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The Schlogl model with the first order transition for a photochemical reaction is considered to study the dynamic
behaviors in the neighborhood of the Gaussian white noise by obtaining the explicit results of the time-dependent
variance and time correlation function with the aid of approximate methods based on the stationary properties of
the system. Then, we discuss the effect of external noise strength on the stability of the model at steady states

in detail.

Introduction

Since Kuznetsov et al. studied the nonnegligible effect of
the external noise in the valve oscillator,! theoretical and
experimental studies of external noise situations have been
reported in the various systems, such as nematic liquid crys-
tals,” dye laser system,® nonlinear electric circuits,*™® chemi-
cal reactions’™® and hydrodynamic instabilities.’ External
noise refers fluctuations present in a given system which
are not self-originating. External fluctuations exist when the
system is placed in a stochastic environment or when it is
stochastically driven by the controlled fluctuations of one
of parameters. The mathematical modeling of external noise
is made of by considering a deterministic equation appro-
priate in the absence of external fluctuations. One then con-
siders the external parameter which undergoes fluctuations
to be a stochastic variable. The noise term of the stochastic
differential equation obtained in this way is usually of multi-
plicative character, that is, it depends on the instantaneous
value of the variables of this system. It does not scale with
the size of system and is not necessarily small. We may
consider the external noise as an external field which drives
the system.

An external noise is frequently assumed to satisfy the Or-
nstein-Uhlenbeck process, which is only stationary Markov
stochastic process.” "2 The Gaussian white noise is obtained
from the Ornstein-Uhlenbeck process by reducing the cont-
rollable correlation time of the noise, which is the parameter
independent of the noise intensity, to zero."" For the sake
of mathematical convenience the Gaussian white noise is
most frequently applied in the theoretical stochastic process.

An external noise plays an important role in the nonequi-
librium system: this can postpone or advance instabilities,
and may even give rise to the shift of bifurcation diagram
and transitions to states that cannot occur if the surroundi-
ngs are free from random fluctuations. Such phenomena are
interpreted theoretically as being associated with changes
that the stationary probability distribution of the system un-
dergoes when the noise parameters are varied,’* 2 even
though the general validity of this indirect interpretation is
questioned.

We consider the Schlogl model with the first order transi-

tion for a photochemical reaction. It is assumed that the
system is spatially homogeneous and the size of the system
is large enough to neglect internal fluctuations.® The pur-
pose of the present paper is to investigate the effect of the
external fluctuating light intensity on the stability of the
steady states in the neighborhood of the Gaussian white
noise by obtaining the explicit results of the time-dependent
variance and time correlation function with the aid of approx-
imate methods based on the stationary properties of the sys-
tem. The approximate method at the unstable steady state
is different from that at the stable steady state. The result
at the unstable steady state will directly shows that the
strength of the external noise stabilizes the unstable steady
state.

In the next section the Fokker-Planck equation near the
region of the Gaussian white noise is obtained with the aid
of the wide band perturbation method.®®~! By using the
equation we discuss the effect of external light on the sta-
tionary properties of the system at the steady states. With
approximate methods based on the stationary properties we
obtain time-dependent variance and correlation function at
the stable and unstable steady states. In the final section
we discuss the results of the present work.

Theory

Let us consider the Schlogl model with the first order
transition for a photochemical reaction®

A+X§—‘;’ x+B8, xVc, 4

-1
where k&, and k_, are the rate constants, A is the reactant
and B and C denote the products. The rate equation for
the concentration of the intermediate X is given by the fol-
lowing equation with the concentrations of A and B being
held constants

dX k
D XX I~ expaX); y= kj‘;,
L
1=k t=k-iBe @

In Eq. (2), X denotes the concentration of the intermediate;
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T is the real time; I; is the incident light intensity and o
is the absorption coefficient times the sample thickness. It
is assumed that the intensity satisfies the Ornstein-Uhlen-
beck process

'ddT 1) = — M)+ o&(D), 3)

where A>0, &(t) is the external noise and o is the strength
of the noise. The noise satisfies the Gaussian condition

&Y =0, LW =380-t"). @)

In Eq. (4) 8(t-t') is the Dirac delta function. The steady state
values of X for small extinction coefficient are

Xs = Or + (Y - aIs)I/Z- (5)

When I,>v/a, there exists only one stable steady state, X,=0.
In the case of I;<y/a, there are three steady states, that
is, X;=0 and % (y—als)"? corresponding to the unstable and
stable steady states, respectively.

Defining the fluctuating parts of X and I from the steady
state values due to the noise

O=XO—X,, i{O=1O—1, ©®

the equations for x(f) and #(f) become

2 (0= (= 32— ol ()~ TP 20— X, + DO,

- it)=~ it + o) @

According to the Wiener-Khintchine theorem!? the spectral
density of the Ornstein-Uhlenbeck process is

NN 2nc’

S @)= i@ =—2"25, ®
where

i@=["_ exp—iot it at, ©)

Considering the linear parts of Eq. (7), the time correlation
functions are

Go(t)=<x(t)(0)> = <x(0Y®> exp— It /tmacr
Gn'(t) = <l(t)1(0)> = —ii exXp— |tl /tnm'sh (10)

where we have assumed that {x(£)(t))=0 and HBEE)) =0.
The correlation times for the fluctuating macroscopic variable
and intensity are given by

T 3XSL—y+als T A
Substituting A=¢"? into Eq. (8) and transforming into o/,
the spectral density may be written as

=&, (@<1). (1n

2nc®
ot 12

S{@)= o)) =
In the limit &0 the correlation time t,,; tends to zero and
the bandwidth goes to infinity. Therefore, the spectrum be-
comes flat, but the spectral density vanishes for all finite
frequencies. This is noiseless limit. To avoid ending up with
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a noiseless limit and to obtain the correct white noise limit,
the intensity of external fluctuations should be appropriately
scaled in Eq. (7). Scaling / by i/e, the spectral density is

" z(m) i(w)* 2no’
S*(w)=< " )= oI 13)
The above spectral density has the finite value of 2no® in
the limit €0 called as the Gaussian white noise limit.!'~*
Since our main interest is to investigate dynamic behaviors
near the region of the Gaussian white noise, Eq. (7) can
be rewritten in the neighborhood of the white noise

8k

%x(t)—f(xﬁ i, L io=-Lio+ e,

where

SO =y —3X—alx —3Xx* —x°, gl0)= ~a(X,+x). (15)
The Fokker-Planck equation corresponding to the above Lan-
gevin equation is

—i Pit)=——9 - (fn)+ —g(x)z(t)]F(xz 1)

1

+ 9 2P t)+ —%22 Pid). (16)

The exact solution for the nonlinear Fokker-Planck equation
is not available. Thus, using the wide band perturbation ex-

pansion®~!! and taking the result up to the & term, we
have
P(x,i,8)=Px,HP(); a7
P(z)— -4 D(t)P(z)]+ 2 a e P(z) 0, (18a)
9 —[__¢ o® 9 oy @ .
2 Pu= axf(x)+ > 2 g0~ b [P
hx)=g(x)— *[g(x)'flx) — fx)'glx)]. (18b)

The above equations show that the noise is in the stationary
state and the macroscopic variable in the Gaussian white
noise limit satisfies the Stratonovich stochastic process, that
is, in the e—>0 limit the Fokker-Planck equation corresponds
to the Stratonovich definition of the following Langevin
equation with multiplicative noise'?

& 0= 110+ a0 (9

At first, let us consider the static properties of the model
in order to discuss the nonlinear effect on the time correla-
tion function. Considering the & term as the perturbed term,
the stationary solution of Eq. (18) may be written as

Pw=Pupf1+ecr B AIED JeF T o,

gkx) of gy
where
= [ f&)g)—figly  fx)?
c=[" rwf o 02 g(x)z} & @D
P, (x)=Ng(x)! exp[ ‘gi((:)T dy]. 22)
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In Eq. (22) N is the normalization constant.
At the stable steady state P..(x) is assumed to be Gaussian,
that is,

(2 e
P‘""(x)-( na’c’ ) P i @)
P(x) is up to the second .order of x
P=P@ 1+ {Zatot+ 8x - L [atot+ 2y—al T} ).

24)

For the case of e<€1 we may neglect the perturbed term
in Eq. (24). The variance and nth order moments are

=" ppode= (250)

~ _J0, if » is an odd positive integer,
ame= ) : oo .
all possible pair products, if n is an even positive
integer. (25b)

There is great interest in the unstable steady state, X,=0.
The stationary probability distribution is

) i 26y—al)
[B-1 exp— ot B= YO.ZO'Z >0

P )=

’

v
@oPLE/2)
26)

where I'(8/2) is the gamma function. In the case of the Gaus-
sian white noise limit (e=0), the dependence of the station-
ary probability distribution on the light intensity and noise
strength is shown in Figure 1a. The figure shows that the
parameters affect the state of the system profoundly. When
B>1, the probability distribution is a binodal Gaussian distri-
bution with the maximum at x=+ [y—al,~a%?/2]"% The
maximal peaks show that the deterministic stable steady
states are shifted to * [y—al;—a?6%/21"* due to the external
noise. When B=1 and <1, the distribution is a Gaussian
and a delta-like distribution, respectively. Including the per-
turbed term, P,(x) is®

P)=PutO{1~ 2030~ al)— 4+ (y—al,—271} @)

In Eq. (27) the perturbed term should be less than unity.
As ¢ increases, the probability distribution deviates from the
case of £=0. As shown in Figure 1b, the distribution of
£=0.10 corresponds to that of e=0. When £¢=0.31, it slightly
deviates from that of e=0. Thus, when £<1, the term in-
cluding € may be neglected. The variance and nth order
moments are

=" PPutts=y—al, 28)

15,20, (o= T (2 +ka?e, (29)

if n is a positive integer.

As shown in Eq. (10), the time correlation function bet-
ween the fluctuating macroscopic variables does not include
the noise effect at the steady states and especially diverges
at the unstable steady state. As previously stated, the state
of the system at X,=0 is severely influenced by the noise
strength. Thus, let us obtain the correlation function from
the nonlinear equation.
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Figure. 1. (a) The stationary probability distribution of Eq. (26).
The heavy dotted, heavy solid and heavy dashed lines denote
the distribution of =147, 1 and 0.84, respectively. The values
of parameters, when B=147, are y=2, a=0.3, [,;=5.5 and o=
2.3. In the case of p=1, y=2, a=05, ;=3 and c=2. When
B=084, y=2, a=03, ,=6.0 and 6=2.3. (b) The dependence
of the probability distributions on the parameter, €. The heavy
and light lines denote £¢=0 and 0.31, respectively. The lines of
=0.1 correspond to those of €é=0. The values of other parame-
ters are the same as in Figure la.

Using Eq. (7), the time correlation function satisfies the
following equation

L GO=(—I-al)GO— GOHO), (30
With the aid of Eq. (18b) the time-dependent variance is
—;—t &) =ofa2X 2+ 2{(y — 3X.2—al) + ale?[1+ €4y

= 12X — ol ) JKx(t)? < 2(1— 4e”a’0 D)) 3D

Since it is not available to obtain the exact solutions for
the time correlation function and variance, an approximate
method is introduced. The approximate method at the unsta-
ble steady state is different from that at the stable steady
state. Thus, dynamic behaviors at the stable and unstable
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Figure. 2. (a) The time-dependent variance at the stable steady
state. The dashed, heavy dashed and heavy dotted lines repre-
sent £¢=0, 0.10 and 031 for 2 (y—al)>a’s? respectively. The
solid, heavy solid and dotted lines denote £¢=0, 0.10 and 0.31
for 2(y—al,)<a’c? respectively. The values of other parameters
are y=2, a=0.3, <x(0»=0.01 and a=22. The light intensity
I,=3 (and 6) is taken for 2(y—al)>a’s® (and 2(y—al)<a’c?),
respectively. The same values of the parameters are used in
Figs. 2b and 3. (b) The comparison of the variances at the stable
steady state given in Egs. (34) and (36), when €=0. The results
of Eq. (34) for 2(y—al)> (and <)a’s® are represented by the

dotted and solid lines. The other heavy lines denotes the approx-
" imate results of Egs. (36).

steady states are discussed separately.
Let us first consider the Gaussian approximation at the
stable steady state and Eqs. (30) and (31) are reduced to

2 6= 20— al)+ 3D IGO) 32)

% & =alel(y—ol)+ 2{ —2(y—al) + a’o?[1— 11¢?
X (¢~ a1z (0% — 6(1 — 4a’cD){x (1) (33)

The explicit result of the variance is

> = DLEF2G(07] expy/At—E[D+2a4(00)]
2a[D+2a{x(0>) — (E+ 2a{x(0)>)exp\/At]

(34)
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Figure. 3. The comparison of the time correlation functions at
the stable steady state given in Egs. (37) and (38). When 2(y
—al)>a’e? the result of Eq. (38a) corresponds to with Eq. (37)
for the cases of £=0, and £¢=0.31. In the case of 2(y—al)<ad?,
the result of Eq. (38b) agrees well with Eq. (37) for the case
of €=0. For £=0.31 in the case of 2(y—al)<a’s? the function
deviates from that of ¢=0.

a=—6(1—4€’a’s?), b= —4(y—al)+2a’c’[1— 11y —al))],
c=a’ci(y—aly), (35)

D=b+\/A, E=b—\/A, A=b>—4ac.

The example of the dependence of {x(*)?) on the parameters
are shown in Figure 2a. The variance in the case of y-al,>a’
o? approaches to its stationary value more rapidly than that
of y-al,<a’c®. When £=0.10, the variances are almost the
same as those of £=0. As ¢ increases, the variance deviates
from the case of €=0. The results in the two cases are

2.2
27 [1—exp—atr-al)f], if 20/~ al)>a’?, (362)

<X(t)2>: 0.20'2
=3 [1—exp—2a’s*], if 2(y—al)<a’s®.  (36b)

The result of Eq. (36a) indicates that the deterministic and
noise terms play the major and minor roles, respectively.
However, Eq. (36b) shows that the very strong noise destroys
the order based on the deterministic equation. As {—>w, Eq.
(36a) corresponds to Eq. (25a), since the stochastic process
is based on the deterministic rate. Accordingly, we may say
that the approximation method is correct after long time.
The comparison between the results of Egs. (33) and (35)
is given in Figure 2b. Substituting Eq. (34) into Eq. (36),
we have

Git)=
< (0)2>[ D+ 2aG(0F) — (ED+~223 x(0)expy/A ¢ ]3(5-0)/2«\/;
xexp=2(r—ali+ 52 ). @7

The results in the two cases are
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Figure. 4. The dependence of variance at the unstable steady
state on €. The solid, dashed and heavy solid lines represents
£=0, 0.10 and 0.31, respectively. The values of other parameters
are y=2, a=0.3, I,=6, (x(0)»=0.01 and o=1.7.

[C'f(O)z)exp—2(y—als+—;—a202)t, if 26y—al)>a’c?, (38a)
CH=
2 22 12
0(0)2>[ﬁ] exp— 20y —ol, + 5 ac?),
if 2(y—al)<a’c’ (38b)

The comparison between the results given in Eqgs. (37) and
(38) is shown in Figure 3. The figure shows that the approxi-
mate results agree well with those of Eq. (37) except for
large ¢ in the case of 2(y-al;)<a’c? As the noise increases,
the correlation time rapidly decreases, but the noise has no
effect on the stability of the system.

Using the following assumption based on Eq. (29), we ob-
tain

G@OD =& +a’e’],
G @®yx(0)) =[x +&*0’1G(), (39

The variance and correlation function at X,=0 are given
by

% @)D =2{y—al,+a’?e¥(y — ol + 4’ ) Kx(t)>
—2(1— 4e%a®o?) <x(t)®)2. (40a)
2 G=Dr—al.—- 4@ ~ a%"IG0). (40b)

The time-dependent variance satisfies

10192 [ a’ — b ()b’
(0 a' —=b' ()

] =exp 2a't 41)

where
a'=y—al,+ e’y —al,+4d%6?), b'=1—4a’s®. (42)
In the ¢>0 limit we may rewrite Eq. (41) as

&0 (y—al) exp 2y—al)t
y—al,+ <O [exp 26y—al)t—1] "

Figure 4 shows that for small ¢ the results given in Egq.

CODES

(43)
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Figure. 5. The comparison of correlation functions at the unsta-
ble steady state given'in Eqgs. (45) and (46). The heavy dotted
and heavy solid lines denote the approximate results of Eq. (46)
for (y—al) >(and <) o?0% respectively. The dotted and solid
lines are the results of Eq. (45) for (y—al)) >(and <) o%? re-
spectively. The values of parameters are y=2, a=0.3, <x(0)*>=
0.01 and 6=2.2. The light intensity ;=3 (and 6) is taken for
y—al>a%? (y—al.<ac?).

(41) and (43) correspond well each other. For t—>c, the va-
riance of Eq. (43) corresponds to that of the steady state
given in Eq. (29), that is,
lim  &@» =D =y—dl. 44
=
Eq. (44) means that the assumption of Eq. (39) is quite rea-
sonable after long time. Substituting Eq. (43) into Eq. (40b),
we have

y—ol 1
y—al,+ &0 [exp 2(y—al)—1] 1

X exply — al,— a%c?)t. 45)

G(t)=<x(0)2>[

After long time the correlation function reduces to
GH=[x(0>(y—al)]”? exp—a’s™t. (46)

The correlation function of Eq. (46) is quite different from
Eq. (10) because the linear term is offset by a nonlinear
term and then the noise strength term remains only. The
above result. clearly shows that the noise stabilizes the un-
stable steady state. An example of the correlation function
of Egs. (45) and (46) is shown in Fig. 5. In the region of
short time Eq. (46) are quite different from Eq. (45). After
long time, however, the approximate result agrees well with
that of Eq. (45).

Conclusions

We have studied the statistical properties of the Schlogl
model with the first order transition when an external noise
acts on the model. Let us summarize the main results of
the present paper:

(1) The Fokker-Planck equation given in Eq. (18b) was
obtained by the wide band perturbation method. Some re-
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sults have been reported by using the different perturbation
method, that is, the approximate Fokker-Planck operator or
the approximate renormalized equation of evolution for the
Gaussian white noise.® 3 The results except that of Ha-
nggi et al.’® correspond to the present result for the long
time when the transient effects are neglected.

(2) If 2(y— al,)>a%c% the stationary probability distribution
is a binodal Gaussian distribution with the maximal peaks
at = [y—al,—a?6?*/2]"2 The peaks indicate that the deter-
ministic stable steady states + [y—al,]*? are shifted to +
[y—al,—a’c?/2]"* by the noise strength in the g¢—>co limit.
When 2(y—al)=a’s’, the distribution becomes Gaussian
with the peak at x=0. As the light intensity or the noise
strength increases further, it becomes a delta-like distribu-
tion.

(3) The noise strength decreases the correlation time be-
tween the fluctuating macroscopic variables when the system
is at the stable steady state. It has no effect on the stability
of the system. When the noise of very strong strength is
applied to the system, the order of the system based on
the deterministic equation is destroyed and thus the validity
of the Fokker-Planck equation is a question to be solved.

(4) The simple result of Eq. (45) directly shows that the
external noise stabilizes the unstable steady state.

We have pointed out some results of the present work.
Let us mention the important points which were not consid-
ered:

(A) The external noise, which satisfies the non-Gaussian
stochastic process, may give rise to phenomena which do
not occur for Gaussian white noise.0~142

(B) When internal and external fluctuations act simulta-
neously on a system with small size, both effects on the
nonequilibrium behaviors of the system have to be discussed
together.

The present model will be extended by using the two
points mentioned above.
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