'* nm, v,= 128 cm*/mol, m =300, and
T=300 °K. From Figure 6, it is known that the effect of
interaction between strands is larger at the lower concentra-
tion ratio than at the higher concentration ratio, ¢%/¢Pf. It
is judged that such an aspect results from the fact that since
for the lower relative concentration ratio, the structure of
polymer networks between two liquid phases nearly resem-
bles each other, so the total interaction between strands over
two liquid phases is more largely increased.

In Figure 7, the free energy curves obtained from Egs.
(30), (31), and (34) are plotted over the reciprocal strain,
1/A. The solid line represents the result of the Nose-Tan’s
sample, and the dashed one represents that of the Aarsten-
Smolders’s sample. Since for the Nose-Tan’s sample the dis-
tance between strands is smaller than for the Aarsten-smol-
ders’s sample, it is self-evident that the values of the free
energy curve of the Nose-Tan’s is larger than those of Aars-
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Figure 8. The picture having enlarged Figure 6. As shown pre-
viously, the open circles are the experimental data points. Three
calculated curves of our present theory are offered according
to three given values of m.

ten-Smolders’s. The values of parameters used in calculation
are the same as those of Figures 5 and 6.

In Figure 8, the picture having enlarged Figure 6 is shown.
As shown previously, the open circles are the experimental
data points. Three calculated curves of our present theory
are offered according to three given values of m (le., 100,
300, and 500).

Conclusion

The original Balsara and Nauman’s theory, a kind of phan-
tom network theory, for polymer-solvent systems has been
expanded by adding the term of the topological interaction
between strands, so our extended theory explains very well
the characteristics of spinodal decomposition and interfacial
tension of polymer-solvent systems. The polymer-solvent
systems considered here are assumed to have the structure
of the THL network composed of polymer solutes and sol-
vents. It is judged that the discrepancy between the experi-
mental data and the original Balsara and Nauman’s theory
results from the fact that their original theory did not inc-
lude the results of interaction between strands.

It is exposed that the results of the expended theory show
good agreement with the given experimental data.

Finally, it is judged that the assumption of the THL struc-
ture for the given polymer-solvent systems is very reason-
able, based upon the fact that the extened theory explains
very well the given experimental data.

Acknowledgment. The Present Studies were Sup-
ported (in part) by the Basic Science Research Institute Pro-
gram, Ministry of Education, 1994. Project No. BSRI-94-3414.

References

1. Flory, P. J.; Rehner, J. J. J. Chem. Phys. 1943, 11, 521.



Reactivity-Selectivity Principle

. Edwards, S. F.; Freed, K. F. J. Phys. C. 1970, 3, 760.

. Graessley, W. W. Macromolecules 1975, 8, 865.

Ronca, G.; Allegera, G. J. Chem. Phys. 1975, 63, 4990.

. Flory, P. ]. Proc. R Soc. London Ser. A. 1976, 351, 351.

. Ziabicki, A.; Walasek, J. Macromolecules 1978, 11, 471.

. Langley, N. R. Macromolecules 1968, 1, 348.

. Deam, R. T.; Edwards, S. F. Philos. Trans. R. Soc. London
Ser. A 1976, 66, 3363.

. Graessley, W. W.; Pearson, D. S. J. Chem. Phys. 1977,
66, 3363.

10. Iwata, K.; Kurata, M. J. Chem. Phys. 1969, 50, 4008.

11. Iwata, K. /. Chem. Phys. 1980, 73, 562. 1981, 74, 2039.

1983, 78, 2778. 1985, 83, 1969.
12. Iwata, K. J Chem. Phys. 1982, 76, 6363. 1982, ibid 6375.
13. Son, J. M.; Pak, H. Bull Korean Chem. Soc. 1989, 10,

0N Y W

©

Bull. Korean Chem. Soc. 1995, Vol 16, No. 3 277

34.

14. Son, J. M.; Pak, H. Proc. Coll. Natur. Sci, SNU 1988,
13, 47.

15. Son, J. M.; Ph. D. Thesis, SNU, Seoul, Korea, 1989.

16. Flory, P. J. J. Chem. Phys. 1942, 10, 51.

17. Balsara, N. P.; Nauman, E. B. J Polymer Sci. 1988, 26,
1077.

18. Cahn, J. W.; Hilliard, J. E. /. Chem. Phys. 1958, 28, 258.

19. Cahn, J. M. Trans. Metal. Soc. 1968, 242, 166.

20. van Aarsten, J. J. Europ. Polymer J. 1970, 6, 919.

21. van Aarsten, J. J.; Smolders, C. A. Europ. Polymer J. 1970,
6, 1105.

22. Nose, T.; Tan, T. V. J. Polym. Sci. Polym. Lett. Ed. 1976,
14, 705.

Mechanistic Significances of the Reactivity-Selectivity Principle
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The relationship between the signs of piy. pioy and p; and validity of the reactivity-selectivity principle (RSP) has
been derived: RSP is valid when W=p,q-py0/p; is negative. The analysis of 100 reaction series indicated that for
normal Sy2 reactions involving variations of substituents in the nucleophile (X) and in the substrate (Y) RSP is valid
only for a dissociative type for which pyg, is negative, whereas for the acyl transfer reactions with rate-limiting break-
down of the tetrahedral intermediate RSP is valid in general for all substituent changes, X, Y and/or Z (substituent
on the leaving group). The trends in the validity of RSP for certain types of reaction can be useful in supplementing
the mechanistic criteria based on the signs of pi, pioy and p;.

Introduction

Increasing reactivity of a reagent is often accompanied by
decreasing selectivity. This so-called Reactivity-Selectivity
Principle (RSP)! has attracted considerable interests of ex-
perimental organic chemists. However, usefulness of RSP
as a general rule has been questioned, because there are
so many experimental examples of invalid cases.? Recently,
Exner® has shown in his work involving statistical examina-
tion of RSP with 100 reaction series that RSP is valid only
in half (50%) of the cases studied. He concluded, however,
that although RSP is not evidently a general rule “investiga-
tions of selectivity and its relation to reactivity should be
continued and used possibly to characterize a certain type
of reaction or a certain mechanism”.

For the past several years we have been developing the
cross-interaction constants, p; in eq. 1,* as a mechanistic tool
for organic reactions in solution.

log(k;/koo) = pioyoi + pioys; + PiGi0; oY)

For a typical Sy2 TS, Scheme 1, i, j=X, Y or Z where X,
Y and Z represent the nucleophile, substrate and leaving group,

LPXZ,

Scheme 1.

respectively. pi, (or pi,) denotes the Hammett p value for
variation of a; (or o) with ¢;=0 (or o,=0).

In this work, we examine the relationship between the
signs of pig, pioy and p; and the validity of RSP, which can
be used to characterize a certain type of reaction or mecha-
nism, as Exner has suggested in his paper.

Derivation of the Relationship

Let us consider a simple reaction system consisting of



