Oxidative Coupling of Benzylamines into N-Benzylbenzaldimines with MnTPPCl/t-BuOOH

Sung Soo Kim* and Santosh S. Thakura

Department of Chemistry, Inha University Incheon 402-751, Korea. *E-mail: sungsoo@inha.ac.kr Received April 15, 2005

Key Words: Benzylamines, N-Benzylbenzaldimine, Electron transfer, Deprotonation, Coupling

Mn(III)-based oxidative free radical cyclizations and annulations have been extensively investigated. The rate determining step in the oxidation of acetic acid by Mn(OAc)₃ involves an oxo-centered triangle of Mn(III) with bridging acetates, The loss of a proton from 1 gives 2 that undergoes rapid electron transfer to the oxo-centered metal system forming 3.3 adds to the alkene to produce 4 (Scheme 1).

Benzylamine has been catalytically transformed into Nbenzylbenzaldimine 8 via various pathways.4-7 3-Methylumiflavin⁴ promotes conversion of C₆H₅CH₂NH₂ to **8** under acid catalyzed thermal conditions. Aerobic oxidative dehydrogenation of benzylamine⁵ is catalyzed by molybdenium-vanadium salt to yield 8. Clay-catalyzed reaction of benzylamine⁶ is suggested to involve C₆H₅CH₂=NH that react another benzylamine for the formation of 8. Polypyrrole catalyst⁷ is effective in the dehydrogenation of benzylamine with O₂ to make **8**. The same reaction⁸ is also catalyzed by a aniline trimer. Monoamine oxidases 9,10 catalyze the oxidation of primary amines to give iminium cation that is hydrolyzed to form the aldehydes. Benzylamines¹¹ undergo oxidative coupling to give 8 by Mn(II)/ tert-BuOOH. Here Mn(II) is oxidized to Mn(IV)=O by action of tert-BuOOH, which is the actual oxidizing agent for the multi-oxidation steps.

Variously substituted benzylamines undergo oxidative reactions to give **8** by the catalysis of Mn(V)=O that is formed from MnTPPC1/t-BuOOH. The series of reactions

follow similar steps of reaction to those of reference 11. Mn(III) ion of MnTPPC1 may make a complex with TBHP to give Mn(V)=O that may provoke electron transfer from benzylamine forming aminium cation, $C_6H_5CH_2\dot{N}H_2$ 5. 5 becomes acidic enough to expel benzylic proton to produce $C_6H_5\dot{C}H_1\dot{N}H_2$ 6 that is oxidized by Mn(IV) with formation of $C_6H_5CH_1\dot{N}H_2$ 7. Benzaldehyde might result from hydrolysis of 7. However our control experiment at sub-zero temperature shows no trace of benzaldehyde (aldehydic proton: δ = 10 ppm) but indicates instead gradual increase of benzylic hydrogen of 8 (benzylic proton: δ = 4.84 ppm) with reaction time of 5, 10, 15, 30 min and 1 hr, respectively. This clearly tells hydrolysis of 7 do not occur at all. Instead 7 reacts with benzylamine to yield a complex that fragments to give 8 and NH₃ (Scheme 2 and Table 1).

The yield of *N*-benzylbenzaldimines stays within 90-95%. Electronic effects of substituents show no appreciable influence on yield. Comparable yields are observed between electron-withdrawing and electron-donating groups. Only o-, m-, dichlorobenzylamine (entry 8) takes reaction time of 4h for the oxidation. This may be due to steric hindrance of o-chloro-group. Neucleophilic addition of benzylamine to benzylidenemalonitriles in CH₃CN¹² is known to occur. α -Methylbenzylamine shows extremely slow reactivity towards the oxidation due to the steric effect of α -methyl group. Cyclohexylamine and n-heptylamine indicate no occurrence of the oxidative process. This could be ascribed to stronger bond dissociation energy of α -C-H that prevents cleavage of

$$Mn^{III} = O \xrightarrow{Mn^{III} = O} CH_3$$

$$1$$

$$2$$

$$4$$

$$Mn^{III} = O \xrightarrow{Mn^{III} = O} CH_2$$

$$Mn^{III} = O \xrightarrow{Mn^{III} = O} CH_2$$

$$Mn^{III} = O \xrightarrow{Mn^{III} = O} CH_2$$

$$Mn^{III} = O \xrightarrow{Mn^{III} = O} CH_3$$

$$Mn^{III} = O \xrightarrow{Mn^{III} = O} CH_3$$

$$Scheme 1$$

^aDr. Thakur was a visiting scholar from Shree Shankaracharya College of Engineering & Technology on a grant from BK21 (2001).

Scheme 2

Table 1. Oxidative Coupling of Benzylamines by MnTPPCI/TBHP

A TOPOCI TOUR

YC ₆ H ₄ CH ₂ -NH ₂		$\frac{\text{MnTPPCl, TBHP}}{\text{CH}_3\text{CN, r.t.}} \text{YC}_6\text{H}_4\text{CH=N-CH}_2\text{-C}_6\text{H}_4$			2-C ₆ H ₄ Y
Substrate		TBHP	MnTPPCl		CH ₃ CN
1 mmol		$1~\mathrm{mmol}$	0.01 mmol		1 mL
Entry Substra		te Product		t	Yield ^{a,b}
1		NH ₂	N		94%
2	H ₃ C	∕ NH₂	H ₃ C	CH	91% l ₃
3	CI	∕NH ₂	CI	CI	93%
4	CI	NH ₂	CI	CI	94%
5	F	NH ₂	F	F	93%
6	F	∕NH ₂	F	F	90%
7	CH ₃	NH ₂	CH ₃	CH ₃	91%
8	CI	∕_NH ₂	CI	CI	95% I

^aAll the reactions were run for 1h except for entry 8. Entry 8 takes 4 h for the complete reaction to take place. ^bIsolated yield.

proton from **5**. C₆H₅CH₂OH can hardly undergo oxidation because stronger oxidation potential may prohibit formation of **5**

The reaction mechanism may involve oxo-manganese complex (Mn^V=O) which engenders electron transfer that is followed by deprotonation, oxidation, and coupling with extrusion of NH₃. The oxidation potential of $C_6H_5CH_2NH_2$ is quite important in determining the reactivity because $C_6H_5CH_2OH$ is not oxidized under the same condition. The oxidation is influenced by steric hindrance and α -C-H bond strength. Steric effect can be profound enough to delay the reaction in case of o,p-dichlorobenzylamine.

Experimental Section

Materials. All the reagents are commercially available from major supplier. MnTPPCl is the Manganese(III) 5,10,15,20–tetra(4-pyridyl)-21*H*,23*H*-porphine chloride tetrakis (methochloride) which is supplied from Aldrich.

Oxidative Coupling Reactions of Benzylamine by tert-Butyl Peroxide Catalyzed by MnTPPCl. C₆H₅CH₂NH₂ (1 mmol) was added at r.t. to solution of CH₃CN (1 mL) containing MnTPPCl (0.01 mmol). That was stirred for 15 min. t-BuOOH (1 mmol) was then mixed with the foregoing solution and the reaction went on for 1 h. The reaction mixture underwent evaporation with rotatory evaporator. The residue was put to Silicagel chromatography with 1:9 ratio of ethyl acetate/n-hexane. The product was identified utilizing ¹H and ¹³C NMR, and mass spectrum.

Control Experiment for the Reaction Mechanism in Oxidative Couplings of Benzyl Aldehyde. Benzylamine (5 mmol), t–BuOOH (5 mmol), MnTPPCl (0.25 mmol) and CH₃CN (5 mL) were reacted in the same manner of the coupling reactions. An aliquot of reaction mixture was withdrawn periodically for the NMR analysis to detect the formation of C₆H₅CHO (δ = 10 ppm) and 4 (δ = 4.84 ppm). The analysis of NMR shows gradual formation of 4 and indicates asbsence of benzaldehyde.

N–**Benzylbenzaldimine:** 1 H NMR (CDCl₃, 200 MHz): δ 4.88 (s, 2H), 7.40–7.49 (m, 8H), 7.83–7.85 (d, 2H), 8.45 (s, 1H).

¹³C NMR (CDCl₃, 200 MHz): δ 64.9 (CH₂ aliphatic 1C), 126.8-136.6 (CH benzene 10C), 136.1 C=N-C benzene 1C), 139.2 (C benzene 1C) 164.8 (C from N-imine 1C). MS (EI, 70 eV) m/z 194 (M^{•+}), 117, 104, 91.

N–(4–Methylbenzyl) 4–methylbenzaldimine: 1 H NMR (CDCl₃, 200 MHz): δ 2.32 (s, 3H), 2.36 (s, 3H), 4.75 (s, 2H), 7.15–7.21 (m, 6H), 7.63–7.67 (d, 2H), 8.32 (s, 1H). 13 C NMR (CDCl₃, 200 MHz): δ 20.9 (CH₃ aliphatic 1C), 21.3 (N=C-CH₃ aliphatic 1C), 64.6 (CH₂ aliphatic 1C), 127.8–129.2 (CH benzene 8C), 133.6 (C=N-C benzene 1C), 136.3 (C benzene 2C), 140.8 (C benzene 1C), 161.5 (C from Nimine 1C). MS (EI, 70 eV): m/z 223 (M*+), 208, 131, 105.

N–(4–Chlorobenzyl) 4–chlorobenzaldimine: 1 H NMR (CDCl₃, 200 MHz): δ 4.74 (s, 2H), 7.26–7.67 (m, 6H), 7.68–7.71 (d, 2H), 8.30 (s, 1H). 13 C NMR (CDCl₃, 200 MHz): δ 64.0 (CH₂ aliphatic 1C), 128.5-129.3 (CH benzene 8C), 132.7 (C benzene 1C), 134.3 (C=N-C benzene 1C), 136.7 (C benzene 1C), 137.5 (C benzene 1C), 160.7 (C from N-imine 1C). MS (EI, 70 eV): m/z 263 (M $^{\bullet}$ +), 225, 151, 125, 89.

N–(3–Chlorobenzyl) 3–chlorobenzaldimine: ¹H NMR (CDCl₃, 200 MHz): δ 4.75 (s, 2H), 7.23–7.62 (m, 6H), 7.78–7.79 (d, 1H), 8.29-8.30 (d, 1H), 8.30 (s, 1H). ¹³C NMR (CDCl₃, 200 MHz): δ 64.1 (CH₂ aliphatic 1C), 125.9-130.8 (CH benzene 8C), 134.3 (C benzene 1C), 134.8 (C benzene 1C), 137.6 (C=N-C benzene 1C), 141.0 (C benzene 1C), 160.7 (C from N-imine 1C). MS (EI, 70 eV): m/z 263 (M $^{\bullet}$ +), 228, 151, 25, 89.

N–(3–Fluorobenzyl) 3–fluorobenzaldimine: 1 H NMR (CDCl₃, 200 MHz): δ4.79 (s, 2H), 6.94–7.57 (m, 8H), 8.38 (s, 1H). 13 C NMR (CDCl₃, 200 MHz): δ64.1 (CH₂ aliphatic 1C), 113.7-130.1 (CH benzene 8C), 138.1 (C=N-C benzene 1C), 160.9 (C benzene 1C), 161.7 (C benzene 1C), 164.2 (C from N-imine 1C). MS (EI, 70 eV): m/z 231 (M $^{\bullet +}$), 201, 135, 122, 109.

N–(4–Fluorobenzyl) 4–fluorobenzaldimine: 1 H NMR (CDCl₃, 200 MHz): δ4.49 (s, 2H), 6.94–7.76 (m, 6H), 7.78–7.79 (d, 2H), 8.33 (s, 1H). 13 C NMR (CDCl₃, 200 MHz) δ 64.0 (CH₂ aliphatic 1C), 115.1 (CH benzene 8C), 132.2 (C=N-C benzene 1C), 134.9 (C benzene 1C), 161.7 (C benzene 1C), 163.1 (C from N-imine 1C), 165.5 (C benzene 1C). MS (EI, 70 eV): m/z 231 (M $^{\bullet}$ +), 212, 137, 122, 109.

N–(3–Methylbenzyl) 3–methylbenzaldimine: 1 H NMR (CDCl₃, 200 MHz): δ2.33 (s, 3H), 2.36 (s, 3H), 4.76 (s, 2H), 7.13–7.63 (m, 8H), 8.33 (s, 1H). 13 C NMR (CDCl₃, 200 MHz): δ21.5 (N=C-CH₃ aliphatic 1C), 21.6 (CH₃ aliphatic

1C), 65.3 (CH₂ aliphatic 1C), 125.3-131.8 (CH benzene 8C), 136.3 (C=N-C benzene 1C), 138.3 (C benzene 2C), 139.4 (C benzene 1C), 162.4 (C from N-imine 1C). MS (EI, 70 eV): *m/z* 223 (M^{•+}), 208, 131, 118, 105, 91, 77.

N–(3–Iodobenzyl) 3–iodobenzaldimine: 1 H NMR (CDCl₃, 200 MHz): δ4.72 (s, 2H), 7.02-7.71 (m, 6H), 7.72-7.75 (d, 1H), 8.13–8.14 (d, 1H), 8.24 (s, 1H). 13 C NMR (CDCl₃, 200 MHz): δ 64.4 (CH₂ aliphatic 1C), 94.9 (C benzene 1C), 94.9 (C benzene 1C), 126.5-138.6, 143.3 (CH benzene 8C), 139.9 (C=N-C benzene 1C), 141.5 (C benzene 1C), 161.0 (C from N-imine 1C). MS (EI, 70 eV): m/z 447 (M $^{\bullet}$ +), 320, 244, 217, 165, 90.

N–(2,4–Dichlorobenzyl) 2,4–dichlorobenzaldimine: 1 H NMR (CDCl₃, 200 MHz): δ 4.85 (s, 2H), 7.19–7.34 (m, 5H), 8.01–8.06 (d, 1H), 8.77 (s, 1H). 13 C NMR (CDCl₃, 200 MHz): δ 61.4 (CH₂ aliphatic 1C), 127.1-133.4 (CH benzene 8 C), 133.9 (C=N-C benzene 1C), 135.3 (C benzene 1C), 135.8 (C benzene 1C), 137.3 (C benzene 1C), 158.7 (C from N-imine 1C). MS (EI, 70 eV): m/z 333 (M $^{\bullet+}$), 185, 159, 123, 89.

Acknowledgements. The authors warmly thank The Center for Biological Modulators for financial support.

References

- 1. Snider, B. B. Chem. Rev. 1996, 96, 339.
- 2. Hessel, L. W.; Romers, C. Rec. Tran. Chem. **1969**, 88, 545.
- (a) Fristad, W. E.; Peterson, J. R. J. Org. Chem. 1985, 50, 10. (b) Fristad, W. E.; Hershberger, S. S. J. Org. Chem. 1985, 50, 1026. (c) Fristad, W. E.; Peterson, J. R.; Ernst, A. B. J. Org. Chem. 1985, 50, 3143. (d) Fristad, W. E.; Peterson, J. R.; Ernst, A. B.; Urbi, G. B. Tetrahedron 1986, 42, 3429. (e) Yang, F. Z.; Trost, M. K.; Fristad, W. E. Tetrahedron Lett. 1987, 28, 1493.
- Kim, J. M.; Bogadan, M. A.; Mariano, P. S. J. Am. Chem. Soc. 1993, 115, 10591.
- 5. Neumann, R.; Levin, M. J. Org. Chem. 1991, 56, 5707.
- 6. Bank, S.; Jewett, R. Tetrahedron Lett. 1991, 32, 303.
- 7. Higuchi, M.; Ikeda, I.; Hirao, T. J. Org. Chem. 1997, 62,
- 8. Hirao, T.; Fukuhara, S. J. Org. Chem. 1998, 63, 7534.
- 9. (a) Silverman, R. B. *Acc. Chem. Res.* **1995**, *28*, 355. (b) Silverman, R. B.; Wang, X. *J. Org. Chem.* **1998**, *63*, 7357.
- 10. Miller, J. R.; Edmondson, D. E. Biochemistry 1999, 38, 13670.
- Kim, S. S.; Thakur, S.; Song, J. Y.; Lee, K. H. Bull. Korean Chem. Soc. 2005, 26, 499.
- 12. Oh, H. K.; Yang, J. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 2188.