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Stenine {) and tuberostemoning)(are the structurally built by the Beckmann rearrangement of the oxén&he
related alkaloids isolated fronStemonaspecies whose precursor ketone to oxinfewas envisioned to be obtained
extracts have long been used in China and Japan both #wsough a Diels-Alder reaction of trienoGe
drugs for the treatment of respiratory disease and anthelm- Trienone6 was synthesized starting from the readily avail-
intics1 The structures of stenine and tuberostemonine werable vinyl iodide7’” and vinylstannan& (Scheme 2). A Stille
determined by chemical degradation and spectrometric meticoupling of 7 and8 provided the targeted(E)-diene alco-
ods,with the full absolute configuration being elucidated by hol 9 in 62% yield. The alcohd was converted into ester
X-ray crystallographic analysfs. 10in 80% yield by Jones oxidation and diazomethane treat-
ment. Reaction of0 with dimethyl lithiomethylphosphonate
followed by Horner-Emmons couplitfpf the resulting keto-
phosphonate with the aldehyi#! under Masamune-Roush
conditions? completed the synthesis®{79% from10). With
trienone6 in hand, the key intramolecular Diels-Alder reac-
tion was explored. When heated to reflux in chlorobenzene
for 48h,6 underwent cyclization to produce two diastereo-

Several synthetic efforts directed toward stenijead  meric adducts. The desirei$-fused adduct2 was obtained
tuberostemonine2] have been reportédAmong them, viatheendotransition state in 40% yield along with 19% of
Hart's elegant synthe$§i€® of stenine 1) utilized an intra-  transfused adductl3. The stereochemical assignments of
molecular Diels-Alder strategy build the B ring. Then, D, cycloadductd2 and13were made on the basis of analysis of
A, C rings were constructed in sequence. Kozikotskso  H NMR spectroscopic data. The obserded'H coupling
used an intramolecular Diels-Alder reaction to install the Bconstants 2 Jap=5.2 Hz,Jac= 8.3 HZ;13: Jap = Jac= 10.7
ring of tuberostemoning), in which PhSginduced C ring  Hz) are related closly to known data of similar syst&ms.
formation was failed. As part of our studiesStemonalka- Treatment ofL2 with hydroxylamine hydrochloride in pyri-
loid synthesis, we designed an alternative intramoleculadine gave a 10 : 1 mixture of two stereocisomeric oximes in
Diels-Alder approach to stening) (n which the Beckmann 93% yield. A Beckmann rearrangement of the major oxime
rearrangement was combined to construct the BC ring by tosyl chloride in pyridine at room temperature readily
framework. We now report a novel construction of the BCDassembled the C ring skeleton to provide the seven-mem-
tricyclic ring skeleton of stenin@) based on an intramolec- beredcis-lactam4 in 89% yield.*H NMR data (appearance
ular Diels-Alder/Beckmann rearrangement strategy. of -NHCO peak:d 5.96, d,J =6.05 Hz; downfield shift of

As outlined in Scheme 1, we envisaged that the tertiaryHa peak at 3.42 ppm compared tppéak at 2.34 ppm it?2)
lactam3 would serve as a suitable intermediate to stedine ( and IR data (3,300 c) N-H stretch; 1,666 cih, amide I;
and the five-membered D ring could be easily formed froml,620 cm?, amide 1l) are in accord with the structuredof
the lactam4 by a sequence of deprotection and cyclizationBecause the Beckmann rearrangement proceedsawiih
process. The seven-membered C ring was expected to bagration, the structure @f retrospectively verified the ste-

reochemistry of thanti-oxime>.
OMPM The D ring could be constructed in two steps. The MPM

5O 0o group of4 was removed with DDQ (89%). Installation of
1 = TBDPsc')/ ' - = h the D ring required a bond formation between amide nitro-
H TBDPSO
3 H
4

gen and hydroxy-containing carbon. Initially, we anticipated
that such one-step cyclization should be possible by the Mit-

sunobu reactioff: However, many attempts to bring about
OMPMOH OMPM cyclization using the Mitsunobu reaction were unsuccessful.
w N \ We next tried to make a cyclization through a sequence of
| mesylate formation followed by base treatment. To our
< delight, it was found that this process could be performed in
5 6 a single pot. Thus, treating with mesyl chloride and triethy-

Scheme 1 lamine in pyridine at room temperature and then heating at
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50°C, the alcohol underwent smooth cyclizatigemits mesy-
late to provide the tertiary lactag®® in 70% vyield. It was
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Scheme 2

observed that the cyclization also took place at room tempell
ature with or without the use of triethylamine, although it
was slow. Addition of triethylamine and heating facmtated

the ring closure.

4.
In summary, we have demonstrated that the intramolecular

11.

Diels-Alder/Beckmann rearrangement strategy should be ame-

nable to the construction of BCD ring skeleton of stenine.
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All new compounds gave spectral data consistent with the
assigned structure. Spectral data for selected compounds
are as follows12 *H NMR (600 MHz, CDC) §7.62-7.68

(m, 4H, aromatic), 7.33-7.42 (m, 6H), 7.20 Jd&; 8.3 Hz,
2H), 6.83 (dJ = 8.3 Hz, 2H), 5.55 (s, 2H), 4.34 (ABq, 2H),
3.77 (s, 3H), 3.76 (m, 1H), 3.72 (m, 1H), 3.41 (m, 2H), 2.43
(m, 1H), 2.34 (ddJ=5.2, 8.3 Hz, 1H), 2.28 (ddd,= 5.6,
10.7, 13.8 Hz, 1H), 2.16 (m, 1H, 2.03-2.10 (m, 2H), 1.83-
1.93 (m, 2H), 1.67-1.77 (m, 2H), 1.51-1.65 (m, 3H), 1.48 (m,
1H), 1.06 (s, 9H)*C NMR (50 MHz, CDG) 6 214.4,
135.9, 134.0, 131.3, 130.8, 129.7, 129.3, 128.8, 127.7, 113.8,
112.4, 72.6, 67.5, 61.6, 55.4, 54.9, 40.0, 38.0, 37.3, 36.5,
32.9,32.1,29.2, 27.0, 25.0, 19.3; IR (neat) 2925, 1706 (C=0),
1513 cmi*. 4: 'TH NMR (200 MHz, CDGQ) 67.58-7.72 (m,
4H), 7.32-7.47 (m, 6H), 7.23 (d,=8.6 Hz, 2H), 6.86 (d,
J=8.6 Hz, 2H), 5.96 (dJ=6.5 Hz, 1H), 5.42-5.60 (m,
2H), 4.38 (ABq, 2H), 3.79 (m, 3H), 3.74 (m, 2H), 3.50 (m,
2H), 3.42 (m, 1H), 2.50 (m, 1H), 2.16-2.37 (m, 2H), 1.98
(m, 1H), 1.40-1.98 (m, 9H), 1.04 (s, 9H). IR (neat) 3300 (N-
H), 2925, 1666 (C=0), 1620, 1513, 1467, 1427, 1248, 1102,
704 cm. 3: 'TH NMR (600 MHz, CDGJ) 6 7.64-7.60 (m,
4H), 7.44-7.38 (m, 6H), 5.57 (m, 1H), 5.51 (m, 1H), 3.73 (t,
J=6.4 Hz, 2H), 3.52 (m, 1H), 3.50-3.43 (m, 2H), 2.72 (m,
1H), 2.63 (m, 1H), 2.58 (m, 1H), 2.16 (m, 1H), 2.08-2.16
(m, 2H), 2.00-2.10 (m, 1H), 1.68-1.83 (m, 2H), 1.58-1.66
(m, 2H), 1.40-1.57 (m, 2H), 1.30 (s, 9H). IR (neat) 2927,
1641, 1466, 1272, 1117, 753, 714tm



