(1980). in two steps (61%);(1) vinylmagnesium bromide addition (2) pyridinium chlorochromate oxidation; J. H. Babler, B. J. Invergo and S. J. Sarussi, J. Org. Chem., 45, 4241 (8) (Z)-7-Eicosen-11-one prepared by this method was proved biologically active by its field tests in South Korea. 131 ## PMO Theory of π^* - π^* Interaction - . ## Ikchoon Lee* and Kiyull Yang Department of Chemistry, Inha University, Incheon 160, Korea (Received February 11, 1984) Recently chemical as well as physical concequences of $\pi^*-\pi^*$ orbital interaction have been demonstrated¹. Direct experimental examination of such orbital interaction has been practicable using electron transmission spectroscopy (ETS)1b, 2. Two important, yet unaccounted-for, features of the experimental results on $\pi^*-\pi^*$ orbital interactions through 2 and 4 C-C σ bonds (N=2 and 4) of the connecting σ frawework² were: (i) level splitting (ΔE) of the symmetry adapted orbitals (SAO), π_+^* and π_-^* , is considerably greater than that for the corresponding π - π interactions, and (ii) the average level (ε_{av}) of the two SAO is above the basis level (ε_0) , the π^* level for monoene. In this work we will show that these features are the results of enhanced effect of through-space interaction (TSI) in the $\pi^*-\pi^*$ interaction compared with that in the $\pi^-\pi$ interaction. To second-order in overlap S, the levels ε_+ and ε_- of the SAO, π_+ and π_- , (or n_+ and n_-) had the expressions (1a) and (1b) for N = odd and even systems respectively³. $$\left.\begin{array}{l}\varepsilon_{+} \cong e' - \delta e_{l} + 2y(1 + \alpha + \beta)\\ \varepsilon_{+} \cong e' + \delta e_{l} - 2x(1 + \alpha - \beta)\end{array}\right\} \tag{1a}$$ $$\begin{array}{l} \varepsilon_{-} \cong e' + \delta e_{h} - 2x(1 + \alpha - \beta) \\ \varepsilon_{+} \cong e' - \delta e_{l} - 2x(1 + \alpha - \beta) \\ \varepsilon_{-} \cong e' + \delta e_{h} + 2y(1 + \alpha + \beta) \end{array}$$ (1a) where e', which is negative, is the environment adjusted level of the basis level, δe_l and δe_h are depression and elevation of e' due to TSI, and x, y, α and β are positive quantities difined as: $$x = \frac{\langle \pi | H' | \Psi_{\text{L0}} \rangle^2}{\Delta e}, \quad y = \frac{\langle \pi | H' | \Psi_{\text{H0}} \rangle^2}{\Delta e},$$ $$\alpha = \left| \frac{e''}{\Delta e} \right|^2 + \left| \frac{e''}{\Delta e} \right|^4 + \cdots, \text{ and}$$ $$\beta = \left| \frac{e''}{\Delta e} \right| + \left| \frac{e''}{\Delta e} \right|^3 + \cdots^{3,4}.$$ Equations (1a) and (1b) clearly indicate that the effects of second-order perturbation (through-bond interaction (TBI)) is to elevate one of the SAO (π_+ and π_- for N=odd and even cases respectively) substantially but to depress the other by a small amount. These are natural consequences of narrow (wide) energy gaps involved in the interactions of π_{\pm} with the framework HO- σ (LU- σ^*) orbitals. The depression effect on a SAO has been shown to be small but by no means negligible⁵, as expected from eq(1), since $(\beta-\alpha)<1.0^3$. In $\pi^*-\pi^*$ orbital interactions, the environment adjusted level of the basis orbital, e*, should be approximately equal to the π^* level of ethylene since there will be no first-order (electrostatic) interaction between an empty π^* orbital and a neutral molecule. The basis level is therefore given as $$\varepsilon_0 \cong e^* - x(1 + \alpha + \beta) + y(1 + \alpha - \beta) \tag{2}$$ where $e^* \cong e_x$. (ethylene)>0 and x, y, α and β are positive quantities similarly defined as above. It is evident from eq (2) that the basis level is somewhat depressed relative to the ethylenic π^* level since the second-order effect is to depress (by an amount $x(1+\alpha+\beta)$) more than to elevate (by an amount $y(1+\alpha-\beta)$) the level e^* . This is in accord with the experimental results2 (see Table). The environment adjusted levels e_+ and e_- for the SAO, π_{+}^{*} and π_{-}^{*} , are obtained using the usual approximation, H_{mn} $\cong -kS_{\rm mn}^3$, where k is a positive constant. $$\begin{array}{l} e_{+} \cong e^{*} + \langle \pi_{+}^{*} | H' | \pi_{+}^{*} \rangle \cong e^{*} - \delta e_{l} \\ e_{-} \cong e^{*} + \langle \pi_{-}^{*} | H' | \pi_{-}^{*} \rangle \cong e^{*} + \delta e_{h} \end{array} (3)$$ where $\delta e_l \cong kS(1-S)$ and $\delta e_h \cong kS(1+S)$. The level splitting, ΔE_S , and energy destabilization, $\delta \varepsilon_S$, as a result of TSI are thus given as, $$\Delta E_S = e_- - e_+ = \delta e_l + \delta e_h \cong 2kS \tag{4}$$ $$\delta \varepsilon_{S} = \delta e_{h} - \delta e_{l} \cong 2kS^{2} \tag{5}$$ The corresponding ones for π - π TSI are³: $\Delta E_S(\pi) \cong 2S$ $(k+e_1)$ and $\delta \varepsilon_S \cong 2(k+e_1)S^2$ where e_1 is the first-order level depression of π orbital, $e_1 < 0$. Hence $\Delta E_S(\pi^*)$ and $\delta \varepsilon_S(\pi^*)$ should be larger (positive quantities) than $\Delta E_S(\pi)$ and $\delta \varepsilon_S(\pi)$ respectively. Inclusion of second-order (TBI) terms gives the final expressions (6a) and (6b) for N = odd and even cases respectively. $$\left. \begin{array}{l} \varepsilon_{+} \cong e^{*} - \delta e_{l} + 2y(1 + \alpha - \beta)) \\ \varepsilon_{-} \cong e^{*} + \delta e_{h} - 2x(1 + \alpha + \beta)) \end{array} \right\}$$ (6a) $$\begin{array}{l} \varepsilon_{+} \cong e^{*} - \delta e_{l} - 2x(1 + \alpha + \beta)) \\ \varepsilon_{+} \cong e^{*} + \delta e_{h} + 2y(1 + \alpha - \beta)) \end{array}$$ (6b) Thus in $\pi^*-\pi^*$ TBI, one of the SAO (π^* and π^* for N TABLE 1: Experimental Results from Photoelectron and Electron Transmission² Spectroscopies (energies in eV) | Compound | ñ | ⊿E
(≈ _±) | ξε
(π _±) | ñ* | ΔΕ
(π±) | δε
(π±*) | |----------|--------|-------------------------|-------------------------|------|------------|-------------| | Ethylene | -10.51 | | | 1.78 | | | | | -8.97 | | | 1.70 | | | | | | 0.86 | -0.15 | | 1.52 | 0.10 | | | -8.60 | | | 1.68 | | | | | | 1.26 | -0.47 | | 1.45 | 0.10 | =odd and even cases respectively) is substantially depressed (by an amount $2x(1+\alpha+\beta)$) while the other is elevated (by a small amount $2y(1+\alpha-\beta)$). These are of course natural consequences of the narrow (wide) energy gaps involved in the interactions of π_{\pm}^* with the framework LU- σ^* (HO- σ) orbitals. The overall splitting ΔE and energy change $\delta \varepsilon$ are given as, $$\Delta E_{\text{odd}} = \varepsilon_{-} - \varepsilon_{+} \cong \Delta E_{S} - 2\{(1+\alpha)(x-y) + \beta(x+y)\}$$ $$= \Delta E_{S} - \Delta E_{b}$$ (7a) $$\Delta E_{\text{even}} = \Delta E_S + \Delta E_b \tag{7b}$$ $$\delta_{\epsilon} = \varepsilon_{av} - \varepsilon_0 = \delta \varepsilon_S > 0 \tag{8}$$ These expressions are exactly the same as the corresponding ones for π - π interactions³. However since ΔE_S is shown to be considerably greater for π^* - π^* TSI compared with π - π TSI, $\Delta E_{\rm even}$ (π^*) will be greater, while $\Delta E_{\rm odd}$ (π^*) will be smaller than the corresponding values of $\Delta E(\pi)$ for systems in which TSI is not negligible. This is confirmed by the ETS results² (Table 1) on systems with N=2 and 4. ETS data on N=3 system with the possibility of TSI will provide a further test for the validity of our PMO approach to orbital interactions. Overall destabilization, $\delta \varepsilon > 0$, of $\pi^*-\pi^*$ intersections with non-negligible TSI is also borne out by the ETS results² (Table 1). Finally we should add that level orderings expected from considerations of eq (7) were all found to be consistent with experimental² as well as theoretical results⁶. We are greateful to the Ministry of Education and the Korea Research Center for Theoretical Physics and Chemistry for support of this work. ## References - (1) (a) M. N. Paddon-Row and R. Hartcher, J. Amer. Chem. Soc., 102, 662 (1980); ibid., 102, 671 (1980); (b) K. D. Jordan and P. D. Burrow, Acc. Chem. Res., 11, 341 (1978); (c) D. J. Pasto, D. M. Chlpman and N-Z. Huang, J. Phys. Chem., 86, 3990 (1982). - (2) V.Balaji, K. D. Jordan, P. D. Burrow, M. N. Paddon-Row and H. K. Patney, *J. Amer. Chem. Soc.*, **104**, 6849 (1982). - I. Lee , Tetrahedron 39, 2409 (1983); Bull. Korea Chem. Soc., 3, 140 (1982); Bull. Inst. Basic Sci. Inha Univ., 4, 25 (1983). - (4) Other notations are: $\Delta e = \text{half-width}$ of framework frontier σ MO gap and $e'' = e' \delta e$ where δe is the elevation of framework σ FMO's due to environment adjustment, It has been shown that $(\beta \alpha) < 1.0^3$. - (5) R. Gleiter, E. Heilbronner, M. Hekman and H–D. Martin, *Chem. Ber.*, **106**. 28 (1973). - (6) I. Lee and K. Yang, Unpublished results of STO-3G computations.