Investigation of Fluoroaluminate Complex Formation Using NMR Spectroscorpy Joon Hyung Sohn, Hyean-Woo Lee, Dong-Pyou Han, Byung-Il Yeh, Jong-Whan Choi, Seunho Jung, † and Hyun-Won Kim * Department of Biochemistry and Institute of Basic Medical Science, Yonsei University, Wonju College of Medicine, Wonju 220-701, Korea †Department of Microbial Engineering, Konkuk University, Seoul 143-701, Korea Received July 31, 1998 A number of enzymes or proteins involved in nucleotide binding or phosphate group transfer are sensitive to fluoride anions. Kinases and phosphatases are inhibited, while adenyl cyclases are generally activated. In all cases milimolar concentrations of fluoride are needed. It was also demonstrated that the presence of traces of aluminum or beryllium were required to activated adenyl cyclase with fluoride.² In G protein systems it was proposed that AlF₄⁻ and BeF₃⁻ might act as phosphate analogues, and that AlF₄⁻ and BeF₃⁻ in the form of tetrahedral complexes structurally similar to phosphate, combined with GDP at the position occupied by γ-phosphate of GTP.^{3,4} This phosphate analogue model of fluoroaluminate complex has been widely accepted not only for G proteins but also for many other proteins.^{5~8} Since the activation was maximal at the fluoride concentration where the proportion of AlF₄ had been calculated to be maximal, tetrahedral geometry was assumed for the fluoroaluminate complex which would be binding to the active site. In the case of mitochondrial F₁-ATPase irreversible inhibition was found to occur in the presence of aluminum, fluoride, and ADP, and was proposed to be the result of complexation of AlF₄⁻ with ADP at the catalytic site. 8 Fluoroberyllatee in the presence of ADP was also found to inhibit irreversibly the mitochondrial F₁-ATPase.⁹ Taking advantage of the virtually irreversible nature of the inhibition of F₁-ATPase by fluoroaluminate or fluoroberyllate, the ratio of ADP, berylium or aluminum, and fluoride were measured. In case of aluminium induced inhibition, the bound inhibiting species was found to be ADP-AlF₄, which was suggested to mimic the pentacoordinated 'intermermediate state' in the catalytic sites of F₁. In the case of berylliuminduced inhibition, depending on the initial fluoride concentration, ADP·Be₁F₂ and ADP·Be₁F₃ were found to be bound at the nucleotide binding site of F₁-ATPase. These species were suggested to mimic the condensed state in the pathway of ATP synthesis. Fluorometal complexes representing intermediate state of catalysis can be widely used for the structural investigation of many catalytic pathways involving hydrolysis of nucleotide. 10~12 Other than activity and fluoride concentration relationship, so far there were no direct experimental approaches for the fluorometal complex formation. We investigated the formation of fluoroaluminate complexes in variety of conditions using ¹⁹F and ³¹P NMR spectroscopy. ## **Experimental Section** NMR spectra and operating conditions. ¹⁹F NMR spectra were obtained at 338.79 MHz. All spectra were taken with 2.5 ml samples in a 10 mm diameter tube. A capillary insert containing D₂O was used as an internal filed frequency lock. Chemical shift of free fluoride was taken as 0 ppm. All the spectra were obtained at 25 °C using pulse-and-collect sequence with 50° pulse and interpulse delay of 0.6 seconds. ³¹P NMR spectra were obtained at 125.7 MHz. All the spectra were taken with 0.5 mL samples containing 50 μL D₂O in a 5 mm diameter tube. Chemical shift of phosphoric acid was taken as 0 ppm. All the spectra were obtained at 25 °C using pulse-and-collect sequence with 75° pulse and an interpulse delay of 3 seconds. **Fluoroaluminate complex formation**. To a solution of 1 mM AlCl₃ in Tris/HCl buffer (pH 7.5), NaF, ADP, and MgCl₂ was added from a 500 mM, 100 mM, 500 mM stock solution, respectively. 2000 scans were collected for each ¹⁹F spectrum. ## **Results and Discussion** By varying the concentration of NaF at a fixed concentration of AlCl₃ (1 mM), the formation of fluoroaluminate complexes was investigated. Figure 1 shows 19F spectra of fluoroalumnate complexes formed at 1 mM, 5 mM, and 10 mM NaF. In this fluoride concentration range only two detectable fluoroaluminate complexes appear at chemical shifts of -32.7 ppm and -33.7 ppm. ¹⁹F NMR spectrum at 1 mM NaF concentration showed only one identifiable resonance at -33.7 ppm and a very tiny peak at -32.7 ppm at -32.7 ppm which is difficult to differentiate from noise (Figure 1). As the concentration of fluoride increased in the range of 1 to 10 mM, the relative intensity of the resonance at -32.7 ppm increased. In the calculated distribution curve¹³ the only species which keeps increasing as the concentration of NaF increases in the range of 1 to 10 mM is hydrated AlF₄⁻ which is only a minor species at 1 mM NaF. Thus, ¹⁹F resonance at -32.7 ppm is likely to be from AlF₄⁻. The comparison of calculated distribution curve¹³ and the relative intensity change of the resonance at -33.7 ppm also suggests that the resonance at -33.7 ppm is likely to be from AlF₃, or the sum of AlF₃ + AlF₃(OH)⁻ in case ¹⁹F NMR spectroscopy 482 **Figure 1.** ¹⁹F spectra of fluoroaluminate complex formation in the absence of ADP. To a solution of 1 mM AlCl₃ in Tris/HCl buffer (pH 7.5) NaF was added from a 500 mM stock solution to make solutions of 1 mM, 5 mM, and 10 mM. ¹⁹F spectra were obtained from each solution with pulse-and-collect sequence with 50° pulse and interpulse delay of 0.6 s. 2 K scans were collected for each ¹⁹F spectrum. could not differentiate the number of H₂O or OH-. As shown in Figure 2, fluorometal complex formation in combination with 1 mM ADP caused two more resonances to appear in ¹⁹F spectrum, a large peak at -29.8 ppm and a tiny peak at -31.6 ppm. Both ¹⁹F resonances are presumed to be from ADP-fluoroaluminate complexes in which AIF₄⁻ or AIF₃ combine with ADP. In contrast to the appearance of two ¹⁹F resonances which exhibited similar intensities at bio- **Figure 2**. ¹⁹F spectra of fluoroaluminate complex formation in the presence of ADP. To a solution of 1 mM AlCl₃, 1 mM ADP in Tris/HCl buffer (pH 7.5) NaF was added from a 500 mM stock solution to make solutions of 1 mM, 5 mM, and 10 mM. ¹⁹F spectra were obtained from each solution with pulse-and-collect sequence with 50° pulse and interpulse delay of 0.6 s. 2 K scans were collected for each ¹⁹F spectrum. logically active NaF concentration in the absence of ADP (Figure 1), only one dominant ADP-fluoroaluminate species (-29.8 PPM) was observed in the whole range of 1 to 10 mM NaF in the presence of ADP (Figure 2). This result may suggest the existence of only one biologically active ADP-fluoroaluminate complex. The analysis of fluoroaluminateinduced inhibition of F₁-ATPase showed the binding stoichiometry of 4 mol fluoride per mol ADP which favour the complex AlF₄-.9,14 Recent x-ray crystallographic analysis of G protein activated with aluminum fluoride also cleary showed the binding of complex GDP·AlF₄-·H₂O to G_α.¹⁰ Thus, a new large peak at -29.8 ppm appeared following the addition of 1 mM ADP (Figure 2) may be from ADP·AlF₄-. It is known that ADP is a strong complexing agents that compete with F- as a ligand. 13 However, the comparison of Figure 1 and Figure 2 shows that the presence of ADP rarely affect the overall equilibria of fluoroaluminate complex formation. The ¹⁹F spectrum of the fluoroaluminate complex in the presence of MgCl₂ showed two resonances similar to those in the absence of MgCl₂ (Figure 3). However, at 10 mM only a single resonance at an intermediate chemical shift appeared, suggesting rapid chemical exchange between two species. In contrast to ¹⁹F spectra of fluoroaluminate in the absence of MgCl₂, in which the presence of ADP caused two more resonances to appear, the addition of ADP in the presence of MgCl₂ did not show any detectable differences from the spectra for those without ADP. This result suggests that the ADP-fluoroaluminate complex in solution may not occur in the presence of MgCl₂. ADP-fluoroaluminate complex formation was also investigated using ^{31}P NMR spectroscopy (Figure 4). When AlCl₃ and NaF was added to a solution of ADP, resonances from α - and β -phosphate of ADP disappeared and the two new resonances appeared. These may indicate the formation of ADP-fluoroaluminate. However, the appearance of two resonances rather than one suggests that fluoroaluminate complex binds between α - and β -phosphate of ADP in solution, rather than at the γ -phosphate position observed inside the **Figure 3.** 19 F spectra of fluoroaluminate complex formation in the presence of Mg^{2+} . To a solution of 1 mM AlCl₃, 1 mM MgCl₂, (± 1 mM ADP) in Tris/HCl buffer (pH 7.5), NaF was added from a 500 mM stock solution to make solutions of 1 mM, 5 mM, and 10 mM. 19 F spectra were obtained from each solution with pulse-and-collect sequence with 50° pulse and interpulse delay of 0.6 s. 2 K scans were collected for each 19 F spectrum. **Figure 4.** ^{31}P spectra of ADPfluoroaluminate complex formation. ^{31}P spectra of 1 mM ADP, 1 mM ADP + 1 mM AlCl₃ + 5 mM NaF (ADP + Al + F), and 1 mM ADP + 1 mM AlCl₃ + 5 mM NaF + 1 mM Mg²⁺ (ADP + Al + F + Mg) were compared in Tris/HCl buffer (pH 7.5). ^{31}P spectra were obtained from each solution with pulse-and-collect sequence with 75° pulse and interpulse delay of 3 s. 2 K scans were collected for each ^{31}P spectrum. protein. $^{10\text{--}12}$ The addition of $MgCl_2$ to the solution caused these new resonances to disappear, which supports the results of ^{19}F NMR spectroscopy showing that ADP-fluoro-aluminate complex cannot be formed in the presence of Mg^{2+} . Mg^{2+} is believed to form much tighter ADP complex than fluoroaluminate between $\alpha\text{-}$ and $\beta\text{-}phosphate$ in solution. The inhibition of F_1 -ATPase with fluoride and aluminum or beryllium in combination with ADP is known to require the presence of Mg^{2+} , 9,14 As ADP-fluoroaluminate is formed between α - and β -phosphate only in the absence of Mg^{2+} in solution, the inhibition of F_1 -ATPase in the presence of $MgCl_2$, seems to be due to a binding of fluoroaluminate complex, which is isomorphous to phosphate, to a phosphate binding region (γ -position) of a certain catalytic site at which ADP already bound independently rather than the binding of a fluoroaluminate-ADP complex itself to a particular catalytic site. **Acknowledgment.** This work was supported by a grant No. KOSEF 981-0510-050-2 from the Korea Science and Engineering Foundation. ## References - 1. Hewitt, E. J.; Nicholas, D. J. D. In *Metabolic inhibitors*; Hochester, R. M., Quastrel, J. H., Eds.; Academic Press: New York, U. S. A., 1963; Vol. 2, p 31. - Sternweis, P. C.; Gilman, A. G. Proc. Natl. Acad. Sci. USA 1982, 79, 4888. - 3. Bigay, J.; Deterre, P.; Pfister, C.; Charbre, M. *FEBS Lett.* **1985**, *191*, 181. - 4. Bigay, J.; Deterre, P.; Pfister, C.; Charbre, M. *EMBO J.* **1987**, *6*, 2907. - Carlier, M. F.; Didry, D.; Melki, R.; Chabre, M.; Casteels, T. *Biochemistry* 1988, 27, 3555. - 6. Combeau, C.; Carlier, M. F. J. Biol. Chem. 1988, 27, 17429. - Lange, A. J.; Arion, W. J.; Burchell, A.; Burcjell, B. J. Biol. Chem. 1986, 261, 101. - Lunardi, J.; Dupuis, A.; Garin, J.; Issartel, J. P.; Michel, L.; Chabre, M.; Vignais, P. V. *Proc. Natl. Acad. Aci. USA* 1988, 85, 8958. - Dupuis, A.; Issartel, J. P.; Vignais, P. FEBS Lett. 1991, 255, 47. - Sondek, J.; Lambright, D. G.; Noel, J. P.; Hamm, H. E.; Sigler, P. B. *Nature* 1994, 372, 276. - Rittinger, K.; Walker, P. A.; Eccleston, J. F.; Smerdon, S. J.; Gamblin, S. J. *Nature* 1997, 389, 758. - Schindelin, H.; Kisker, C.; Schlessman, J. L.; Howard, J. B.; Rees, D. C. *Nature* **1997**, *387*, 370. - Martin, R. B. Biochim. Biophys. Res. Commun. 1988, 155, 1194. - Isaartel, J. P.; Dupuis, A.; Unardi, J.; Vignais, P. V. Biochemistry 1991, 30, 4726.