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The effect of concentration fluctuations on the changes of azimuth and ellipticity are analytically obtained in a
binary chiral liquid mixture, when the incident light is completely linearly polarized above (or below) the
horizontal at 4% The important results are as follows; (1) When the binary liquid is in the critical region far
from the critical point, the ellipticity change is proportional to isothermal compressibility factor and the fifth
order of frequency. As the system approaches very close to the critical point, the change is proportional to the
third order of frequency and shows the logarithmic divergence. (2) In the case that the system is in the critical
region far from the critical point, the azimuth change is solely due to the molecular contribution. As the system
approaches to the critical point, the effect of fluctuations becomes important. If it is in the extreme close to the
critical point, the term due to the concentration fluctuations is comparable to or larger than the molecular
contribution.
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Introduction at Ry a large distance from the lamina in the forward
direction is essentially the original light plus a contribution
In the previous papethe authors have obtained analytic due to the scattering by the fluctuating fluid in the lamina.
results for the phase changes of a forward-scattered light ifihe total light aff is the sum of the primary wave and the
an isotropic fluid, when the incident light is completely scattered light from the lamina, which is givehZas
linearly polarized above (or below) the horizontal at, 45
using the formalism given by Barroand the theory for the fo_ 1 .
dielectric tensor developed by one of the authors and his a” %5"5+ ZIC(D “ﬁd%EOBeXp[I w%%o—tm] @
coworker® The result is so effective that we could discuss the
effect of density fluctuations on the azimuth and ellipticity wherec is the light velocity in vacuumx)aﬁ is the forward
of the scattered light in the critical region. component of the macroscopic polarizability density tensor
In this paper we shall extend the results to a binary liquidf the chiral fluid, which will be discussed in detail latiz;
mixture composed of an optically active solute and arnis the thickness anll,; is the incident light. From now on
optically nonactive solvent. The mixture is more suitable forwe shall take units such thais unity.
experimental verification than the pure fluid. The basic The lightE,; can be written as the sum of two coherent
difference with the latter is that there is one more extrdields completely linearly polarized in tlxeandy directions
variable in the mixturg,e., the concentration fluctuations on N R A
the phase changes of the forward-scattered light in the Eo = EgxX+Eqyy. (2)
critical region of a binary liquid mixture. The form of the
correlation function to be used is the Ornstein-Zernike formThe general pure polarization state can be described in terms
In the next section we obtain the explicit results for theof the ellipticity, 7 and azimuth,8*. Then, the complex
azimuth and ellipticity changes are discussed in the limitingamplitude may be written as
cases in the critical region. R )
E, = Ey[(cosBcos + isinfBsinn)x
Theory

+(sinBcos + icosBsinn)y] €))
Let us consider monochromatic light propagating along
. . L where
and incident on a scattering cell, which is assume to be an
infinitely wide lamina ky plane) with the infinitesimal Mg T, T )
thickness relative to the wavelength of light. If only a small 27772 47 ns 4

fraction of the wave is scattered by the fluctuating chiral
fluid in the scattering cell, the disturbance reaching a foint The six basic polarization states of the incident field are
given in the Table 1.
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Table 1 The definition of six basic polarized lights

Kind of polarized lights 6 n
horizontally linearly polarized light 12 0
vertically linearly polarized light 0 0

linearly polarized light above the horizontal at 45 74 0
linearly polarized light below the horizontal a®45 -4 0
right circularly polarized light 0 -4
left circularly polarized light 0 4

Mo = (EoxEo - (EoyEoy 1o = [EquEo 3 (Eo,Eqy]
S = i ( EgxEoy- [Eq,Eq,D)

Co = ~( EoxEoy 3 [EgyEq,D) , 5)
M; = (E,E,0- (EE,0 |, = [EE, B+ [E,E, [,

S = -i((EE,- [(EED, C = ~([EE, FEED,

where the subscripts 0 afdh the above definition denote
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In Egs. (6) and denote the real and imaginary parts,
respectively. The changes of intensity, azimuth and ellipti-
city are effectively infinitesimal so we can write-1 =dI
6;— 06=d0 and n;—n=dn . The differential equations for
the changes of intensity, azimuth and ellipticity with the
respect taly are given as

dl
d—zﬂ—lw[lm(ylx+ yfyy) + Im(y;X - yfyy)c052r7c0526

—Im(y;y+ y;x)c032r75in26 - Reg( yLy - yfyx)sin217]

(78)
do _ wl .
a4z HES—[Im(y;ﬁ y;y)cosze— Re(y;X - yfyy)5|n26]tan2r7
N [Im(y;X—yfyy)sinZB + Im(y;y+yfyx)00526]
cos2n
= 1M (Yy = ¥ (7b)

[l .
the incident and total forward lights, respectively, and thed—’2 ne -Re(Vo — yfyy)SIHZB— Re( yLy + y;x)COSZB
0

sharp brackets represent the statistical average.

The Stokes’ parametérof the transmitted wave is, using

Eq. (1)
Iy = (EE, B+[E,E, [

= [+ 1 9L, 120

dz 2
+ [Im(yLX - yfyy)c0326— Im(yLy + yfyx)sinZH]sinZU

0
+ Re(Y,,~V,)cos2 0, (7c)

where we have used the relations

L § NANE * tan26; — tan20= 226 ,
+ %@B +l 2 Vypd 2%5)/)/_' 2 yyrd%} [EgE,0 cos26
_ __2dn
Using the definition of Stokes’ parameters given in Eqg. (5), tan2y; - tan2y 00322,7’ ®)

we obtainl; and the other parameters up to the first order of

dy as follows
I TS IMI Ve Vi) + (= V)Mo
~ Wy + %) Comi oy = ) Sol dz (62)
M; = (E,E,, O~ [E,E, O
Mg = SIMIa+ )0 + Yhoc= )Mo
~ Yy + ¥ Comi Yy = ) Sol dz (6b)
C = (EE, B-[E E, 0
1€y + SIMI ey + Ko~ oy = )Mo
~(Yoet ) Coti (Vex— V) Sol dz (60)
S =i [EE, FEE
18, + SRy = ¥dlo = Gy + %Mo

— (Vi = ¥iy)Co + i (Y + ¥ Sl 2, (6d)

For the linearly polarized light above (below) the horizontal
at 45, we obtain

dl _w
5° EI[—Im(yfxx ¥y £ MYy + Y01 (9a)

dé _ w
o= 2IEMO— ) = MGy =01 (@)

d W
= LRV~ ) ~ Ry~ ol (90)

The sign * corresponds to the lights polarized linearly above
and below the horizontal at %5respectively. The first
equation, Eq. (9a) describes the absorption; Eq. (9b) express-
es an azimuth change due to linear dichroism brought about
through a differential absorption of the two linearly polariz-
ed components of the incident light resolved alongttued
y directions and imaginary part of antisymmetric polariz-
ability tensor component; Eg. (9¢) shows the corresponding
ellipticity change due to linear birefringence, that is, Kerr
effect and real part of antisymmetric polarizability tensor
component.

Let us consider an isotropic chiral fluid. The antisym-
metric part in Eq. (9a) can be neglected, since it is very small
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compared with the symmetric part. Also, the part due to theelocity. With the aid of the Onstein-Zernike approximation
linear dichroism and Kerr effect in Egs. (9b) and (9¢) can béhe Fourier transforms for the correlation functions are
neglected. Integration over a finite path lenigkbads to the

following results Sz(ﬁ— i’,w— w) = 2m(w—- ') Sz(ﬁ— T<’),
> > > >
| = |OeXF{_92—I|m(y;X + y;y):|v (106) SC(k_ K ,(4)—(4)’) - 27T5(0)—(4)’)SC(|(— k'): (16)
where
ol f f > > 2 -1
A6 = _Ilm(yxy - yyx): (10b) SZ(k) = I(BTKT[:I' + (f{k) 1,
> > 2.-1
A = _ej_Re(yfxy -, (100) Sc(k) = kgTK[1+ (&) ]

_ 0
K = (Po011) g Q11 = @D 7)
wxlDP T

wherely is the initial intensity and the explicit form qrfg,ﬁ
will be given later.

Let us consider the spatial correlations in a binary liquidin Eq. (17) keT and kr are the Boltzmann factor and
mixture composed of an optically active solute and arisothermal compressibility factor, respectivefy;and & are
optically nonactive solvent, denoted by 1 and 2, respectivelythe correlation lengths of density and concentration
There are two correlations due to density fluctuations afluctuations, respectively anmglis the mean molar Gibbs free
constant concentration and concentration fluctuations agnergy of the mixture. In genei&lis small compared t&:
constant density. Let us define two kinds of fluctuatingand negligibly small in the critical region of a binary liquid
guantities A and B as mixture. This is due to the fact that is finite Whereagﬁ
becomes infinite. Thus, we only consider the correlation
function of concentration fluctuations especially in the
critical region of the mixture.

Referring the detailed derivation to Ref. )iw is the
where A, and B, are the molecular constants of thia forward component of the macroscopic polarizability
species of the mixture angd, is the density of theth density tensor of the mixture, which is given as
component. With the static approximation we may write the

2 2
=3 A0 B=3 B, (11)

correlation function as yfaﬁ(ﬁ,w) = EB(IZ&)) + @(Rw); (18)
(bt tet) = 3 AB,<Dp,(FOAD, (P 1) (@00)°
—f't—-t") = < t Jt)>. o0 ,? _0 0
"B v,gz pu Py (12) y(c)xﬁ(kyw) = aOpoéaB - (27_004
Referring to the detailed discussion to ref. 7, the correlation ,
function can be written in terms of two kinds of correlation x I dew’SC(k K W= ) K“ﬁ(k ),
: . (19a)
functions, that is,
o > _ -0 _0
_ pﬁ 70 5° S, + pﬁ Al gt s, (13) Yap (K@) = 2Bopo[ 1 - Gopof(ak,aw)] d,pk,
Za
where (Og)po Idk’dw Sc(k k’ w-w)f(ak,aw')dypk,
2
A= ApC+ A0, A= (A VA W)V, (14) 2@t

[ —aspqf(ak, aw)m dkdw's,
In Eq. (13)p, is the density of the mixture at equilibrium (2m*

and S, andS. are the correlation functions of fluctuating A 2, ,
reduced densiti{ and mole fractiodx; defined as X (k=K ,w—w)Kgq (K@) 0y gk

ZGOBO.DO _0_1 ,
o’ [ —xlaopof(akaw)m’ dkdw's,

>
x (k=K w—w’)c‘iaa,yky'Ka,B(k',w')

S(F =" t—t") = IA(F,H)AL(F 1)
Sc(F =" t=t') = X, (F,t)Ax, (F' 1) (15)

In Eq. (14) x(l) is the mole fraction of the solute at 25° (ao) ,Bop
equilibrium andv ands/; are the equilibrium values of the + ——l—-————OJ’J’ dk’dw/SZ(k k’ w—-ao')
molar volume of the mixture and the partial molar volume of 27'0
the solute, respectively. We may use the static approximation x K;(k',a )K,(K',&/)[1— aopof(ak aw')]dqpk, , (19b)
for the correlation function in the case that the velocity of a
molecule in the fluid is very small compared with the light whereay, Bo, ao, ,30 and’(1 are defined as
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0 _ 0 0 20 _ 0 the light in vacuum, since the light velocity in vacuum is
0 = doXa+ 0o, Bo = Box, taken to be unity. The limiting properties drj] are as
_1 _ _ _ 5l .
0o = (Ao, — AV, Bo = BoyVL/V. (20)  follows:
(). Whenp = nyéw<<1 , then we have
oy, and B, are the second and third order polarizability 12 )
constants of the chiral solute molecule, respectively; is [An] =————=p (1 +4p")
the second order polarizability constant of the solvent £+2
molecule;d,; andd,s, are the Kronecker delta and Levi-
Civita tensor, respectively and the explicit forms of the
function f (ak, aw) and propagatorsK,;  arh are Ko
given in ref. 3.

- &
+ 2xaspop” £ -2 p25+ (26)
so that

&l . 3
An(w) = - 6’9 5(80+2)J D—""E 3xlaopoD

Results
First let us assume that the light varies slowly over the X GéﬁépngTkaf’l. (27)
molecular dimension. This assumption is obviously valid in
the nonresonant frequency region where the frequencWhen the fluid is far from the critical point, the azimuth is
dependence of the molecular polarizability tensors can bproportional tow? and isothermal compressibility factar
neglected and thus it can be said that the constants are real itii). In the extreme critical region wherp,= ngéw - o
the nonresonant region. Since the light intensity waswve have
discussed in detaﬁlthe phase changes are obtained. The 27 o1 e 42
antisymmetric parvg,ﬁ (k w) is responsible for the changesiAn(w)~A, [m + )‘(1(70,00% + 215 E
of ellipticity and azimuth in an isotropic chiral fluid. With 0 0
the aid of the explicit forms of propagators and Eq. (17), we 5,09 01
may obtain the following results. 2 (e, +2 X 0‘00 4 Hn(Zp)}w . (28)
(A). The ellipticity change
The ellipticity change is given as

An is proportional to @ and shows the logarithmic
divergence in the extremely critical region extremely close to
the critical point.

(B). The azimuth chang&&«) in the critical region is
given by

:—Re( hy=Vd =5 ey, = -AFI[An], (21)

where the antisymmetric property% (ﬁ w) is used and

A, = Ei—n[%(go +2)(&5— 1)} (_Xéﬁépgdf—% (22) AB(w) = '—Re( ny yyx) =06, (w) + A6, (w) + Aes((;-g)

where denotes the real part and the result of the calculations

_ _0 _o0=1
[An] = [3=(Go+X,00) o] is written in three terms for convenience. The first term

y B*l‘%“ _;_Hn(1+ 4p2)J AB,(w) due to the molecular contribution given by
p _ 3ng 0 3
A6y (w) = £+ Zﬁopow l. (30)

The rest is due to the correlation of the density fluctuations
, and given by the real part of the integrals in Eq. (19b). These
+ . A i
+ Et+2 4p _In(1+ 4p2) ' 23) integrals can be _calculated when the correlation length is
4g |1+ 4p° larger than the diameter of the molecule. The results are
expressed ad6,(w) aMf;(w) . The tetht),(w) is

2
+ Xgaépo {2— -1-—;—229—In(1 + 4p2)}
p

with

p =nyéw. (24) AG,(w) = 48nD: " 2%80 1)[1——(0(0 + xlcxo)pOJ
When the above result is obtained, we have used the fact that Tk
i i M1/3  and the x Gepepetie fl _ 10, (31)
if ak, aw<<1 the function f(ak, aw) an PP 3 T5a 35[(*’ .
dielectric constant at equilibrius is given as ¢

1+ gaop wherea is the diameter of a molecule.
_ 0Fo The third termAB8,;(w) is given by
&= —""':'I'_'—O"'—. (25)
1-3 3%0P0

O _0 _
A85(w) = A’ O[3~ (8o + K,T0) o]
It should be noted thab equals 2r over the wavelength of U
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1 [F -1
——+———— +-—-— tan (2 J
46 chlss (2p)
H‘:o+2 +2pD 10l 11 MDD
~5 D+O t ’
" CBegCH o2 0 Lapiyy 2ol 27 '05OW
(32)
whereA, is givenin Eq. (22) antd s the absolute value OF

t defined as

+2
- %O—E{eSpow (33)
The limiting properties o 0;(w) are as follows:

(i) When p=n,éw<<l, A6,(w) dominates over
Ay (w) .
A6 (w), dependlng on the Debye persistence lerigth
defined byR = pOkBTK/E

(i) Whenp>>1, AG;(w) becomes important. In the case

of 1<<p<<|t|™", we have

A6,(w) -1 EF—— J (@4p0) (ke TKI16m,E) 6 Ipt,
(34)

which may become comparable to or larger théhg( w)

Its magnitude may account to one-tenth o
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in a binary chiral liquid mixture, when the incident light is
completely linearly polarized above(or below) the horizontal
at 45. Let us summarize some important results:

(2). When the binary liquid is in the critical region far
from the critical point, the ellipticity change is proportional
to isothermal compressibility factor and the fifth order of
requency (see Eq. (27)). As the system approaches very
close to the critical point , the change is proportional to the
third order of frequency and shows the logarithmic
divergence (Eq. 28). This divergence should not be taken too
seriously, since in the extreme critical region we must

account for the eventual departure from the Ornstein-

Zernike approximatiof.

f (2). In the case that the system is in the critical region far
from the critical point, the azimuth change is solely due to
the molecular contribution, as shown in Eq. (30). As the
system approaches to the critical point, the effect of
fluctuations becomes important. If it is in the extreme close
to the critical point, the term due to the concentration
fluctuations is comparable to or larger than the molecular
contribution (see Eq. (35)).
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of dipole densitiessia the equilibrium part of quadrupole

density in the middle. In the extreme case whaie>>1
we have

£By(w) M- [F——B(aopo) (k, TkI32m, &) fl, (35)

The above result is independentﬁﬁ‘

. Its magnitude may

) References

1. Kim, Y,; Kim, K. R.; Kang, Y.; Lee, D. Zhem. Physn press.

2. Barron, L. D.Molecular Light Scattering and Optical Activity
Cambridge University Press: Cambridge, 1982.

3. Kim, S. K,; Lee, D. . Chem. Phy4.981, 74, 3591.

become comparable to or larger than the term due to the
molecular contributionA 8, ()

Conclusions Z;-

The effect of concentration fluctuations has been in detail ®-

obtained on the phase changes for a forward-scattered light

, depending on the Debye 5
persistence length. 6.

4. de Figueiredo, |. M. B.; Rabb, R. Broc. R. Soc. London Ser.

1981 A375 425.

Lee, D. J.; Kim, K. RJ. Chem. Phy4.996 105, 5341.

Born, M.; Wolf, E. Principle of Optics Pergamon: Oxford,
1975.

Lee, D. J.; Kim, S. KI. Chem. Phy<1986 84, 1739.

Kim, S. K.; Mazur, FPhysical974 71, 1027.

Stanley, E. Hlntroduction to Phase Transition and Critical
PhenomenaClarendon: oxford, 1971.




