
Rabi Oscillation between States of a Coupled Harmonic Oscillator  Bull. Korean Chem. Soc. 2003, Vol. 24, No. 2     219

Rabi Oscillation between States of a Coupled Harmonic Oscillator

Tae Jun Park

Department of Chemistry, Dongguk University, Seoul 100-715, Korea
Received December 21, 2002

Rabi oscillation between bound states of a single potential is well known. However the corresponding formula
between the states of two different potentials has not been obtained yet. In this work, we derive Rabi formula
between the states of a coupled harmonic oscillator which may be used as a simple model for the electron
transfer. The expression is similar to typical Rabi formula for a single potential. This result may be used to
describe transitions between coupled diabatic potential curves.
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Introduction

An electron transfer between two sites involves transitions
which require two different potential energies. A pair of
adiabatic Born-Oppenheimer potential surfaces are often
introduced and the transition probabilities from the lower
surface to the upper surface are calculated. Altenatively
coupled diabatic potential surfaces can be used and the
electron transfer probabilities are calculated by time-depen-
dent methods.1 Typical time-dependent methods include
various exact propagation schemes, the time-dependent self-
consistent field approximation (TDSCF), and the locally
propagating gaussian (LPG) approximation.2-4 Since the
transition dipole moment is usually assumed constant and is
treated by the constant coupling of the two diabatic potentials,
Rabi oscillation between states of coupled potentials may
also be used to determine the transition probabilities between
two sites.

In this work, two coupled one-dimensional harmonic
oscillators are introduced as a simple model and the Rabi
oscillations are determined between two states of the coupled
oscillators. 

Derivation of Rabi Formula

The model Hamiltonian for the two site electron transfer is
chosen as3

(1)

where two shifted harmonic oscillator potentials are coupled
by a constant Γ and they are given as

(2)

where the force constants of two oscillators are set to be
equal for simplicity. Writing the Hamiltonian as a sum of
site Hamiltonians 
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where the coupling between sites is . If we

expand the wavefunction of H in terms of site wavefunctions
as 

,  (4)

and set up the Schrödinger equation (with =1) as

(5)

where  (i = 1, 2) and  and 
are -th eigenvalue and eigenfunction of the ith oscillator,
we have

.  (6)

where  ,  etc.  Multiplying   with  Eq. (6)  and

integrating it with respect to x, we will have following
equations,
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where  (k = 1, 2) and 
and Γii = 0 is assumed. Solving Eqs. (7a) and (7b), we would
have 
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(8)

where ω21 = . Overlap matrix between the states of
two shifted oscillators is not symmetric so that  and
explicit expressions for  and Sij will be given later. The
second-order differential equations for c1(t) and c2(t) are
obtained as follows

(9a)

(9b)

where F =  and the elements of U are given as

,

,

(10)

If we put eλt in Eq. (9a) for c1(t), we have a following
equation for λ

. (11)

Roots of Eq. (11) are obtained as

  } (12)

For c2(t), we obtain following roots from Eq. (9b) if we
assume c2(t) ~ eµt 

  } (13)

Then c1(t) and c2(t) will be given as follows
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where A, B, C, and D are determined from initial conditions.
We now evaluate  and Sij so that c1(t) and c2(t) are
explicitly calculated. They are given as
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and5
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where  α = ,  , and . We

note that . When the minima of the two

oscillators are same so that ,

, we obtain λ ± from Eqs. (12), (15a), and

(15b) as follows 
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and µ ± given as

µ ± = λ ± + iω21 (18)

In order to specify c1(t) and c2(t) completely, we assume that
the electron is entirely at site 1 when t = 0. From c1(0) =
A + B = 1 and c2(0) = C + D = 0, we would have 
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which shows typical Rabi formula and dependence of the
Rabi frequency on the overlap between the states of coupled
oscillators.

Conclusion

We derive Rabi formula between the states of a coupled
harmonic oscillator which could be used as a simple model
for transitions between coupled bound diabatic potential
curves of constant transition dipole moment. The expression
is similar to the standard Rabi formula for a single potential
except the dependence of the Rabi frequency on the overlap
of states of coupled potentials. 
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