BULLETIN

OF THE

KOREAN CHEMICAL SOCIETY

ISSN 0253-2964 BKCSDE 25(6)
Volume 25, Number 6 June 20, 2004

Communications

Enantioselective Addition of Diethylzinc to Aldehydes Catalyzed by Polymer-Supported Chiral Amino Thioacetates

Young-Mok Kim and Myung-Jong Jin*

School of Chemical Science & Engineering, Inha University, Inchon 402-751, Korea Received February 23, 2004

Key Words: Enantioselective addition, Polymer-supported ligand, Amino thioacetate, Diethylzinc

Enantioselective addition of dialkylzinc to aldehydes in the presence of a catalytic amount of chiral ligands is known to be one of the most important methods for the synthesis of optically active secondary alcohols. Much efforts have been made to search for efficient chiral ligands in the reaction. Previously we showed the use of chiral amino thioacetate ligands 1 in the enantioselective addition. The ligands induced an efficient addition reaction with high ee's. The successful development of homogeneous ligands has been often followed by attempts to attach them onto an insoluble polymeric support. Immobilized ligands provide several advantages such as simplified workup procedures, easy recovery and reuse in successive reactions. In the case of expensive materials, their regeneration is attractive from an economical viewpoint. Our interest in the area led us to

3a: P = 1% crosslinked polystyrene **3b**: P = 2% crosslinked polystyrene prepare polymer-supported amino thioacetates **3** which may have such unique advantages over the homogeneous counterpart. We now report our preliminary results using them as chiral ligands for the enantioselective addition of diethylzinc to aldehydes.

Frechet and Soai have independently developed polymersupported ephedrine 2 for the enantioselective addition of diethylzinc to aldehydes.^{5a,5b} According to the established experimental procedure, (1R,2S)-(-)-ephedrine was attached to 1% crosslinked partially chloromethylated polystyrene (1.0 mequiv/g, 100-200 mesh). The polymer 2 was then subjected to treatment with MsCl and Et₃N in CH₂Cl₂ at 0 °C for 2 h, followed by subsequent treatment with a 3-fold excess of potassium thioacetate in DMF-H₂O (1/1) at 65 °C for 24 h to yield polymer-supported amino thioacetate 3a. The polymer **3b** was also prepared with 2% crosslinked chloromethylated polystyrene in the same procedure as for 3a. The conversion of 2 to 3 seemed to be nearly quantitative from weight gain and elemental analysis (0.84 mmol of ligand per gram of polymer). The catalytic behavior of the polymer 3 was then tested in the addition of diethylzinc to aldehyde. The reaction conditions and results are summarized in Table 1. All the aldehydes were converted to the corresponding (R)-secondary alcohols with moderate to excellent optical purity in high yields. The amount of 3a had a small effect on asymmetric induction. Increasing the amount of 3a from 4 to 8% led to a small increase in the enantioselectivity and 6 mol% of 3a was enough to give satisfactory enantioselectivity and reactivity. When the reaction was performed with 2% crosslinked polymer 3b, somewhat low enantioselectivity was observed. The addition

^{*}Corresponding Author. e-mail: mjjin@inha.ac.kr

Table 1. Enantioselective Addition of Diethylzinc to Aldehydes

RCHO +
$$Et_2Zn$$
 Ligand hexane, RT R R R R

Entry R Ligand (h) $(\%)^a$ $($						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Enter	R	Ligand	Time	Yield	E.e.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Entry			(h)	(%) ^a	$(\%)^b$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 ^c	C_6H_5	2 (10%)	48	83	89
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	C_6H_5	3a (4%)	18	80	90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	C_6H_5	3a (6%)	18	85	91
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4^d	C_6H_5	3a (6%)	18	82	90
7^d C_6H_5 $3b$ (6%) 24 80 80 80 8° ρ -Cl-C ₆ H ₄ 2 (10%) 48 78 83 9 ρ -Cl-C ₆ H ₄ $3a$ (6%) 15 95 91 10^d ρ -Cl-C ₆ H ₄ $3a$ (6%) 15 92 90 11 ρ -Cl-C ₆ H ₄ $3b$ (6%) 24 93 90	5	C_6H_5	3a (8%)	18	83	91
8^{c} ρ-Cl-C ₆ H ₄ 2 (10%) 48 78 83 9 ρ-Cl-C ₆ H ₄ 3a (6%) 15 95 91 10^{d} ρ-Cl-C ₆ H ₄ 3a (6%) 15 92 90 11 ρ-Cl-C ₆ H ₄ 3b (6%) 24 93 90		C_6H_5	3b (6%)	24	84	82
9 ρ -Cl-C ₆ H ₄ 3a (6%) 15 95 91 10 ^d ρ -Cl-C ₆ H ₄ 3a (6%) 15 92 90 11 ρ -Cl-C ₆ H ₄ 3b (6%) 24 93 90	7^d	C_6H_5	3b (6%)	24	80	80
10 ^d ρ -Cl-C ₆ H ₄ 3a (6%) 15 92 90 11 ρ -Cl-C ₆ H ₄ 3b (6%) 24 93 90	8^c	ρ -Cl-C ₆ H ₄	2 (10%)	48	78	83
11 ρ -Cl-C ₆ H ₄ 3b (6%) 24 93 90	-	ρ -Cl-C ₆ H ₄	3a (6%)	15	95	91
F = 30	10^d	ρ -Cl-C ₆ H ₄	3a (6%)	15	92	90
100 110 011 0 (100) 10 50	11	ρ -Cl-C ₆ H ₄	3b (6%)	24	93	90
12° o-MeO-C ₆ H ₄ 2 (10%) 48 79 51	12 ^c	o-MeO-C ₆ H ₄	2 (10%)	48	79	51
13 <i>o</i> -MeO-C ₆ H ₄ 3a (6%) 18 95 80	13	o-MeO-C ₆ H ₄	3a (6%)	18	95	80
14 <i>o</i> -MeO-C ₆ H ₄ 3b (6%) 18 93 77	14	o-MeO-C ₆ H ₄	3b (6%)	18	93	77
15^{c} ρ -MeO-C ₆ H ₄ 2 (10%) 48 75 54	15 ^c	ρ -MeO-C ₆ H ₄	2 (10%)	48	75	54
16 ρ -MeO-C ₆ H ₄ 3a (6%) 24 72 90	16	ρ -MeO-C ₆ H ₄	3a (6%)	24	72	90
17 ρ -MeO-C ₆ H ₄ 3b (6%) 24 76 83	17	ρ -MeO-C ₆ H ₄	3b (6%)	24	76	83
18^{c} $C_{6}H_{13}$ 2 (10%) 48 71 21	18 ^c	C_6H_{13}	2 (10%)	48	71	21
19 C_6H_{13} 3a (6%) 18 97 60	19	C_6H_{13}	3a (6%)	18	97	60
20 C ₆ H ₁₃ 3b (6%) 18 95 56	20	C_6H_{13}	3b (6%)	18	95	56

^aIsolated yield. ^bEntries 1-17: Determined by HPLC analysis (chiralcel OD column). Entries 19-20: Determined by GC analysis (β-DEX 60 m capaliary column). Absolute configuration was assigned by elution order from a chiral column. ^cPublished results, see ref. 5b. ^dRecycled polymer 3a was used.

of diethylzinc to benzaldehyde and *p*-chlorobenzaldehyde in the presence of 6 mol% of **3a** took place with 91% ee's. Other aromatic aldehydes also underwent highly enantioselective additions. For an aliphatic aldehyde, heptanal, moderate enantioselectivity was recorded. It is noteworthy that the polymer-supported amino thioacetates **3** give higher reaction rate and better asymmetric induction than previously reported polymer amino alcohol **2**. The polymers was easily separated by filtration and the recycled polymers were found to be also effective.

A typical procedure for the present catalytic reaction is described as follows: Benzaldehyde (106 mg, 1.0 mmol) was added to a suspension of polymer **3a** (68 mg, 6 mol% based on ephedrine) in hexane (2.4 mL) at 0 °C. Diethylzinc (2

mL, 1.0 M in hexane) was then added dropwise. The mixture was stirred at room temperature for 15-24 h, observing the progress of the reaction by TLC. The reaction was quenched by the addition of dilute aqueous NH₄Cl. The polymer was removed by filtration and washed several times with CH₂Cl₂. The combined extracts were dried over anhydrous MgSO₄ and evaporated under reduced pressure. The residue was purified by column chromatography. The polymer was washed successively with water, MeOH and THF.

In summary, we have shown that polymer-supported chiral amino thioacetates **3** catalyze efficiently the enantioselective addition of diethylzinc to aldehydes. The chiral polymers could be reused without any significant loss in catalytic activity and enantioselectivity. Further studies are in progress to introduce different chiral ligands on polymeric supports.

Acknowledgement. This work was supported by Inha University Research Grant (INHA-30230). We thank S.-H. Kim for experimental assistance in initial work.

References

- For reviews: (a) Asymmetric Catalysis in Organic Synthesis; Nouori, R., Eds.; Wiley-Interscience: New York, 1993. (b) Noyori, R.; Kitamura, M. Angew. Chem. Int. Ed. Engl. 1991, 30, 49. (c) Soai, K.; Niwa, S. Chem. Rev. 1992, 92, 833.
- For some recent examples: (a) Dangel, B. D.; Polt, R. Org. Lett. 2000, 2, 3003. (b) Jin, M.-J.; Kim, S.-H.; Jung, J.-A.; Lee, H.-Y. Bull. Korean Chem. Soc. 2000, 21, 33. (c) Panev, S.; Linden, A.; Dimitrov, V. Tetrahedron: Asymmetry 2001, 12, 1313. (d) Superchi, S.; Mecca, T.; Giorgio, E.; Rosini, C. Tetrahedron: Asymmetry 2001, 12, 1235. (f) Sato, I.; Urabe, H.;, Ishii, S.;, Tanji, S.; Soai, K. Org. Lett. 2001, 3, 3851. (g) Le Goanvic, D.; Holler, M.; Pale, P. Tetrahedron: Asymmetry 2002, 13, 119. (h) Priego, J.; Mancheno, O. G.; Cabrera, S.; Carretero, J. C. J. Org. Chem. 2002, 67, 1346; (i) Ruzziconi, R.; Piermatti, O.; Ricci, G.; Vinci, D. Synlett 2002, 747. (j) Shintani, R.; Fu, G. C. Org. Lett. 2002, 4, 3699. (q) Miguel, Y.; Ramon, D. J.; Prieto, O. Tetrahedron: Asymmetry 2003, 14, 1103.
- 3. Jin, M.-J.; Ahn, S.-J.; Lee, K.-S. Tetrahedron Lett. 1996, 37, 8767.
- For reviews: (a) Smith, K. Solid Supports and Catalysts in Organic Synthesis; Ellis Horwood and Prentice Hall: New York, 1992. (b) Bhalay, G.; Dunstan, A.; Glen, A. Synlett 2000, 12, 1846.
- (a) Itsuno, S.; Frechet, J. M. J. J. Org. Chem. 1987, 52, 4140. (b) Soai, K.; Niwa, S.; Watanabe, M. J. Org. Chem. 1988, 53, 927. (c) Holte, P.; Wijgergangs, J.-P.; Thijs, L.; Zwanenburg, B. Org. Lett. 1999, 1, 1098. (d) Shaikh, N. S.; Deshpande, V. H.; Bedekar, A. V. Tetrahedron Lett. 2002, 43, 5587. (e) Lesma, G.; Danieli, B.; Passarella, D.; Sacchetti, A.; Silvani, A. Tetrahedron: Asymmetry 2003, 14, 2453.