Acknowledgement. This work, whose original title is "Studies on the synthesis and kinetics of nucleophilic adducts of sulfur compounds", has been supported by Korea Science and Engineering Foundation. #### References - C.K. Ingold, "Structure and Mechanism in Org. Chem.", p, 1016 Cornell Univ. Press, Ithaca, N.Y., (1969). - 2. B.H. Niclet, J. Am. Chem. Soc., 57, 1908 (1935). - S. Ratner and H. T. Clarke, J. Am. Chem. Soc., 59, 200 (1937). - 4. H. Esterbauer, Monatshafte für Chemie, 101, 782 (1970). - 5. H. Esterbauer, H. Jollner, and N. Scholz, A. Naturforsch. - 30C, 466 (1975). - H. Esterbauer, A Ertl and M. Scholz, Tetrahedron, 32, 285 (1976). - 7. F. Zuman, "Topics in organic Polarography", p. 213, Plenum Press, London, 1970. - J.T. Stock, "Amperometric Titrations" New York Int, 1965. - 9. C. Harper, "Introduction to Mathematical Physics", p. 57, Prentice-Hall, 1976. - D.P. Wrathall, R.N. Izatt, and J.J. Christensen, J. Am. Chem. Soc., 86, 4779 (1964). - 11. R. Luhowy and F. Menghini, ibid, 101, 420 (1979). - Lézlo Szilgyi and Zoltán Györgydeák, ibid, 101, 427 (1979). # A Study of Nonstoichiometric Empirical Formulas for Semiconductive Metal Oxides Kyung Sun Kim, Kwan Hee Lee, Ung-In Cho*, and Jae Shi Choi Department of Chemistry, Yonsei University, Seoul 120, Received July 12, 1985 An empirical formula for semiconductive metal oxides is proposed relating nonstoichiometric value x to a temperature or an oxygen partial pressure such that experimental data can be represented more accurately by the formula than by the well-known Arrhenius-type equation. The proposed empirical formula is $\log x = A + B \cdot 1000/T + C \cdot \exp(-D \cdot 1000/T)$ for a temperature dependence and $\log x = a + b \cdot \log Po_2 + c \cdot \exp(-d \cdot \log Po_2)$ for an oxygen partial pressure dependence. The A,B,C,D and a,b,c,d are parameters which are evaluated by means of a best-fitting method to experimental data. Subsequently, this empirical formula has been applied to the n-type metal oxides of $Zn_{1**}O$, $Cd_{1**}O$, and $PrO_{1**}O_{1**}O$, and the p-type metal oxides of CoO_{1**} , FeO_{1**} , and Cu_2O_{1**} . It gives a very good agreement with the experimental data through the best-fitted parameters within 6% of relative error. It is also possible to explain approximately qualitative characters of the parameters A,B,C,D and a,b,c,d from theoretical bases. ### Introduction Since Wagner and Schottky¹ had shown that inorganic compounds could have defects in crystals and nonstoichiometric compositions, experimental and theoretical studies for these behaviors have been performed actively.²-¹9 Among these, the enthalpy and entropy changes of point defect formations in metal oxides were usually determined by the deviation from stoichiometry, electrical conductivities, and diffusions as a function of temperature or partial pressures of oxygen. In this respect, compositional variations in many nonstoichiometric oxides are often discussed as a function of temperature or partial pressure of oxygen^{7-11.20,21} and approximate empirical relations between these have been proposed.²-2-26 Usually the relationships between nonstoichiometric quantity, log x and inverse temperature (1000/T) or oxygen partial pressure (log Po₂) have been considered to be linear. The linear relationship is based on the fact that the defects are randomly distributed and noninteracting to each other with mass action law. This is probably true only in the range of very small deviations from stoichiometry. Consequently, in many cases, to fit experimental data, one has to adopt two linear relationships⁷⁻¹¹ with so called a break point even though there is no apparent phase transition. Moreover, the slopes of lines in ex- perimental data changes gradually with increasing or decreasing nonstoichiometry. From these facts, it seems that the relationship of real defect system is well represented by curvature rather than linear. In the present work a new empirical formula is proposed with four parameters which can represent the real defect system. The formula would give a curvature rather than a straight line and would show a consistent result for metal oxides. Characters of parameters A,B,C,D and a,b,c,d obtained from calculations are attempted to be explained qualitatively. The enthalpy of formation of nonstoichiometric composition, $\Delta H_i'$ and the characteristic number, 1/n' are obtained from the new formula. #### **Empirical Formulas and Calculation** The previous relationships between nonstoichiometric quantity and temperature or oxygen partial pressure were derived theoretically. The usual relationships are the Arrhenius-type equation, which is given by; $$\log x = a + b \cdot 1000/T$$ $$\log x = a' + b' \cdot \log Po_2,$$ where both a and a' are constants, b is $-\Delta H/2.3R$, b' is 1/n. Figure 1. Log x vs. 1000/T for Zn_{1+x}O. Figure 2. Log x vs. 1000/T for Cd_{1+x}O. Figure 3. Log \times vs. 1000/T for PrO_{1.8003-x}. Figure 4. Log x vs. 1000/T for CoO_{1+x}. Figure 5. Log×vs. 1000/T for FeO_{1+x}. Figure 6. Log x vs. 1000/T for Cu₂O_{1+x}. Here, ΔH_r is the enthalpy of defect formation and n is a characteristic number identifying the type of defect. This relation predicts that the values of ΔH_f and 1/n are constants for a temperature and an oxygen partial pressure changes respectively. But experimental data of metal oxides applied to this relation show that these values vary continuously with them. And it is difficult to explain the break point in oxides without a phase transition. On the basis of these facts, new formula seems to be reasonable as a modification which might give a good representation to experimental data within given range of temperature or pressure in experiment. This study tries to find a new empirical formula which can represent the real defect system without considering a particular factor. The equation is Arrhenius-type equation added to a correction term. The proposed formula is obtained mainly by analysing the paper of Choi-Yo et al.7-11 which was studied consistently in the relatively broad ranges of temperature and oxygen partial pressure. The proposed empirical formulas with four parameters are (i) in temperature dependence $$\log x = A + B \cdot 1000/T + C \cdot \exp(-D \cdot 1000/T)$$ (1) (ii) in oxygen partial pressure dependence $$\log x = a + b \cdot \log Po_2 + c \cdot \exp(-d \cdot \log Po_2)$$ (2) where A,B,C,D and a,b,c,d are parameters. Calculations to get the values of parameters A,B,C,D and a,b,c,d are performed on the basis of best-fitting method with experimental data for temperature and pressure dependence of nonstoichiometric value x of metal oxides, Zn_{1+x}O, Cd_{1+x}O, and PrO_{1.8003-x} for n-type and CoO_{1+x}, FeO_{1+x} and Cu₂O_{1+x} for p-type. # Results and Discussion # (a) The Empirical Formula for Temperature Dependence. The plots of log x vs. 1000/T under various pressures for n-type metal oxides; $Zn_{1+x}O$, $Cd_{1+x}O$, and $PrO_{1.8003-x}$, and ptype metal oxides; CoO_{1+x}, FeO_{1+x}, and Cu₂O_{1+x} obtained as a result of the proposed formula, Eq. (1), are shown in Figure 1-6 in comparison to the experimental data. The values of parameters A,B,C,D are shown in Table 1. The ranges of maximum relative error are 0.7~3.1% for Zn_{1+x}O, 1.0~2.3% for $Cd_{1+x}O$, $1.1\sim5.8\%$ for $PrO_{1.8003-x}$, $1.0\sim8.4\%$ for CoO_{1+x} , 2.9~7.0% for FeO_{1+x}, and 1.0~2.4% for Cu₂O_{1+x}. These represent a good agreement with experimental data except somewhat large errors in the case of CoO_{1+x} and FeO_{1+x} at low pressures. The break point are vanished from these plots, which was difficult to be explained previously. From the plots of the values of the calculated best-fitted parameters A,B,C,D vs. log Po2, tendencies of each parameter for n-type and ptype metal oxides can be derived. In both cases, variations of A, B and D show linearities, while variation of C shows exponent. For n-type metal oxides, parameters A and B decrease and parameters C and D increase as pressure increases. Whereas for p-type metal oxides, as pressure increases, parameters A, B, and C increase with a small change, and parameter D decreases roughly in CoO1+x and FeO1+x and increase in Cu₂O_{1+x}. Therefore, it is clear that the distinctive character between n-type and p-type metal oxides depends on parameters A and B, that is, as pressure increases, parameters A and B decrease for n-type metal oxides and increase for p-type metal oxides. In the Arrhenius-type equation, where the model is that defects are noninteracting and ditributed randomly, the slope $\partial(\log x)/\partial(1000/T)$ is $-\Delta H/2.3R$. With this relation, the enthalpies of formation of nonstoichiometric compositions, ΔH_f , are obtained in ideal system. Similarly, we tried to get the enthalpies of formation in the system which should consider interactions between defects. The new proposed formula with the correction term represents experimental data satisfac- Table 1. The Values of Best-fitted Parameters A,B,C,D for Semiconductive Metal Oxides at Various Oxygen Partial Pressures | Pressure (atm) - | | | | | n- | -Type Metal | Oxides | | | | | | |-----------------------|--------|-------|------|------|---------------------|-------------|--------|-------|-------------------------|-------|------|------| | | ****** | Zn, | ,O | | Cd _{1+x} O | | | | PrO _{1,8003-x} | | | | | | A | В | С | D | A | В | С | D | A | В | С | D | | 1×10 ⁻⁵ | -1.55 | -0.15 | 2.26 | 2.27 | - 1.54 | - 0.350 | 0.46 | 0.023 | -1.20 | -0.55 | 1.69 | 0.78 | | 1×10-4 | -1.60 | -0.16 | 2.38 | 2.23 | -1.80 | -0.352 | 0.57 | 0.043 | -1.30 | -0.57 | 1.86 | 0.84 | | 1×10^{-3} | -1.65 | -0.17 | 2.82 | 2.41 | -2.04 | -0.354 | 1.28 | 0.48 | 1.40 | -0.59 | 2.32 | 1.00 | | 1×10^{-2} | -1.70 | -0.19 | 3.29 | 2.67 | -2.24 | -0.356 | 1.82 | 0.66 | -1.50 | -0.16 | 2.31 | 0.95 | | 1×10^{-1} | -1.75 | -0.20 | 2.83 | 2.58 | -2.35 | -0.358 | 1.81 | 0.79 | -1.60 | -0.63 | 2.48 | 0.98 | | $1 \times 10^{\circ}$ | -1.80 | -0.21 | 3.06 | 2.84 | -2.49 | -0.360 | 2.39 | 1.00 | _ | _ | _ | _ | | Pressure (mmHg) 1×10 ⁻⁴ | | | | | p- | Type Meta | l Oxides | | | | | | |-------------------------------------|-------|------|------------------|-------|--------|-----------|---|------|-------|-------|------|------| | | | Col | O _{1+x} | | | FeC | Cu ₂ O _{1+x} ^a | | | | | | | | | _ | | _ | -1.02 | 0.007 | - 9.93 | 3.55 | _ | | | | | 1×10^{-3} | -2.18 | 0.28 | -2.87 | 2.32 | -1.01 | 0.006 | -7.12 | 3.46 | -4.50 | -0.30 | 2.55 | 0.29 | | 1×10^{-2} | -2.16 | 0.27 | -1.53 | 2.25 | -1.00 | 0.005 | -3.74 | 3.05 | -4.10 | -0.32 | 2.69 | 0.46 | | 1×10-1 | -2.14 | 0.26 | -0.11 | 0.80 | -0.99 | 0.004 | -1.75 | 2.35 | -3.70 | -0.34 | 3.02 | 0.68 | | 2×10 ⁻¹ | _ | | _ | _ | _ | _ | _ | _ | -3.58 | -0.35 | 3.26 | 0.76 | | $1 \times 10^{\circ}$ | -2.11 | 0.25 | -0.12 | 0.70 | -0.97 | 0.003 | -12.4 | 4.58 | -3.30 | -0.36 | 3.36 | 0.86 | | 1×101 | -2.09 | 0.24 | -0.17 | 1.32 | -0.96 | 0.002 | -3.49 | 3.80 | _ | _ | _ | _ | | 1×10^2 | -2.06 | 0.23 | -0.01 | -0.11 | - 0.95 | 0.001 | -0.22 | 1.61 | _ | _ | _ | _ | [&]quot;Units of oxygen partial pressures are atm in the case of Cu₂O₁₊₁. Table 2. Comparisons of Enthalpies of Formation of the Nonstoichiometric Compositions of the Present Formula, $\Delta H'_{\ell}$ (kcal/mol) with the Arrhenius Type Equation, ΔH_{ℓ} (kcal/mol) for Semiconductive Metal Oxides | _ | Zn | O _{**} | Cd _{1+x} O | | PrO _{1,8003-x} | | | | |--------------------|--------------------|------------------|-------------------------|------|------------------------------------|----------------|--|--| | Pressure (atm) | ΔH' _f | ΔH, | ΔΗ΄,
(500∼100°C | ΔH, | ΔH', ΔH, (900~300°C) | | | | | 1×10 ⁻⁵ | 5.68~1.49 | 4.53 2.20 | 1.65~1.64 | 1.65 | 6.06~4.06 | 5.85 4.26 | | | | 1×10 ⁻⁴ | 6.08~1.62 | 4.58 2.20 | 1.71 | 1.83 | 6.64~4.25 | 6.20 4.58 | | | | 1×10 ⁻³ | 6.84~1.66 | 4.78 2.52 | 3.13~2.39 | 2.75 | 8.07~4.55 | 6.26 5.23 | | | | 1×10 ⁻² | 7.40~1.61 | 4.98 2.53 | $3.96 \sim 2.56$ | 2.93 | 8.05~4.67 | 7.18 5.28 | | | | 1×10 ⁻¹ | 6.69~1.63 | 5.81 2.53 | 3.99~2.42 | 3.02 | 8.59~4.89 | 8.36 5.38 | | | | 1×10° | 6.74~1.54 | 7.28 2.54 | 4.64~2.39 | 3.11 | - | | | | | | Co | O _{1+x} | FeO _{1+x} | | Cu ₂ O _{1+x} a | | | | | Pressure
(mmHg) | ΔH', | ΔH,
500°C) | ΔΗ;
(900~200°C | ΔH, | ΔH;
(1000~ | ΔH,
-500°C) | | | | 1×10-4 | _ | | -14.52 ~ - 0.044 | | _ | _ | | | | 1×10-3 | $-7.56 \sim -2.78$ | -15.8 -2.06 | $-10.79 \sim -0.038$ | _ | 4.14~3.58 | 4.58 | | | | 1×10 ⁻² | $-4.64 \sim -2.08$ | - 5.95 -2.06 | $-6.59\sim-0.037$ | _ | 5.52~4.32 | 5.72 | | | | 1×10 ⁻¹ | -1.43~-1.33 | - 2.29 -1.03 | - 3.83~-0.053 | | $7.28 \sim 4.98$ | 6.64 | | | | 2×10-1 | | | - | _ | 8.07~5.24 | 7.09 | | | | 1×10° | $-1.37 \sim -1.29$ | -1.95 -1.03 | - 2.54~-0.015 | | 8.71~5.32 | 7.32 | | | | 1×101 | -1.51~-1.28 | -1.83 -1.03 | - 4.61~-0.011 | _ | | _ | | | | 1×10 ² | -1.05 | -1.60 -0.69 | - 0.54~ - 0.026 | _ | _ | | | | ^{*} Units of oxygen partial pressures are atm in Cu₂O_{1+x}. torily, which has a slope of $-\Delta H_I' = 2.3R \{B - C \cdot D \cdot \exp(-D \cdot 1000/T)\}.$ This $\Delta H'_i$ is considered as the enthalpy of formation of nonstoichiometric compositions which may represent not ideal defect formation but real defect formation. The enthalpies of formation, $\Delta H'_{ij}$ obtained from the present formula are shown in Table 2 for semiconductive metal oxides. The comparison to enthalpies of formation from the Arrhenius-type equation are shown in these tables. All of these enthalpies have certain ranges changing both with temperature and pressure. In temperature dependence, the enthalpies of formation of all n-type metal oxides and Cu₂ O_{1+x} of p-type metal oxides increase as temperature increases. In the case of CoO1+x and FeO_{1+x}, the absolute value of enthalpy increase as temperature increases. Especially in FeO_{1+x}, enthalpies could not be found from the Arrhenius-type equation because experimental data represent curvature originally. The variations of enthalpy with temperature correspond qualitatively to the phenomena that the values 1/n obtained by experimental data change gradually with temperature. Under the various pressures, as shown in Table 2, the enthalpies of formation tend to increase as pressure increases in all the n-type metal oxides and Cu₂O_{1+x} of p-type metal oxides. In the case of CoO1+x and FeO1+x of p-type metal oxides, the absolute values of enthalpies decrease as pressure increases. # (b) The Empirical Formula for Oxygen Pressure Dependence The plots of log x vs. log Po₂ under various temperatures obtained as a result of the proposed formula, Eq.(2), are shown in Figure 7-12 for the same materials as dealt with temperature dependence. All of them show curvature without the break point. The values of parameters a,b,c,d are shown in Table 3. The ranges of maximum relative error are 0.8~5.4% for n-type and p-type metal oxides. These represent a good agreement with the experimental data. In pressure dependence, tendencies of each parameter, a,b,c,d for n-type and p-type metal oxides show linearity except tendency of c for the p-type. The variation of c for the p-type metal oxides shows exponent. There is no distinctive consistancy between n-type and p-type metal oxides in tendencies of parameters of pressure dependence. From the Arrhenius-type equation, slope $\mathfrak{s}(\log x)/\mathfrak{s}(\log Po_2)$ is 1/n, where n is a characteristic number identifying the type of defect. Usually the type of defect can be distinguished from n value for a metal oxides. Therefore 1/n' value is derived with the new proposed formula similarly. From the new proposed formula, slope is as follows; $$1/n' = b - c \cdot d \cdot \exp(-d \cdot \log Po_2).$$ The characteristic numbers 1/n' obtained from the present formula are shown in Table 4 for semiconductive metal oxides with the comparison to characteristic numbers 1/n. All of these 1/n' values have certain ranges changing with pressure and temperature and approximately agree with changing 1/n values which are difficult to be explained by equation $\log x \propto 1/n \log Po_2$. Here, 1/n' values for all n-type metal oxides are negative and those for all p-type metal oxides are positive. This is the well-known ditinctive difference between n-type and p-type metal oxides. Furthermore, knowing the characteristic number n would guide establishing the defect mechanism of a metal oxide. Thus variation of n' value with changing oxygen partial pressure at a given temperature can be interpreted as relatively gradual change of serveral defect mechanism instead of single mechanism at a given Figure 7. Log x vs. log Po2 for Zn1+2O. Figure 8. Log×vs. log Po2 for Cd1+2O. Figure 9. Log \times vs. log Po₂ for PrO_{1.8003-x}. Figure 10. Log \times vs. log Po $_2$ for CoO $_{1+x}$. Figure 11. Log×vs. log Po2 for FeO1+x. Figure 12. Log x vs. log Po₂ Cu₂O_{1+x}. | | | | | | | n-Type Me | tal Oxides | 1 | | | | | | |------------------|-------|---------------------|-------|------|--------|---------------------|------------|------|-------|-------------------------|------|-----|--| | Temperature (°C) | | Zn _{1+x} O | | | | Cd _{1+x} O | | | | PrO _{1.8003-x} | | | | | (C) | а | b | с | d | a | b | с | d | a | b | с | d | | | 200 | _ | | _ | _ | - 3.25 | -0.194 | 0.26 | 0.10 | _ | _ | _ | _ | | | 300 | _ | | | _ | -3.12 | -0.194 | 0.46 | 003 | -2.83 | -0.135 | 0.45 | 015 | | | 400 | -2.11 | 068 | 0.034 | .021 | -3.02 | -0.193 | 0.56 | 048 | -2.67 | -0.130 | 0.61 | 040 | | | 500 | -2.07 | 066 | 0.11 | .021 | -2.96 | -0.193 | 0.64 | 054 | -2.54 | -0.126 | 0.72 | 040 | | | 600 | -2.04 | 064 | 0.16 | .029 | | | | _ | -2.45 | -0.123 | 0.86 | 048 | | | 700 | -2.02 | 062 | 0.22 | .017 | _ | _ | _ | _ | -2.37 | -0.121 | 0.90 | 032 | | | 800 | -2.00 | 061 | 0.23 | .057 | | _ | | **** | -2.31 | -0.119 | 1.06 | 056 | | | 900 | -1.98 | 060 | 0.28 | .056 | _ | _ | | - | -2.25 | -0.117 | 1.13 | 049 | | | Temperature | | | | | 1 | р-Туре М | etal Oxides | | | | | | |-------------|--------------------|------|------|--------------------|--------|----------|-------------|---------|-------|-------|------|------| | (°C) | CoO _{1+x} | | | FeO _{1+x} | | | | Cu₂O₁+x | | | | | | 300 | _ | | _ | _ | -0.935 | .0112 | 0073 | 0.18 | _ | - | _ | _ | | 400 | _ | _ | | _ | -0.935 | .0115 | 011 | 0.23 | _ | _ | _ | _ | | 500 | -1.77 | .010 | 016 | 0.38 | -0.935 | .0117 | 014 | 0.31 | -3.77 | 0.374 | 1.08 | 0.15 | | 600 | -1.80 | .011 | 0079 | .054 | -0.935 | .0119 | 022 | 0.33 | -3.71 | 0.377 | 1.26 | 0.11 | | 700 | -1.82 | .012 | 0061 | 0.66 | -0.935 | .0120 | 033 | 0.31 | -3.67 | 0.379 | 1.40 | .095 | | 800 | -1.84 | .014 | 0058 | 0.68 | -0.935 | .0121 | 069 | 0.26 | -3.64 | 0.381 | 1.48 | .089 | | 900 | -1.86 | .014 | 0062 | 0.70 | -0.935 | .0122 | 10 | 0.23 | -3.61 | 0.383 | 1.60 | .069 | | 1000 | -1.87 | .015 | 0050 | 0.79 | _ | | _ | _ | -3.58 | 0.384 | 1.71 | .056 | | 1200 | -1.91 | .016 | 0047 | 0.91 | _ | _ | | _ | _ | _ | _ | _ | | | | | | | | | | | | | | | Table 4. Comparisons of the Defect Characteristic Values of the Present Formula, 1/n' with Experimental Values, 1/n for Semiconductive Metal Oxides | | $Zn_{i+r}O$ | | $Cd_{1+x}O$ | | PrO _{1.8003-x} | | | | |------------------|--------------------------|----------|---------------------------|----------|-------------------------|-----------------|--|--| | Temperature (°C) | 1/n′ | 1/n | 1/n′ | 1/n | 1/n′ | 1/n | | | | · -/ | (10 ⁻⁵ ~10° a | tm) | (10 ⁻⁵ ~10° at | m) | (10-6~10-1 at | (10-6~10-1 atm) | | | | 200 | **** | _ | -1/4.21~-1/4.53 | - 1/4.65 | - | _ | | | | 300 | _ | _ | $-1/5.20 \sim -1/5.21$ | -1/5.26 | -1/7.8 | -1/ 7.8 | | | | 400 | -1/14.6 | -1/14.0 | $-1/5.82 \sim -1/6.03$ | -1/6.06 | $-1/9.1\sim-1/9.4$ | -1/8.8 | | | | 500 | - 1/14.7 | - 1/13.8 | -1/6.03~-1/6.35 | -1/6.90 | $-1/9.7\sim-1/10.2$ | -1/9.7 | | | | 600 | -1/14.5~-1/14.6 | -1/12.8 | _ | _ | $-1/10.9 \sim -1/12.0$ | - 1/10.9 | | | | 700 | $-1/15.1 \sim -1/15.2$ | - 1/12.3 | - | | $-1/10.3 \sim -1/10.8$ | - 1/11.5 | | | | 800 | $-1/12.7 \sim -1/13.5$ | - 1/11.6 | | | $-1/13.1\sim-1/16.0$ | - 1/13.0 | | | | 900 | $-1/12.4 \sim -1/13.2$ | - 1/11.1 | _ | - | $-1/13.2 \sim -1/15.6$ | -1/17.1 | | | | | CoO1+ | x | FeO _{1+x} | | Cu ₂ O _{1+x} | | | |---------------|--------------------------------------|-----------|---------------------------|------|----------------------------------|--------|--| | Temperature - | 1/n′ | 1/n | 1/n′ | 1/n | 1/n′ | 1/n | | | (0) | (10 ⁻³ ~10 ² n | nmHg) | (10 ⁻⁴ ∼10² mm | ıHg) | (10 ⁻³ ~10⁰ mn | nHg) | | | 300 | | _ | 1/63.2~1/78.4 | 1/40 | _ | _ | | | 400 | _ | | 1/41.5~1/68.6 | 1/40 | _ | - | | | 500 | 1/14.8~1/53.7 | 1/12 | 1/20.8~1/57.4 | | 1/4.68~1/8.07 | 1/5.26 | | | 600 | 1/ 8.9~1/54.9 | 1/12 1/75 | 1/12.4~1/44.6 | 1/10 | 1/4.28~1/5.74 | 1/4.59 | | | 700 | 1/ 4.9~1/51.1 | 1/9 | 1/ 9.8~1/38.8 | 1/10 | 1/4.07~1/4.95 | 1/4.44 | | | 800 | 1/ 4.5~1/48.5 | 1/8.3 | 1/ 8.1~1/28.5 | _ | 1/4.00~1/4.77 | 1/4.31 | | | 900 | 1/ 3.7~1/44.9 | 1/7.4 | 1/ 8.0~1/24.4 | _ | 1/3.67~1/4.05 | 1/4.00 | | | 1000 | 1/ 2.3~1/43.5 | 1/4.8 | _ | _ | 1/3.47~1/3.70 | 1/3.64 | | | 1200 | 1/ 1.1~1/39.3 | 1/2.8 | **** | _ | _ | _ | | temperature. #### Conclusion From the linear relation by Arrhenius-type equation, n-type metal oxides can be distinguished from p-type metal oxide in that in the former nonstoichiometric quantity tended to decrease as pressure increased and converged in high temperature. Whereas in the latter it tended to increase as pressure increased and converged in low temperature. These distinctive differences between n-type and p-type metal oxides have become more obvious by present equation. For n-type and p-type metal oxides applied to the proposed formula, temperature and pressure dependences of nonstoichiometric value are expressed as curvature without break point. Clearly, an improvement of the present formula from the Arrhenius-type equation is that increasing nonstoichiometric value as raising temperature can be shown naturally besides removing the break point which is difficult to be explained. Pressure dependence is similar to this, too. Therefore, we may say that an advantage of present formula is that the variation of ΔH_{r} and 1/n values can be explained qualitatively, that is, the real defect formation can be explained. We expect that the validity of new formula can be found if interactions among defects are considered. It is because the Arrhenius-type equation is derived in ideal system where defects are randomly distributed and noninteracting. In future, the problem is to attempt a theoretical approach considering interactions among defects. ## References - C. Wagner and W. Schottky, Z. Physik. Chem., B11, 163 (1931). - P. Kofstad, "Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides," p. 1, Wiley-Interscience, New York, 1972. - 3. B.E.F. Fender, Inorg. Chem., 10, 248 (1972). - 4. J.S. Anderson, "Modern Aspects of Solid State Chemistry," p. 1, C.N.R. Rao, Ed., Plenum Press, New York, 1970. - 5. R.M. King, J. Am. Ceram. Soc., 54, 361 (1971). - 6. V.J. Norman, The Analyst., 91, 593 (1966). - J.S. Choi and C.H. Yo, J. Phys. Chem. Solids, 37, 1149 (1976); Yonsei Nonchong, 12, 43 (1975); Inorg. Chem., 13, 1720 (1974). - 8. J.I. Hong, M.S. Thesis, Yonsei Univ., Seoul (1982). - C.H. Yo, J.S. Choi, and B.G. Bang, Yonsei Nonchong, 13, 95 (1976). - J.S. Choi, C.H. Yo, and D.W. Kim, Yonsei Nonchong, 12, 53 (1975). - 11. J.S. Choi, C.H. Yo, and S.N. Choi, *J. Korean Chem. Soc.*, **17**, 337 (1973). - J. Spyridelis, P. Delvignette and S. Amelinckx, Phys. Status. Sol., 19, 683 (1973). - 13. J.G. Allpress, J.V. Sanders and A.D. Wadsley, *Phys. Status. Sol.*, **25**, 541 (1968). - S. Amelinckx and J. Van Landuyt, "Chemistry of Extended Defects in Non-Metallic Solids," p. 295, L. Eyring and M.O. Keeffe, Ed., North-Holland Publishing Co., Amsterdam, 1970. - F.A. Kroger, "The Chemistry of Imperfect Crystals," North-Holland Publishing Co., Amsterdam, 1964. - W.E. Garmer, "Chemistry of Solid State," p. 45, Academic Press, New York, 1955. - 17. J.S. Anderson, "Chemistry of Extended Defects in Non-Metallic Solids," p. 1, L. Eyring and M.O. Keeffe, Ed., North-Holland Publishing Co., Amsterdam, 1970. - 18. R.J. Thorn and G.H. Winslow, *J. Chem. Phys.*, **44**, 2632 (1966). - 19. L. Manes, "Nonstoichiometric Oxides," p. 100, O.T. Sorensen, Ed., Academic Press, New York, 1981. - R.N. Blumenthal, J.B. Moser, and D.H. Whitmore, J. Am. Ceram. Soc., 48, 617 (1965). - 21. P. Kofstad, J. Less-Common Metals, 14, 153 (1968). - 22. P. Kofstad, J. Electrochem. Soc., 116, 869 (1969). - 23. H. Schmalzried, Prog. Solid St. Chem., 2, 265 (1965). - 24. G.N.K. Iyenger, J. Scient. Ind. Chem., 32, 633 (1973). - O. Toft Sorensen, "Nonstoichiometric Oxides," p. 1, Academic Press, New York, 1981. - M. O'Keeffe and W.J. Moore, J. Chem. Phys., 36, 3009 (1962).