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In this study we have investigated the determination of proper time step in molecular dynamics simulation.
Since the molecular dynamics is mathematically related to nonlinear dynamics, the analysis of eigenvalues is
used to explain the relationship between the time step and dynamics. The tracings@dfG® molecular
dynamics simulation agrees very well with the analytical solutions. L d¢héitime step less than 1.88%ro-

vides stable dynamics. For @3.808fs might be the maximum time step for proper molecular dynamics. Al-
though this results were derived for most simple cases of hydrogen and carbon dioxide, we could quantitatively
explain why improperly large time step destroyed the molecular dynamics. From this study we could set the
guide line of the proper time step for stable dynamics simulation in molecular modeling software.

Introduction Theory

Molecular dynamics’ is a simulatioh method describing If the energy of a molecule is expressed in a function of
the molecular motion by the equation of motion which New-the molecular structure, the force acting on an atom can be
ton's classical mechanics describes. The first computer simdetermined by differentiating the energy with position of the
lation using molecular dynamics method was performed omtom A. (See Figure 1 for notations in Eq. (1)).
simple fluids, later on the solution of simple molecules like
water*® Later, according to the acceleration of development of A, = dVia _ Fra_ _ 1 0E @
computation speed and storage capacity, molecular dynamics AT dt My MAOXp

of bigger molecules and biopolymers have been perfofmed.

. ; . . hereaxais the acceleration of atom A xdirection,wathe
In the molecular dynamics simulation, the atoms mCIUded{/velocity of atom A inx direction, Fxa the force acting on

in molecules move according to the Newtonian equation o tom A inx direction,Ethe potential energy of the molecule.

motions. In other words, when we _know the structure Ofa If the acceleration is calculated by the above method, we
molecule at one moment, we can find the structure at the

next moment using the integration method of the equation O?an determine the velocity by the integration of acceleration

motion with time starting from here. The process of integratyv ith timg, anql als_o the change of po_sition by the integration

ing the equation of motion can be achieved by several kind%f velocity W.'th tlme_. Several algorithms are proposed to

of algorithm. The commonly important concept in the Vari_carry_out t_he integration processes. The most frequently used
' algorithm is called Verlet.

ous algorithms is the time steft), If a big time step is used,
the motion of molecule becomes unstable due to the very big V; =V + At (2)
error occurring in the integration. Therefore, molecules may 2 2

not have a normal structure any more. Reversely, if a very

small value of time step is used, it will not be efficient due to Xy = Xo + V1AL @)
a very long calculation timé. 2

Therefore, the selection of the time step is very important V3 =V, + a,At 4)
to perform the molecular dynamics simulation. In normal 2 2
molecular dynamics simulation, we use 1 femto secdsd (
108 sec) time step. There are some logical explandtions Xp = Xy + Vgt )

about the usage off$ time step. One of the explanations is
that stable dynamics will be executed only if we use the smaller

time step compared to the period of the highest vibrationafhe other popular one is leap-ffadgorithm. This gives vir-

frequency of the molecule. If we can determine the biggest timg,a|ly the same result as Verlet algorithm as following.
step for a stable dynamics, it is expected that the efficiency

of the molecular dynamics simulation will be maximized.
In this paper, we have investigated the reasons why th I: ! >|
dynamics sometimes break down after a maximum limit of

time step in the simulation, and determined the exact poir . ‘

where a chaotic behavior start in molecular dynamics simu

lations of simple system such as hydrogen or carbon dioxidgigure 1. The Hydrogen MoleculeHa: hydrogen atom Abg:
molecule. hydrogen BJ: bond length between two atoms.
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= k
v, = 2vy + ag(At) (6) = ES(I—IO)Z (14)
Xp = X + Vi (At) (7
H 0
X, = 2% — X + aO(At)2 ®) wherel is the bond length’ the most stable bond lengid,

the force constant.

In the above equatioif is 0.64 A in MM2 force field?®
Xg = 2% = Xg + al(At)2 (9)  The force constant is 5 millidyne/A (= 500 N/m). The mass
of the hydrogen atom is 1.66113%x40kg. The analytical
method of the molecular dynamics simulation for the hydro-
In this study, we investigated the changes of moleculagen molecule using the above equation is following.
dynamics by the different time-stefit), The simpler trial K
molecules are hydrogen fHand carbon dioxide (G E = _S(|_|°)2 (15)
Mathematical Model. LetV be a partial group d®. If 2
gcertain functiorr is dgscribed al§ 1V - R, this function wherel = xg - Xa (Xe > Xa), Xa andxg are the positions dfx
is called “map”. This kind of functioR can be expressed by andHs.
the following form.

The positions of the hydrogen atoms by the leap-frog algo-

O O rithm will be changed by the following equations.
F(V)=0O f(v) OforallvinV (20) ¢ y ged
Hg(v) O Xa2 = 2Xp1™Xpg + aAl(At)z (16)
Here,f andg are the coordinate functionskeflf this coor-
Xg2 = 2Xg1™Xgg + aBl(At)z 17)

dinate function is internal coordinate system of a molecule,

the process of molecular dynamics simulation is same as theTnarefore. the bond length definedIbyxs — xa, will be
iterative calculations of the above defined function like fol- ' ’

lowing procedure. l, = 21,~lg=(ax—ag;) (At)° (18)
O f(vy) O The accelerations of atoms A and B are
v; = F(vp) = O O (11)
0g(v) O _ 10E_ 1 9K 0n2_ K o
A= T T Triaw. o e Xaml) = 2 (1-1) (19)
V,=F(v) =0 " O (12)
Og(vy) O

k
ag = - ;SB(I—I% (20)

. . Then, the Eq. (18) will be converted to Eq. (21).
The movements ok, vi, Vo, ...,V from the above iterative

calculations describe the same results as molecular dynam-
ics simulation. In order to analyse the dynamics of molecular
system as molecular dynamics simulation, one should know K
the exact variations a, vi, Vo, ...,Vn and would define the = 2I1—I0——S(I1—IO)(At)2 (21)
partial derivatives of the above defined functions. H

P 2'0"0_%1A +r'nll'3%<s(|1_|o)(At)2

wherey is the reduced mass (= 8.3057%%@g)

O ad
Dgr—(v) ér—(v) O Here, we define a vector containing the current bond
DF(v) = % X" 0y E (13) length () and the previous bond length {) before the time
O QQ(V) QQ(V) O stepAt.
0 ox oy’ [0
This kind of partial derivative can be expressed in terms of E In-1 B (22)
matrix. The dynamics depend upon the outcome (real or Ol O

ﬁﬁmgf:)( r:)l.fm:rk]):r ;ggnt\r;aelj:a%n cc)>ff Itrl,?: grl: ;rr)ilxgl)eg'r[}fec;:; ;Zplzé Then, the above Eg. (21) can be transformed to the follow-

have definedF(v) for simple molecular systems {ldnd Ing form,

CQO,) and analyzed the outcome of the eigenvalues for differ-

ent time-stepAt) for molecular dynamics simulations. = K
Hydrogen Molecule (Harmonic oscillator function) O, 0 D21,-1,-=(1,-1%(At)?

The potential energy of the hydrogen molecule can be O H O

expressed to the following equation. If we rewrite the function with a general expression,

0 |
01,0 O 1
0 0 (23)

[
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O O Table 1. The eigenvalues and turning points ferdynamics
FE X E: E K Y E (24) Cases A's MaximumAt (sec)
Oy 4 % 2y—x—ﬁ(y—|o)(At)2 % 1 2 complex numbers, real part (+) 1.823%410
2 2 complex numbers, real part (-) 2.578%%0
Therefore, the simulation of molecular dynamics for the 3 2 real numbers ©

hydrogen molecule is the same as the repeated iterations of
the Eq. (24). In order to understand the dynamics, we ShouWegative.
know the orbit and should define the differential of the func- - o similar process gives the following range of time-

tion. step:

u U /2 /2
0,0 00 1 0 1.823x 10°=BH0" < pp <UD 5 7% 10%°
DFO"0O=0 k, o0 (25) Ok O Ok O
OyDO O-1 2—-=(At)" O 33
yt H u( ) & " (33)
Since the molecular dynamics is mathematically related to Iiy A's are real roots
nonlinear dynamic¥; the analysis of eigenvalues is used to T 15
explain the relationship between the time step and dynam- At> ZEkD 2.578x 10 (34)

ics12If find the eigenvalue of the above matrix, the dynam- o
ics of the Eq. (24) will be completely understood. If we Carbon Dioxide (CO).
define the eigenvalug A should satisfy the following deter-

The potential energy of carbon
dioxide molecule is expressed like following.

i K k k 2
minant. E= 2019+ 20,197+ 20-6) (@)
A y 1 26) where 1a = Xc — Xoa
-1 2——S(At)2—A lb = XoB— Xc
Theref H The third term in above equation is related with an angle
erelore, bending. The magnitude of contribution is determined to be
2 | sy nen2 of] _ very small to the total energy, and will be omitted in next
AT+ Dﬂ(m) ZDA +1=0 27) calculation step for a simplification.
Depending on the size df, the roots {) satisfying the Ex= Es(l 19 4 Es(l _1%
Eqg. (27) can be several kinds of complex numbers. 2°2 2'P

i) A's are complex roots and the real parts of the roots are

" s 0,2 , K 0,2
positive. = E(XC—XOA—l ) + E(XOB—XC—| ) (36)
The following condition should be satisfied farto be
complex numbers. For carbon dioxide, the force constdg} ¢f bond-stretch-
5 ing is 10 millidyne/A, the equilibrium bond lengtAo) is
EE(At)Z_zg -4<0 (28)  1.162. The mass of carbon atom 1.99336%1@y, and the
T mass of oxygen atom is 2.65781%fkg .
Therefore, the range dt for to be complex roots is Using the energy expression of carbon dioxide, we can
/o calculate the forces acting on the individual atoms by differ-
O0<At< zﬂiﬂl (29) entiation of the energy with respect to the coordinate of each
kD atom. From these forces, we can determine the accelerations

And the condition that the real parts of the roots are posiof atoms.
tive will require the following range dft.

1 9E _ ks 0
= =25 - s
- %S(At)z—25>0 (30) O Tmodon Mo+ ) 0
/2 /2
- E?-kk’gl <At< E%El (31)

H#AA
The time-stef\t simultaneously satisfying the above two
conditions should be: @ m @
\_/

2ug’? 15
0<At< Oxo = 1.823x 10 (32)  Figure 2. Carbon Dioxide MoleculeC: carbon atonQaandOg:
oxygen atomsl,: bond length between carbon and oxygeripA,

ii) A's are complex roots and the real parts of the roots areond length between carbon and oxygen B.
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1 JE K /2
R (SR () BN 5 0, 8 .
e Mc O<At<F—2—[ =380751x 10° (47)
Ann = _1 0 _ _iu _|0) (39) %E‘n_l * mi%
BT mydxos Mg ° o ¢

i) All four eigenvalues are complex numbers and the
Applying the acceleration of each atom to the Verlet algosigns of real parts are minus for two of them.
rithm, the following expressions of atomic coordinates after

. . /2 0 0’2
a time-step/4t) can be obtained. 0 5 0 0 1 0
K o 2 DD_—D <At< ZDD_—D
Xoa(t + At) = 2X5a() =X a(t-AL) + —=(1-1")At™ (40
onl ) oa(t)Xoa(t-At) mo( a 1) (40) B( e + ~(in B( e + T
Xc(t + At) = 2x(t)—x(t—At
olt+ A0 = 2xc() X (t=A1) ~5.38464x 10" (48)
_m_Z((Ia_l )=(1,-1%))At% (41) iii) Two eigenvalues are complex numbers and the signs of

K real parts are plus, and the remain two eigenvalues are real
Xop(t + At) = 2Xog(t)—Xop(t—At) + m_s(|b‘|0)At2 (42) numbers.
O

D D‘.L/Z
If one definela = Xc ~Xoa lb = Xos ~ Xc, the following B 1 % <At< a ODl/2
equations can be obtained. B‘ U kg
[(t+ At) = 21,(t)-I,(t-At) o
k k _ 15
(1,188 + = (1,(0)-1)A¢ (43) = 729083« 10 (49)
H c iv) Two eigenvalues are complex numbers and the signs of
l,(t + At) = 21, (t)—1,(t-At) real parts are minus, and the remain two eigenvalues are real
K o . K o numbers.
S S
==, )=1")At" + =(1,(t)-1")At (44)
m /2 /2
H c r2Mor <At<2EPl)D1 ~10.3108< 10°  (50)
- , Ok O Ok, O
In order to use the similar vector expression as hydrogen s
molecule, one can defing = la(t — At), X = la(t), y = In(t — v) All four eigenvalues are real numbers
At), z =Iy(t). Then the above equations can be rewritten as /o
following. At> 25%51 ~10.3108x 10'° (51)
0 0
Ow 0O B k ’ k B Results and Discussion
u iscussi
oVo o 2x—w—ﬁ(x—|0)At2 + (1908 0
F % X E: % ¢ %(45) In order to determine the proper time staf) for molecu-
Ey E % z % lar dynamics simulation, we have tried to find the turning
7 . . . . ’
D o7 y—— (2~ ) AR+ = ks (x—IO) A [ points of _dynamlcs through analytical calculation of leap
Me 0 frog algorithm.

_ ~ We have performed two simple cases for molecular
In order to analyze the above function, one should derivglynamics computer simulation to prove that the calculated

the following partial derivative matrix. turning points are the drastically changing dynamics such as
0o 1 0 0 O diverging bond distance. . _
0 0 Hydrogen Molecule The potential energy function of
EW E 0_, Z_KSA,{z 0 |§sm2 0 hydrogen molecule is derived from MM2 force fi@land
DE X O= % U m E (46) the molecular dynamics simulation is perform by leap-frog
HyH 0o o o 1 0O _ o ,
0,0 E . K, E Table 2 The eigenvalues and turning points for @¢namics
0o At -1 Z_EM O Cases A's MaximumAt (sec)
1 4 complex numbers, real parts (+) 3.808%40
The above matrix has four eigenvalud} énd the out- 2 4 complex numbers, 2 real parts (+) 5.385%10
come will depend on the different time stéyp)( 3 2 complex numbers, real parts (+) 7.291%10
i) All four eigenvalues are complex numbers and the 4 2 complex numbers, real parts (-) 10.31TX10
5 4 real numbers 00

signs of real parts are plus.
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algorithm. The source code for the simulation is written by 64 e Numerical
Visual Basic. —e— Analytical

Since the purpose of this simulation is the recording of the
bond-distance dynamics according to the time gi€p \{e
plotted the 500 iterations of molecular dynamics for eact
time step from 0.00 to 3.00 femto seconds for @sQdter- 31 \
vals. The tracings are accumulated in Figure 3. 2l

In Figure 3, the horizontal axis is the time step and the ver \ /
tical axis is the distance between two hydrogen atoms. Th 1
two vertical lines at 1.823 and 2.5#%are at the values cal-
culated from the analytical method (Table 1). Fer tHe 01
time step less than 1.828would provide stable dynamics. 040 045 050 055 060 065 070 075 080 085
Onto this time step, the bond distance normally oscillate: H-H bond distance (A)
between +0.06 and -0.06 Angstrom from the average dissigure 4. Numerical Integration of Energy from Molecular Dyna-
tance (0.64 A) for molecular dynamics simulation. After mics of H Molecule, 1fs Time Step. Integrated energy calculated
1.823fstime step, the bond distance (H-H) begins to oscil-numerically from a dynamics trajectory of hydrogen atoms
late with much bigger amplitude until 2.578where the (squares) is compared with the analytical energy curve (circles).
molecular dynamics completely breaks down to go for a
chaotic behaviol! As one compares the eigenvalues ofbond length is shorter than equilibrium distance. However,
Table 1 with the boundary values of Figure 3, the 2878 after atoms collide, the integration energy is higher than the
calculated from theory is exactly matched for the time ste@nalytical energy when the bond length is shorter than equi-
of MD simulation. After this point (2.578), the bond dis- librium distance. Due to the assumption of harmonic form of
tance will jump from a certain value to another without con-energy, the numerical energy oscillates between maximum
tinuity or physical meaning. and minimum bond distance. The situation is different from

The stability of the numerical integration with respect tothe result of reference 9, where the hydrogen atoms have no
the time step can be tested directly by integrating the forcesonding between them and the expression for analytical
used by dynamics and comparing the integral with the anaenergy is Morse fornE = Dy, (1 — €3 ~%?),
lytical energy’ Carbon Dioxide (CO;). A similar molecular dynamics

In Figure 4, Integrated energy calculated numerically fromsimulation of carbon dioxide is also performed.
a dynamics trajectory of hydrogen atoms in hydrogen mole- In Figure 5, four vertical lines at 3.808, 5.385, 7.291, and
cule is compared with the analytical energy curve (harmonid0.311fs are determined from the analytical solution. For
form: E = kgl —19?/2. The time step used iddlat a temper- CO,, 3.808fs might be the maximum time step for proper
ature of 300 K. The temperature is set by assigning an initiaholecular dynamics. Onto this time step, the bond distance
velocity of 1500 m/sec (0.015 Anstrds)/to one of hydro-  normally oscillates between +0.12 and -0.12 Angstrom from
gens along the vector connecting them. As two atomshe average distance (1.162 A) for molecular dynamics sim-
approach each other, the numerical energy is higher than theation. After 3.808stime step, the bond distance begins to
analytical energy when the bond length is longer than equiescillate with much bigger amplitude until 5.385where
librium distance. The numerical value is lower when thethe molecular dynamics completely breaks down to go for a

chaotic behavior. As one compares the eigenvalues of Table
2 with the boundary values of Figure 3, the 5.88&alcu-

Bond Length (A) lated from theory is exactly matched for the time step of MD

1.0 simulation. After this point (5.388), the bond distance will
jump from a certain value to another without continuity.

The tracings of Hland CQ molecular dynamics simula-
tion agree very well with the analytical solutions. FertHe
time step less than 1.828s providing stable dynamics. For
CQO,, 3.808fs might be the maximum time step for proper
molecular dynamics.

Energy (kcal/mol)

0.5+

Conclusion

In this study we have investigated the determination of
proper time step in molecular dynamics simulation. Since

0.0 . i , | : : the molecular dynamics is mathematically related to nonlin-
1.0 ' 2.0 ' 30 Time Step (fs) ear dynamicé! the analysis of eigenvalues is used to explain
1.823 2.578 the relationship between the time step and dynafhics.

Figure 3. MD orbit diagram of Hmolecule. The tracings of klland CQ molecular dynamics simula-
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Bond Length (A)
2.0

0.0

3,608 5385 7.291 10.311 Time Step (fs)

[ T I T I ' 1
00 20 40 60 80 100 120(fs)
Figure 5. MD orbit diagram of C@molecule.

tion agree very well with the analytical solutions. FertHe
time step less than 1.888is providing stable dynamics. For

CO,, 3.808fs might be the maximum time step for proper

molecular dynamics.
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