- 12. Larsen, J.; Bechgaard, K. J. Org. Chem. 1987, 52, 3285.
- 13. Le Coustumer, G.; Bennasser, N.; Mollier, Y. Synth. Metals 1988, B523, 27.
- 14. Noh, D.-Y.; Mizuno, M.; Choy, J.-H. Inorg. Chim. Acta 1994, 216, 147.
- Noh, D.-Y.; Mizuno, M.; Choy, J.-H. Synth. Metals 1993, 55-57, 1705.
- 16. Noh, D.-Y.; Choy, J.-H. Synth. Metals 1995, 70, 1059.
- 17. Testaferri, L.; Tiecco, M.; Tingoli, M.; Chianelli, D.; Montanucci, M. Synthesis 1983, 751.
- 18. Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry; 4th. ed., John Wiley & Sons: NY 1980.
- 19. Rushbrooke, G. S.; Wood, P. J. Mol. Phys. 1958, 1, 257.

- 20. Line, M. E. J. Phys. Chem. Solid 1970, 31, 101.
- Sandman, D. J.; Allen, G. W.; Acampora, L. A.; Stark, J. C.; Jansen, S.; Jones, M. T.; Ashwell, G. J.; Foxman, B. M. *Inorg. Chem.* 1987, 26, 1664.
- Maki, A. H.; Edelstein, N.; Davison, A.; Holm, R. H. J. Am. Chem. Soc. 1964, 88, 4876.
- Sakamoto, Y.; Matsubayashi, G.; Tanaka, T. *Inorg. Chim. Acta* 1986, 147, 137.
- Krishnamurthy, R.; Schaap, W. B. J. Chem. Educ. 1969, 46, 799.
- Goodman, B. A.; Raynor, J. B. Adv. Inorg. Chem. Radiochem. 1970, 13, 135.

Selective Reduction of Carbonyl Compounds with Diisopinocampheylhaloboranes

Jin Soon Cha*, Eun Ju Kim, Oh Oun Kwon, and Jong Mi Kim

Department of Chemistry, Yeungnam University, Kyongsan 712-749, Korea Received September 27, 1995

Reaction of carbonyl compounds with diisopinocampheylhaloboranes (Ipc_2BX , X=Cl, Br, I) was investigated in detail in order to establish their usefulness as selective reducing agents. The reagents reduced aldehydes and ketones to the corresponding alcohols. The reactivities are in the order of $Ipc_2BCl \gg Ipc_2BBr > Ipc_2BI$. The reagents also reduced α,β -unsaturated aldehydes and ketones to the corresponding allylic alcohols without any detectable 1,4-reduction. Especially, the chloro derivative nicely achieved the selective reduction of aldehyde or ketone groups in the presence of many other functional groups. The most remarkable result of this investigation is that aldehydes and ketones can be selectively reduced in the presence of acid chlorides.

Introduction

Chiral diisopinocampheylchloroborane (Ipc₂BCl) has proven to be extremely efficient for the asymmetric reduction of a wide variety of ketones to obtain chiral alcohols in high enantioselectivities. The mechanism of the reduction is explained via a cyclic boatlike transition state. The formation of an intermediate alkoxyborane is accompanied by the liberation of α -pinene (Eq. 1). This fascinating reagent attracted

lpc₂BCI α-pinene

us to investigate its general reducing characteristics in greater detail. Subsequently, we found that the reagent readily reduces α,β -unsaturated aldehydes and ketones to the corresponding allylic alcohols, and permits the selective reduction of aldehyde and ketone groups in the presence of many other functional groups.

Midland and co-workers reported that *B*-alkyl-9-borabicy-clo[3.3.1]nonanes (*B*-R-9-BBN) are effective for the reduction

of aldehydes, but not for ketones under mild conditions.^{6,7} These results indicate that the reduction power of dialkyl-chloroborane is stronger than that of trialkylborane, particularly in the reduction of carbonyl compounds. The halogen attached to the boron atom seems to exert an additional influence in reduction power.

Accordingly, we decided to extend our investigation to other derivatives, Ipc_2BBr and Ipc_2BI . We prepared a series of diisopinocampheylhaloboranes (Ipc_2BX , X=CI, Br, I), examined their reactivity toward general organic functional groups, and finally investigated their selectivity in the reduction of carbonyl compounds, in the hope of better understanding the nature of reagents and exploring their role in organic synthesis.

A portion of our results has appeared in the form of preliminary communications.^{8,9} We now described in full the results of our study on the reduction characteristics of diisopinocampheylhaloborane.

Results and Discussion

Ipc₂BCl and Ipc₂BBr were prepared from α-pinene by hydroboration followed by treatment with dry hydrogen chloride (HCl) or hydrogen bromide (HBr) in diethyl ether (EE)

Table 1. Reduction of Aldehydes and Ketones with Diisopinocampheylhaloborane (Ipc₂BX) in Pentane at $0 \, ^{\circ}C^{a}$

Compound	Time, h	Yield, %		
		Ipc ₂ BCl	Ipc ₂ BBr	Ipc ₂ BI
Butanal	1	100	45	30
	24	_	80	60
Hexanal	3	100	10	6
Benzaldehyde	1	100	20	15
•	3^c	100	_	_
Cyclohexanone	3	100	_	_
	24		70	50
2-Methylcyclohexanone	3^d	100	_	_
	24^d	-	86	55
2-Heptanone	6	97	_	_
	12	100	-	_
	24	_	60	40
Norcamphor	24^d	100	90	60
2-Hexenal	1	95	_	
	. 3	100	-	
	6^d	_	55	30, 80°
3-Penten-2-one	1	60	30^{d}	_
	- 6	90	60^d	$30^{d,e}$
	24	100	70^d	$55^{d.e}$
2-Cyclohexenone	, 1	95	$10, 40^d$	'
	3	100	15, 50^d	_
	6	_	15, 70^d	$40^{d,e}$

[&]quot;Ten % excess reagent was utilized except where otherwise indicated. ^bGC yields with suitable interal standards. ^cAt −30 °C. ^dTwo equivalents of reagent utilized. At 25 °C.

(Eq. 2). Removal of EE followed by addition of pentane provided a solution of Ipc₂BCl or Ipc₂BBr in pentane. 1~5 Ipc₂BI was made by reaction of Ipc2BH (suspended in EE) with I_2 (dissolved in CS_2) (Eq. 3).

Reactivities toward Aldehydes and Ketones. The reactivities of Ipc₂BX toward some representative aldehydes and ketones were examined and the results are summarized in Table 1. In general, the reactivities are in the order of Ipc₂BCl≫Ipc₂BBr>Ipc₂BI. Ipc₂BCl readily reduced a wide variety of aldehydes and ketones to the corresponding alcohols at 0°C. However, the bromo and iodo derivatives showed much weaker reactivities, requiring an elevated reaction temperature to 25 °C or an excess reagent. The reactivity difference may be attributed to the steric and electronic effects of the halogen substituent. The striking feature of the reagents observed from the results is their rate differences toward various carbonyl compounds and their ability to reduce a.B-unsaturated aldehydes and ketones to allylic alcohols. This interesting characteristics led us to investigate their chemoselectivities in the reduction of aldehydes and ketones in detail.

Chemoselectivities in the Reduction of α,β -Unsaturated Aldehydes and Ketones. Selective 1,2-reduction of α,β-unsaturated aldehydes and ketones with metal hydride reducing agents is often difficult to achieve in organic synthesis due to competing 1,2- vs. 1,4- attack by hydride.¹⁰ Among the various reducing systems which have been devised for such purpose, diisobutylaluminum hydride (DIBAH),11 lithium aluminum hydride (LAH), 12 9-borabicyclo [3.3.1] nonane (9-BBN), 13 lithium n-butylborohydride, 14 and sodium borohydride in aqueous methanol containing rare earth chlorides¹⁵ are generally the most efficient and convenient.¹⁶ However, these can by no means be adapted as a very general procedure. 13,15,17,18 Accordingly, it appeared desirable to examine the chemoselectivities of Ipc2BX in the reduction of a.B-unsaturated aldehydes and ketones.

The reductions were carried out by the addition of a solution of Ipc₂BX in pentane^{1~5} (generally, 10% excess of Ipc₂ BCl and 2 equivalents of Ipc₂BBr or Ipc₂BI) to the carbonyl compound in pentane at 0 °C or 25 °C. The results are summarized in Table 2.

Reduction of simple conjugated aldehydes, such as crotonaldehyde, 2-hexenal and cinnamaldehyde, afforded exclusively the corresponding allylic alcohols, resulting only from 1,2-reduction. Use only a 10% excess of Ipc₂BCl at 0 °C is necessary for the complete reduction. However, the reduction with Ipc₂BBr and Ipc₂BI required a large excess of reagent (2 equivalents) and an extended reaction time or an elevated reaction temperature (25 °C). The excess reagent and elevated reaction temperature did not affect the selectivity. α,β-Unsaturated and ketones, such as 3-penten-2-one, benzalacetone and chalcone, were also selectively converted into the corresponding allylic alcohols at 0 °C or 25 °C. 2-Cyclohexenone was converted to 2-cyclohexenol in a quantitative yield. Even 2-cyclopentenone, known for its susceptibility to undergo conjugate reduction, was cleanly converted to the desired 2-cyclopentenol in a quantitative yield. Similarly, isophorone was readily reduced to 3,3,5-trimethyl-2-cyclohexen-1-ol.

Results summarized in Table 2 clearly reveal that the reagents are ideal for the selective reduction of α,β-unsaturated aldehydes and ketones to the corresponding allylic alcohols. The selectivity reaches 100%.

Table 2. Reduction of α,β-Unsaturated Aldehydes and Ketones with Ipc₂BX in Pentane^a

Compound	Reagent	Temp, ℃	Time, h	Product ratio, ^b 1,2 : 1,4	Yield, %
Crotonaldehyde	Ipc ₂ BCl	0	3	100:0	>99.9(72)
	Ipc ₂ BBr′	0	48	100:0	95
	Ipc ₂ BI	25	24	100:0	98
2-Hexenal	Ipc ₂ BCl	0	3	100:0	>99.9
	Ipc₂BBr	0	48	100:0	90
	$\mathrm{Ipc_2BI}$	25	48	100:0	95
Cinnamaldehyde ^c	Ipc ₂ BCl	0	12	100:0	>99.9(69)
	* -	. 0'	6	100:0	100
	Ipc_2BBr	0	48	100:0	95
	Ipc₂BI	25	48	100:0	85
	-	25	144	100:0	100
3-Penten-2-one ^d	Ipc ₂ BCl	0	24	100:0	100
	Ipc_2BBr	0	24	100:0	70
	Ipc_2BI	25	24	100:0	55
Benzalacetone ^e	Ipc ₂ BCl	0	24	100:0	50
	• -	25	24	100:0	>99.9
	Ipc_2BBr	25	48	100:0	95
	Ipc_2BI	25	48	100:0	75
Chalcone ^e	Ipc ₂ BCl	25	72	100:0	>99.9
		25 ′	24	100:0	100
	Ipc_2BBr	25	48	100:0	70
	Ipc₂BI	25	48	100:0	65
2-Cyclohexenone	Ipc ₂ BCl	0	3	100:0	>99.9
	Ipc₂BBr	0	48	100:0	100
	Ipc₂BI	25	72	100:0	100
2-Cyclopentenone	Ipc ₂ BCl	0	3	100:0	>99.9
	Ipc_2BBr	0	48	100:0	100
	Ipc_2BI	25	72	100:0	100
Isophorone	Ipc ₂ BCl	0	12	100:0	100
	• -	0,4	6	100:0	100
	Ipc_2BBr	0	24	100:0	90
	-	0	48	100:0	95
	Ipc_2BI	25	24	100:0	90

[&]quot;Ratios for reagent: compound were 1.1:1 (for Ipc₂BCl) and 2:1 (for Ipc₂BBr and Ipc₂BI), except where otherwise indicated. ^bDetermined by GC using calibrated internal standard, numbers in parentheses indicate isolated yields. ^cA *trans* isomer. ^dA mixture of 69 % 3-penten-2-one and 31 % mesityl oxide; the same ratio of 3-penten-2-ol and 4-methyl-3-penten-2-ol was obtained. ^cTen % excess reagent was utilized. ^fTwo equivalents of reagent were used.

Chemoselectivities in the Competitive Reduction between Carbonyl Compounds. Chemoselective reduction of one carbonyl group in the presence of other such groups affords an important methodology in organic synthesis. In recent years, various reagents have been developed for such selective reductions.²⁰ These reagents are mostly capable of reducing aldehydes in the presence of ketones, and only a few reagents have been reported for the selective reduction between structurally different ketones.²¹ Moreover, no report has appeared for the selective reduction of carbonyl compounds in the presence of acid chlorides.

As shown in Table 3, the remarkable feature of Ipc₂BCl is its ability to selectively reduce aldehydes in the presence of ketones. Thus aldehydes are reduced almost completely in one hour at 0 °C, whereas, under similar experimental

conditions, ketones require a much longer reaction time. This rate difference between aldehyde and ketone led us to further examine the chemoselectivity of Ipc₂BCl. The chemoselectivity of Ipc₂BCl was studied by competitively reducing the equimolar mixture of two carbonyl compounds with one equivalent of Ipc₂BCl. And, it was tested for three representative aldehyde-aldehyde pairs (entries 1-3), five aldehydeketone pairs (entries 4-8), six ketone-ketone pairs (entries 9-14), and six aldehyde or ketone-other reducible compound pairs (entries 15-20). The results are summarized in Table 3

As listed in Table 3, Ipc_2BCl exhibits a relatively low chemoselectivity between aldehydes. However, the reagent achieves a selective reduction of aldehydes in the presence of ketones. Thus, both aliphatic and aromatic aldehydes can

Table 3. Competitive Reduction of Aldehydes and Ketones with Ipc₂BCl in Pentane^a

Ent	ry Starting Mixture	Temp,	Time	Ratio of redn
		ొ	h	products ^b
1	Benzaldehyde/Hexanal	0	1	60 : 40
		-30	3	80:20
2	Benzaldehyde/p-Anisaldehyde	0	1	60:40
3	Hexanal/p-Anisaldehyde	0	1	60:40
4	Butanal/Cyclohexanone	0	1	99.5 : 0.5
5	Hexanal/Cyclohexanone	0	3	70:30
		-30	3	100:0
6	Hexanal/2-Heptanone	0	3	100:0
7	Hexanal/Acetophenone	0	3	100:0
8	Hexanal/Benzophenone	0	3	100:0
9	Cyclohexanone/Cyclopentanone	0	1	65 : 35
		-30	3	80:20
10	Cyclohexanone/2-Heptanone	0	3	99.5 : 0.5
11	Cyclohexanone/Acetophenone	0	3	95:5
		-30	12	100:0
12	2-Heptanone/Acetophenone	0	6	50:50
13	2-Heptanone/Benzophenone	0	3	100:0
14	Acetophenone/Benzophenone	0	3	99:1
15	Butanal/Hexanoyl chloride	0	1	99.9 : 0.1
16	Hexanal/Hexanoyl chloride	0	3	99.9 : 0.1
17	2-Heptanone/Hexanoyl chloride	0	6	99.9 : 0.1
18	2-Heptanone/Benzoyl chloride	0	6	100:0
19	2-Heptanone/Hexanenitrile	0	-	99.9 : 0.1
20	2-Heptanone/Ethyl hexanoate	0	6	100:0

[&]quot;Reaction mixture were ca. 1 M in substrats. One equivalent of reagent was utilized for the competitive reduction of equimolar mixture of two compounds. "Normalized ratio determined by GC with appropriate internal standard; the total yields of product alcohols were ≥ 99.5 %.

be selectively reduced in the presence of quite a number of various ketones showing essentially 100% selectivity. The reagent even distinguished between an aldehyde and a more reactive ketone such as cyclohexanone. The selectivity between ketones is also remarkable. Cyclohexanone was reduced selectively in the presence of 2-heptanone or acetophenone, and acetophenone was reduced much more readily than benzophenone showing a 99:1 selectivity.

Furthermore, the reagents are extremely mild. Even acid chloride, the most susceptible functional group, is compatible. This represents major advantage of Ipc₂BX over the more conventional reagents for the reduction of enals and enones to allylic alcohols. Especially, the chloro derivative Ipc₂BCl appears to be a reagent of choice: the compatibility with a wide variety of normally reducible functional groups, mild reaction conditions and essentially quantitative yield of reduced product in a relatively short period of reaction, coupled with the absence of side products recommend this reagent for such purpose.

The most challenging part of this experiment is the competitive reaction between a ketone and acid chloride, the

most reactive functional group in organic compound. Aldehydes and ketones can be selectively reduced in the presence of acid chlorides. Also, other functional groups, such as nit-

rile and ester, are not affected by Ipc₂BCl under these reaction conditions. Consequently, the reagent permits the selective reduction of aldehyde or ketone groups in the presence of many other functional groups.

Conclusion

The utility of diisopinocampheylhaloboranes (Ipc₂BCl; X = Cl, Br, I) as chemoselective reducing agents for aldehydes and ketones has been demonstrated in this study. Especially, the chloro derivative shows an essentially 100% chemoselectivity in the reduction of α,β -unsaturated carbonyl compounds to allylic alcohols and in the competitive reduction between carbonyl compounds. The reagent is exceptionally mild and the reaction proceeds smoothly at 0° or 25 °C in pentane. In addition to its previously known high enantioselectivity in the reduction of prochiral ketones, 1~5 these new chemoselectivities of the reagent should find wide application in organic synthesis.

Experimental Section

All glassware used in this study was predried at 140 $^{\circ}$ for several hours, assembled hot, and cooled under a stream of dry nitrogen prior to use. All reactions and manipulations of air- and moisture- sensitive materials were carried out using standard techniques for handling air-sensitive material.22 All chemicals were commercial products of the highest purity which were further purified by standard methods before use. Pentane was bubbled with dry nitrogen, dried with molecular sieve (4 Å) and distilled. Borane-methyl sulfide (BMS) and α-pinene were purchased from Aldrich Chemical Co. GC analyses were performed on a Hewlett-Packard 5790 A FID chromatograph equipped with a Hewlett-Packard 3390 A integrator/plotter, using a 12 ft.×0.125 in. column of 10% Carbowax 20 M on 100-120 mesh Supelcoport or a 10% Carbowax 20 M capillary column (25 m). 11B NMR spectra were recorded on a Bruker AMX-300 spectrometer and ¹H NMR spectra were recorded on a Varian EM-360A instrument. The chemical shifts are with reference to $BF_3\!\cdot\!OEt_2$ and tetramethylsilane, respetively.

Preparation of Diisopinocampheylhaloborane (Ipc₂ BX)

(a) Diisopinocamphenylchloroborane (Ipc₂BCl). To Ipc₂BH (100 mmol), prepared from (+)- α -pinene (210 mmol) and BMS (100 mmol) in THF (96 mL) at 0 °C for 6 h,²³ suspended in EE (50 mL) at -78 °C in a 250-mL round-bottom flask containing a magnetic stirring bar and fitted with a septum-capped sidearm and a connecting tube, was added dry HCl²⁴ (40.0 mL of 2.50 M solution in EE). The mixture was stirred for 15 min at -78 °C, warmed to 0 °C and stirred at that temperature until all of the solid dissolved and gas evolution ceased (2 h). The EE was pumped off and 50 mL of pentane was added. The ¹¹B NMR spectrum showed a singlet at δ 75 ppm.

(b) Diisopinocampheylbromoborane (Ipc₂BBr). HBr in EE was prepared from hydrobromic acid and phosphorus in ethyl acetate using an automatic gasimeter. The solution was standardized using standard NaOH. To Ipc₂BH (10 mmol) suspended in EE (96 mL) at 0 °C was added 44.45 mL of 2.25 M HBr²⁴ in EE and the mixture was stirred till all of the solid dissolved and gas evolution ceased (3 h). The EE was pumped off and 50 mL of pentane was placed. The ¹¹B NMR spectrum showed a singlet at δ 78.

(c) Diisopinocampheyliodoborane (Ipc₂BI). Into a 250-mL flask containing a freshly-prepared solid of Ipc₂BH (50 mmol) was added 50 mL of EE and the flask was immersed into an ice-water bath. To the slurry suspended in EE was added dropwise a 1 M solution of I₂ (25 mL, 25 mmol) in CS₂ and the mixture was stirred at that temperature until all of the solid dissolved and gas evolution completed (2 h). All the solvents were pumped off and 30 mL of pentane was added. The ¹¹B NMR spectrum showed a singlet at δ 85.

General Reduction Procedure

The following procedure was used to examine the rate of reduction of carbonyl compounds with Ipc₂BX. In an ovendried, 10-mL, round-bottom flask equipped with a septum-capped sidearm and a magnetic stirring bar was placed 10% excess of Ipc₂BX in pentane (5.5 mmol) and a suitable internal standard. The flask was maintained at 0 ℃ by an icewater bath. To this was added 5 mmol of a carbonyl compound tested and the mixture was stirred. At the appropriate time intervals, an aliquot was withdrawn and quenched with aqueous NaOH. The organoborane was oxidized by addition of 30% H₂O₂. The aqueous layer was saturated with K₂CO₃, and the organic layer was separated and dried with anhydrous MgSO₄. The organic layer was subjected to GC analysis and the rate of reduction was estimated.

Reduction of α,β -Unsaturated Carbonyl Compounds to Allylic Alcohols

The following procedure for the reduction of crotonaldehyde with Ipc_2BCl is representative. An oven-dried, 25-mL flask equipped with a sidearm fitted with a rubber stopple, a magnetic stirring bar, and a reflux condenser connected to a mercury bubbler was cooled down to room temperature under nitrogen. Pentane (1 mL) was injected into the flask followed by 0.42 mL (5 mmol) of crotonaldehyde (freshly distilled) and 0.60 mL (2.5 mmol) of *n*-tridecane. The reaction flask was cooled to 0 $^{\circ}$ C (ice-water bath) and 2.8 mL (5.6 mmol) of a 2 M Ipc_2BCl solution in pentane was added. The mixture was stirred for 3 h at 0 $^{\circ}$ C. The reaction mixture

was then hydrolyzed and oxidized (NaOH- H_2O_2 , 25 °C, 2 h). The aqueous layer was saturated with K_2CO_3 and the dry pentane layer was subjected to GC analysis, indicating the presence of crotyl alcohol as a sole product in >99.9% yield.

In a larger scale of reaction, crotonaldehyde (2.80 g, 40 mmol) was reduced with Ipc₂BCl (44 mmol) in pentane at 0 °C. When the reaction was complete (3 h), acetaldehyde (2.8 mL, 49.5 mmol) was added dropwise. The mixture was then warmed to room temperature and stirred for 3 h. Sodium hydroxide (6 N, 40 mL) was added to the mixture and the organics were extracted with diethyl ether. The combined extracts were washed with brine, dried over MgSO₄, and distilled to separate crotyl alcohol (2.60 g, 72%) and α-pinene (10.4 g, 90%).

Competitive Reduction

The following competitive reduction between cyclohexanone and acetophenone is representative. In a 50-mL, roundbottom flask was placed 5.0 mmol each of cyclohexanone and acetophenone solution (2 M) in pentane, followed by 0.60 mL of *n*-tridecane. The flask was kept at -30 °C with the aid of a cooling bath. To this flask was added 2.5 mL of a 2.0 M solution of Ipc2BCl in pentane (5.0 mmol) with vigorous stirring. The reaction mixture was stirred at -30°C for 12 h. It was then hydrolyzed with 2 mL of 2 N NaOH, and then the organoborane was oxidized with 1 mL of 30% H₂O₂ for 2 h at room temperature with stirring.²⁵ After oxidation, the aqueous layer was saturated with K₂CO₃ and the separated organic layer was dried with anhydrous MgSO₄. GC analysis of the pentane layer showed a 100% yield of cyclohexanol and a 100% yield of recovered acetophenone, indicating no presence of a-phenylethanol.

Acknowledgment. This research was supported by Organic Chemistry Research Center-KOSEF and the Ministry of Education (BSRI-94-3420).

References

- Chandrasekharan, J.; Ramachandran, P. V.; Brown, H. C. J. Org. Chem. 1985, 50, 5446.
- Brown, H. C.; Chandrasekharan, J.; Ramachandran, P. V. J. Org. Chem. 1986, 51, 3394.
- Brown, H. C.; Chandrasekharan, J.; Ramachandran, P. V. J. Am. Chem. Soc. 1988, 110, 1539.
- Srebnik, M.; Ramachandran, P. V.; Brown, H. C. J. Org. Chem. 1988, 53, 2916.
- Ramachandran, P. V.; Teodorovic, A. V.; Rangaishenvi, M. V.; Brown, H. C. J. Org. Chem. 1992, 57, 2379.
- Midland, M. M.; Tramontano, A.; Zderic, S. A. J. Organomet. Chem. 1977, 134, C17.
- Midland, M. M.; Tramontano, A. J. Org. Chem. 1978, 43, 1470.
- 8. Cha, J. S.; Kim, E. J.; Kwon, O. O.; Kim, J. M. Bull. Korean Chem. Soc. 1994, 15, 1033.
- Cha, J. S.; Kim, E. J.; Kwon, O. O.; Kim, J. M. Synlett. 1995, 331.
- (a) House, H. O. Modern Synthetic Reaction, 2nd ed.; Benjamin, W. A. Benjamin: Menlo Park, CA, 1972.
 (b) Ho, T.-L. Hard and Soft Acids and Bases Principles in Organic Chemistry; Academic Press: New York, 1977.
- 11. Wilson, K. E.; Seidner, R. T.; Masamune, S. J. Chem.

- Soc. Chem. Commun. 1970, 213.
- 12. Johnson, M. R.; Rickborn, B. J. Org. Chem. 1970, 35, 1041.
- 13. (a) Krishnamurthyl, S.; Brown, H. C. J. Org. Chem. 1975, 40, 1864. (b) Idem. Ibid. 1977, 42, 1197.
- Kim, S.; Moon, Y. C.; Ahn, K. H. J. Org. Chem. 1982, 47, 3311.
- (a) Ganem, B. J. Org. Chem. 1975, 40, 146. (b) Ganem,
 B.; Fortunato, J. M. Ibid. 1976, 41, 2194.
- For selective 1,2-reduction with other hydride reagents, see: (a) Mordenti, L.; Brunet, J. J.; Caubere, I. J. Org. Chem. 1979, 44, 2203. (b) Chaikin, S. W.; Brown, W. G. J. Am. Chem. Soc. 1949, 71, 122. (c) Cain, M. E. J. Chem. Soc. 1964, 47, 3532. (d) Brown, H. C.; Hess, H. M. J. Org. Chem. 1969, 34, 2206. (e) Semmelhack, M. F.; Stauffer, R. D.; Yamashita, A. J. Org. Chem. 1977, 42, 3180. (f) Gemal, A. L.; Luche, T. L. J. Am. Chem. Soc. 1981, 103, 5454. (g) Hutchins, R. O.; Kandsamy, D. J. Org. Chem. 1975, 40, 2530. (h) Corey, E. J.; Becker, K. B.; Verma, R. K. J. Am. Chem. Soc. 1972, 94, 8616. (i) Brown, H. C.; Mathew, C. P.; Pyun, C.; Son, J. C.; Yoon, N. M. J. Org. Chem. 1984, 49, 3091. (j) Sande, A, R.; Jagadale, M. H.; Mane, R. B.; Salunkhe, M. M. Tetrahedron Lett. 1984, 25, 3051.
- (a) Winterfeldt, E. Synthesis 1975, 617. (b) Brown, H.
 C.; Krishhnamurthy, S.; Yoon, N. M. J. Org. Chem. 1976, 41, 1778.
- Pelter, A.; Smith, K.; Brown, H. C. Boran Reagent; Academic Press, London, 1988.
- 19. No significant fluctuation in the rate and selectivity of the reduction was observed when the reduction was run in THF in place of pentane.
- (a) Hutchins, R. O.; Kandasamy, D. J. Am. Chem. Soc. 1973, 95, 6131.
 (b) Gribble, G. W.; Ferguson, D. C. J. Chem. Soc. Chem. Commun. 1975, 535.
 (c) Sell, C. S. Aust. J. Chem. 1975, 28, 1383.
 (d) Maki, Y.; Kikuchi, K.; Sugiyama, H.; Seto, S. Tetrahedron Lett. 1977, 263.
 (e) Posner, G. H.; Runquist, A. W.; Chapdelaine, M. J. Org. Chem. 1977, 42, 1202.
 (f) Brown, H. C.; Kulkarni, S. V. J. Org. Chem. 1977, 42, 4169.
 (g) Yoon, N. M.; Cha, J. S. J. Korean Chem. Soc. 1978, 22, 259.
 (h) Fung, N. Y. M.; deMayo, P.; Schauble, J. H.; Weedorn, A. C. J. Org. Chem. 1978,

- 43, 3977. (i) Midland, M. M.; Tramontano, A. J. Org. Chem. 1978, 43, 1470. (j) Risbood, P. A.; Ruthoven, D. M. J. Org. Chem. 1979, 44, 3969. (k) Sorrell, T. N.; Pearlman, P. S. J. Org. Chem. 1980, 3963. (1) Fleet, G. W. J.; Harding, P. J. C. J. Org. Chem. 1981, 675. (m) Krishnamurthy, S. J. Org. Chem. 1981, 46, 4628. (n) Yoon, N. M.; Park, G. B.; Gyoung, Y. S. Tetrahedron Lett. 1983. 5367. (o) Kim, S.; Kang, H. J.; Yang, S. Tetrahedron Lett. 1984, 2985. (p) Kim, S.; Yang, S. Bull. Korean Chem. Soc. 1988, 9, 188. (q) Ward, D. E.; Rhee, C. K. Synth. Commun. 1988, 18, 1927. (r) Ward, D. E.; Rhee, C. K.; Zoghaib, W. M. Tetrahedron Lett. 1988, 29, 517. (s) Maruoka, K.; Araki, Y.; Yamamoto, H. Tetrahedron. 1988, 29, 3101. (t) Ranu, B. C.; Chakraborty, R. Tetrahedron 1990, 31, 7663. (u) Sarkas, D. C.; Das, A. R.; Ranu, B. C. J. Org. Chem. 1990, 55, 5799. (v) Firouzabadi, H.; Tamami, B.; Goudarzian, N. Synth. Commun. 1981, 21, 2275.
- (a) Yamamoto, T.; Toi, T.; Sonoda, A.; Murahashi, S. I.
 J. Am. Chem. Soc. 1976, 98, 1965. (b) Andrews, G. C.
 Tetrahedron Lett. 1980, 697. (c) Yoon, N. M.; Kim, K.
 E.; Kang, J. J. Org. Chem. 1986, 51, 226.
- Brown, H. C.; Kramer, G. W.; Levy, A. B.; Midland, M. M. Orgnic Synthesis via Boranes; Wiley-Intersiences: New York, 1975; Chapter 9.
- 23. In the literature (Brown, H. C.; Singaram, B. J. Org. Chem. 1984, 49, 945.), 230 mmol of α-pinene (15%) was used and the resulting slurry (Ipc₂BH) was kept for 3 days at 0 °C in order to achieve optical upgradation of Ipc₂BH. But in this experiment no optically pure Ipc₂BH was needed. Therefore, a sample hydroboration procedure was enough for preparing Ipc₂BH which was necessary for our purpose.
- 24. Dry HCl and HBr were prepared from hydrochloric acidsulfuric acid and hydrobromic acid-phosphorus tribromide in ethyl acetate, respectively, using a Brown apparatus.²²
- 25. In the case of aldehyde-aldehyde or aldehyde-ketone pairs, a buffer solution (pH 7.0) was added before the oxidation step in order to avoid the possible oxidation of unreacted starting aldehyde.