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Proton coupled carbon-13 relaxation experiment was performed to investigate the effect of vicinal protons on
spin-lattice relaxation of methylene carbon-13 in n-undecane. A BIRD type pulse sequence was employed as
a way to check the validity of describing the 13CH2 moiety as an isolated AX2 spin system. The results show that
the presence of vicinal protons exerts substantial influence on the relaxation of methylene carbon-13, indicating
that it is not a very good approximation to treat a methylene moiety as an isolated AX2 spin system. 
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Introduction

The knowledge of dynamics of methylene moieties is of
crucial importance for better understanding of the segmental
motions occurring in a long hydrocarbon chain and the study
of proton-coupled relaxation of carbon-13 in CH2 groups
can serve usefully for this purpose.1-12 In particular, for an n-
alkane chain molecule, dipole-dipole spectral densities
obtained from the proton-coupled carbon-13 relaxation
experiments provide us a valuable insight into the segmental
motions occurring in the straight carbon backbone.

Grant and coworkers as well as Fuson et al. utilized the
proton-coupled carbon-13 relaxation as a means of investi-
gating the segmental motions in n-nonane labeled at the
central carbon.11 In order to analyze the observed curves for
several relaxation modes they treated the methylene moiety
at the central carbon as an isolated AX2 spin system and
regarded the protons two bonds away from the carbon of
interest, which will, for brevity, be henceforth referred to as
vicinal protons, merely as a source of random field.
Surprisingly, when theoretical calculations based on the
Redfield equation were performed for the AX2 spin system,
this oversimplified view, however, was found to lead to a
good fit with experimental data, thus yielding a set of values
for various spectral densities. When the vicinal protons were
deuterated to minimize the effect originating from them, the
theoretical relaxation curves could also be fitted well with
the observed ones, but yielding a somewhat different set of
values for the dipolar spectral densities.11 This means that
the assumption that the interaction with vicinal protons may
be treated only as a random field term is not very satisfactory
and, whenever possible, the deuteration of interfering
protons is recommended. Since deuteration of a proton (or
protons) at a given carbon site is very laborious and time-
consuming, use of the deuterated sample is not always
practical and/or feasible. 

In the present work we explore a new BIRD-type pulse
experiment, besides that employed by Grant et al.,12 to

tackle this problem. A BIRD pulse is applied to n-undecane
to invert only those protons directly bonded to the methylene
carbon of interest (henceforth referred to as geminal
protons).13 Relaxation from the initial spin state created in
this manner was also observed in addition to those obtained
by the conventional Grant method. Simultaneous fitting of
these two different types of relaxation curves will obviously
give us more leverage to determine the set of values of
spectral densities than relying only on the Grant type
measurements. Not surprisingly, theoretical calculation
based on the AX2 model with the effect of vicinal protons
being treated as a random field term failed to produce a good
simultaneous fit with these two different types of relaxation
data. To analyze the situation we assumed that the system
may be described as an AX2M system, where the geminal
protons, X, are assumed to be weakly coupled to a vicinal
proton, M, and kept only the dominating terms representing
the effect due to the latter protons in the corresponding
relaxation matrix. Of course, there are four vicinal protons
around a given methylene carbon but we assume their effect
may be described by considering only one of them when
they are motionally equivalent. This situation will ideally
suit for the central carbon site in a hydrocarbon chain.
However, if the carbon site of interest is very close to the
center of the chain, the same approximation is expected to be
equally well valid as we demonstrate in this paper. An AX2M
model was found to be able to describe both of the two
different kinds of experimental data satisfactorily, thus
producing a reliable set of parametric values for spectral
densities. Hopefully, when generalized, we may employ this
method as a routine substitute of expensive and painstaking
course of deuteration in the study of segmental motions in
the chain molecules.

Theory

Bloch-Redfield theory. The fundamental equation of
motion for a nuclear spin system can be derived from the
time-dependent Schrödinger equation. The second-order
perturbation theory leads to the so-called Redfield equation*Corresponding author. E-mail: jwlee@nmrlab2.snu.ac.kr
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for the spin density operator:14,15

 (1)

where the elements of the relaxation matrix R depends on
the dipole-dipole and random field spectral densities. When
only the longitudinal spin components are relevant, one may
use a simpler form of Eq. (1) which can be rewritten in the
following form of Solomon equation:16

 (2)

where  and  are, respectively, the population of
the ith spin energy level at time t and at equilibrium and Wij

is the rate for transition . For convenience Eq. (2) may
also be written in terms of the symmetrized normal modes as
have been shown by Grant et al., which involves the
normalized irreducible tensor operators. Grant et al. have
defined a normal magnetization mode as the trace over
product of deviation density operator with a corresponding
irreducible spherical tensor operator.17-20 In this formalism
each normal magnetization mode can be expressed as a
linear combination of the diagonal density-matrix elements
and among them as many modes as possible are experi-
mentally measured and compared with theoretically derived
expressions. 

For our study of a 13CH2 moiety in n-undecane we will
briefly outline the application of this formalism to AX2 and
AX2M spin system. The energy levels and eigenstates for an
AX2 system are as shown in Figure 1. For this spin system
symmetric and antisymmetric normal magnetization modes
are expressed as follows:

(3)

and the equation of motion for these magnetization modes is

,  (4)

where the matrix Γ is blockdiagonalized into  and  and
their matrix elements are given as below:

aΓ11 = 20/3JCH +2jC aΓ12 = JCH
aΓ13 = 2JHCH

 aΓ14 = JHCH
aΓ22 = 10/3JCH + 5JHH + 2jH 

aΓ23 = 2 JCHH
 aΓ24 = 5/3JHCH − 2JCHH 
aΓ33 = 4JCH + 2JHH + 2jC + 4jH
aΓ34 = − JHCH − JHH − 2 jHH
aΓ44 = 14/3JCH − 4/3JHCH + JHH + 2jC + 4jH − 2jHH 
sΓ11 = 16/3JCH + 2JHCH + 5JHH + 2jC + 2jH
sΓ12 = JCH + 2 JCHH 
sΓ13 = 5/3JHCH + 2JCHH

dσkk′
r( )

dt
----------- =  

λλ′
∑ ei k k′– λ– λ′+( ) tRkk′λλ′ σλλ′

r( ) t( ) σλλ′
r( ) ∞( )–[ ],

dNi

dt
-------- =  

j
∑ Wij Nj t( ) Nj ∞( )–[ ],

Ni t( ) Ni ∞( )

j i→

νa
1 = 

1
2
--- N1 N2– N3 N4 N5– N6– N7 N8–+ + +( )

= L1 L2 L3+ +( )/2kA νa
+++≡

νa
2 = 

1

2
------- N1 N2 N7– N8–+( ) = L4 L5+( )/ 2kX νa

X≡

νa
3 = 

1
2
--- N1 N2– N3– N4– N5 N6 N7 N8–+ + +( )

= L1 L2– L3+( )/2kA νa
++≡

νa
4 = 

1

2
------- N3 N4– N5 N6–+( )

νa
5 = 

1

2
------- N1 N2– N7– N8+( ) = L1 L3–( )/ 2kA

= L4 L5–( )/ 2kX νa
+0−≡

νa
6 = 

1
2
--- N1 N2 N3– N4– N5– N6– N7 N8+ + +( )

νa
7 = 

1

2
------- N3 N4– N5– N6+( )

νa
8 = N1 N2 N3 N4 N5 N6 N7 N8+ + + + + + +  = Ntotal νs T≡

dνi

dt
------- = −  

j

∑ Γij ν j t( ) νj ∞( )–[ ]

Γa Γs

5 2/3
7 2/3

2

2 2 2

5 2/3 2

Figure 1. (a) Energy Level Diagram and Eigenstates - spin labels are in the order of C, H, H' spins; Li's are the allowed (single quantum)
transitions that lead to spectral lines shown in (b); (b) A Schematic Spectrum - triplet for A(13C) and doublet for X2(1H) in isotropic media.
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sΓ22 = 20/3JCH + 2JHH + 4jH 
sΓ23 = JHCH + JHH + 2 jHH, and
sΓ33 = 20/3JCH − 10/3JHCH + JHH + 4jH − 2jHH  (5)

The matrices  and  are both symmetric, that is, =
 and = . In isotropic media only four of the modes

given in Eq. (3) are directly measurable. They are aν+++, the
total A magnetization; aνX, the total X magnetization; aν+−+,
the difference in intensity between the sum of outer two lines
and the inner single line of the A triplet, and sν+0−, the
difference in intensity between the outer two lines of the A
triplet.

For methylene moieties in n-undecane the chemical shift
differences between geminal and vicinal protons are compa-
rable in magnitude with the scalar spin coupling between
them and, therefore, at a first glance we might be tempted to
describe these protons as comprising a strongly coupled spin
system. However, we can show that the presence of 13C
allows us to treat the moiety interacting with a vicinal proton
as a weakly coupled AX2M spin system due to large coupling
constant between A and X spins where A stands for 13C and X
and M, respectively, for geminal and vicinal proton. This
means that only the secular term , instead of the
full interaction , needs to be considered when
dealing with the scalar coupling between the two protons.
The neglected nonsecular terms can be shown to generate a
small amount of coherences of the type  and 
(involving the zero quantum of the protons X and M) when a
BIRD pulse is applied (See Appendix II). However, this type
of coherences was found to quickly decay away (probably
due to rapid spin diffusion process of protons) before apply-
ing a observing carbon 90o pulse providing no interference
with our measurement. In reality, there are four vicinal
protons surrounding a given methylene carbon-13 atom in n-
undecane. But their influences on this carbon-13 atom may
be considered approximately additive and can be described

in terms of that of a single proton M.
The carbon-13 signal for a 13CH2 moiety in n-undecane

basically consists of three lines with the intensity ratio of 1 :
2 : 1 which are separated from each other by the coupling
constant 1JCH (≈ 125 Hz). In the presence of vicinal protons
each of these lines is split further, but the coupling between
the carbon-13 and a vicinal proton is so small that the
splitting due to this coupling was hardly resolvable in our
case. Therefore, we had to observe the integrated intensities
of these unresolved lines in our experiment, which means
that we can treat the dynamics of our methylene moiety in
terms of various relaxation modes of an AX2 system that
undergo cross relaxation with the M spin. The energy
levels and eigenstates for an AX2M system are as shown in
Figure 2.

In dealing with the effect of the vicinal protons, we define
symmetric and antisymmetric normal magnetization modes
for an AX2M system as follows: 
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Figure 2. Energy Level Diagram and Eigenstates - spin labels are in the order of C, H, H', M spins; Li's and LM are the allowed (single
quantum) transitions of AX2 spin and M spin respectively.
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= N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9 + N10 
+ N11 + N12 + N13 + N14 + N15 + N16 

= (N1 − N2 + N3 + N4 − N5 − N6 + N7 − N8 − N9 + N10 

− N11 − N12 + N13 + N14 − N15 + N16) 

= (N1 + N2 − N7 − N8 − N9 − N10 + N15 + N16) 

= (N1 − N2 − N3 − N4 + N5 + N6 + N7 − N8 − N9 + N10 

+ N11 + N12 − N13 − N14 − N15 + N16) 

= (N3 − N4 + N5 − N6 − N11 + N12 − N13 + N14) 

= (N1 − N2 − N7 + N8 − N9 + N10 + N15 − N16) 

= (N1 + N2 − N3 − N4 − N5 − N6 + N7 + N8 − N9 − N10 

+ N11 + N12 + N13 + N14 − N15 − N16) 

= (N3 − N4 − N5 + N6 − N11 + N12 + N13 − N14) 

= N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 − N9 − N10 

− N11 − N12 − N13 − N14 − N15 − N16 (6) 

Each of these magnetization modes will relax according to
Eq. (4) for which the elements of relaxation matrix Γ are
given in Appendix I. Among these, the modes of our interest
are aν1, the total A magnetization, aν2, the total X magneti-
zation, aν3, the difference in integral between the sum of
outer two lines and the inner single line of the broad A
triplet, sν5, the difference in integral between the outer two
lines of the broad unresolved A triplet, and aνM, the total M
magnetization. The modes sν9 to aν15 are all the M-related
transition modes.

Among the M-related modes by far the most dominant is
aνM mode, because this term remains much larger than the
others during the relaxation. So, to a good approximation we
may expect the effect of the presence of vicinal protons to be
accounted for by considering only the cross relaxation
between the AX2 modes and aνM mode. Evaluation of the
relaxation matrix for the weakly coupled AX2M brought the
following facts to our attention. First, for the AX2M spin
system diagonal and cross terms relating the modes (aν1 to
aν7) with each other are the same as those for the AX2 spin
system providing the dipolar terms involving M spin are
viewed as random field terms. Second, only aν+++ and aνX

mode among aν1 to aν7 are influenced by the relaxation of
aνM mode. Third, all the cross relaxation elements between
modes related to the transitions for the AX2 spin system and
those for M spin involve cross spectral densities between
AX2 spins and M spin. These elements are expected to be
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Figure 3. Pulse Sequences Used for Initial Excitation of Observable Magnetization Modes.
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small in magnitude considering that the presence of vicinal
protons provides merely a small perturbation. Since the
Grant-type pulse sequences and the BIRD-type pulse
sequences both generate almost the same initial states of the
M-related transition modes, aν9 to aν15, we can safely ignore
the cross relaxation terms involving the M-related transition
modes except aνM. Based on this simplified treatment we
could successfully fit the derived relaxation curves for
various normal modes with the observed ones including
those obtained by applying the BIRD-type pulses. 

Experimentals and Calculations

Sample. The [5-13C] n-undecane was synthesized in our
laboratory. This was dissolved in CDCl3 and sealed in 5 mm
NMR tubes after repeating five freeze-pump-thaw cycles to
remove dissolved oxygen. The NMR experiments were
performed on an Varian VXR 200S spectrometer operating
at a 13C frequency of 50.3 MHz. The temperature was
maintained at 298 K throughout the measurements.

Pulses. The Grant pulse sequences invert both geminal
and vicinal protons using a hard 180o proton pulse while in
the BIRD-type pulse sequences only the geminal protons in
13CH2 moiety are inverted leaving the vicinal protons
unaffected. The comparison between these two types of
relaxation experiments is expected to reveal the effects of
vicinal protons on the determination of the spectral densities.

In the present investigation the following five different
Grant-type initial perturbations for the 13CH2M spin system
were used: (1) a 13C 180o pulse inverting the entire
methylene triplet (abbreviated to CP), (2) a 1H 180o pulse
inverting the proton doublet (denoted by PP for brevity), (3)
selective 1H 180o pulse inverting the only the upfield line of
the 1H doublet (SP), (4) a J-negative pulse inverting the
outer lines of the 13C triplet (JN), and (5) a J-positive pulse
inverting the central line of the 13C triplet (JP). Besides
these, we have applied the following five different BIRD-
type initial perturbations for the 13CH2M spin system: (1) a
13C 180o pulse inverting the entire methylene triplet and a 1H
180o pulse inverting the only neighboring protons (CPB), (2)
a 1H 180o pulse inverting the only protons of 13CH2 (PPB),
(3) a 13C 180o pulse inverting the entire methylene triplet and
a 1H 180o pulse inverting the only protons of 13CH2 (CPPB),
(4) a J-negative pulse inverting the outer lines of the 13C
triplet and a 1H 180o pulse inverting the only protons of
13CH2 (JNB), (5) a J-positive pulse inverting the central line
of the 13C triplet and a 1H 180o pulse inverting only the
protons of 13CH2 (JPB).

Calculations and Relaxation Curve Fittings. Relaxation
parameters were obtained through a multiparameter least-
squares curve fitting of observed relaxation data with those
derived from Eq. (4). We have used the Levenberg-
Marquardt algorithm for searching the minima throughout
these curve-fitting procedures.21,22 To account for systematic
instrumental errors, differences in T2

* relaxation of each line
during the pulse sequences, and pulse imperfections we
parameterized the initial values of the normal modes. For

this, we first guessed a set of rough initial values for these
normal modes and fitted the relaxation data using the
relaxation matrix elements obtained in the case of AX2

model, to find a more refined set of initial values. These
initial values are then fed back to find a set of matrix
elements that produces better curve fittings. This procedure
was continued until the self-consistent best-fitted parameters
were obtained. In particular the starting initial value for aνM

was set to -1 when a hard 180o proton pulse was applied but
to 0 when a BIRD-type selective 180o proton pulse was
applied.

Results and Discussion

To interpret the observed data we first tried to fit the
relaxation data obtained by applying only the Grant-type
pulse sequences with the relaxation curves derived on the
basis of AX2 model. This resulted in a good fit, yielding a set
of spectral density values as shown in Table 1 (but not
graphically shown). However, use of these spectral density
values failed to reproduce the relaxation data obtained by
applying the BIRD-type pulse sequences very well as shown
also in Figure 4, which indicates that our methylene moiety
is not so simple as to be satisfactorily described as a simple
AX2 system. In other words, this is to say that the effect of
the vicinal protons on 13CH2 relaxation cannot be approxi-
mated as arising from random field terms only. 

In order to get over this hurdle we invoked the AX2M
model that was described in the previous section, which
yielded successful simultaneous fittings with both types of
relaxation data as shown in Figure 5. In these calculations
the modes ν9 through ν15 except aνM were ignored during the
relaxation as we had reasoned in the previous section.
Although we treat our system on the basis of an AX2M
model, it is not a truly isolated AX2M system, however,
because all the spins involved are more or less are
interacting with other surrounding protons. In particular, the

Table 1. Best Fitted Spectral Densities for [5-13C] n-Undecane

AX2
a AX2

a AX2Mb

JCH

JHCH

JCHH

JHH

jC
jH
jHH

Γ116

Γ216

Γ1616

χ2/N

0.0369 ± 0.0008
0.0043 ± 0.0036
0.0218 ± 0.0010
0.0335 ± 0.0017

[0.0]c

0.0789 ± 0.0034
0.0500 ± 0.0186

9.94×10−5

0.0347 ± 0.0020
0.0041 ± 0.0086
0.0210 ± 0.0026
0.0310 ± 0.0048
0.0088 ± 0.0091
0.0808 ± 0.0096
0.0554 ± 0.0445

1.03×10−4

0.0305 ± 0.0003
0.0026 ± 0.0021
0.0228 ± 0.0004
0.0447 ± 0.0009

[0.0114 ± 0.0005]d

0.0615 ± 0.0016
0.0163 ± 0.0085
0.0114 ± 0.0005
0.0354 ± 0.0033
0.2787 ± 0.0094

2.02×10−4

aAX2 denotes the results of the AX2 model fit of the relaxation data
obtained by applying the Grant type pulses only. bAX2M denotes the
results of the AX2M model fit of the relaxation data obtained by both the
Grant and BIRD-type pulses. cSquare bracket denotes that the value was
kept fixed during the fit. dSquare bracket denotes that random field term
for 13C was assumed to originate only from dipolar term between 13C and
M proton.
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spin M has another independent efficient relaxation pathway
through interactions with the surrounding protons other than
AX2 spins. To account for this we have introduced an
additional element 1/T1 in the column of relaxation matrix
that relates the aνM mode with other modes. In the proton
spectrum of our sample molecule n-undecane M spin

displays a somewhat broad, not well-resolved peak and this
peak is found to decay nearly exponentially when inverted
by a hard 180o pulse, which enables us to estimate a crude
value of T1. This value could be further refined through the
curve fitting procedure as already described. 

The spectral density values obtained through the least-

Figure 4. Plot of Magnetization Modes Obtained from the Corresponding Coupled 13C Spectra. The symbols denote the experimental data
obtained by applying the BIRD type pulse sequences and solid lines are the curves fitted to these on the basis of the AX2 relaxation matrix
obtained from the Grant type experiments. ; : aν1 mode, 7 : aν3 mode, 0 : sν5 mode

Figure 5. Plot of Magnetization Modes Obtained from Corresponding Coupled 13C Spectra. The symbols denote the experimental data and
solid lines represent the curves fitted to these on the basis of AX2M relaxation model. ; : aν1 mode,7 : aν3 mode, 0 : sν5 mode
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squares curve fitting procedure are listed in Table 1. We see
from these that the various spectral density data calculated
on the basis of the AX2 model are affected substantially if the
presence of vicinal protons is taken into consideration. The
vicinal protons are expected to make their presence felt by
the carbon of our interest via direct dipole-dipole interac-
tions as well as random field interactions. Although two
groups of vicinal protons around the carbon labeled at the [5]
position in undecane may be motionally inequivalent, we
found that only two parameters are needed to describe
satisfactorily the effect due to vicinal protons in our case.
That is, we had JCM = 0.00171 (5.6% of JCH) and JHM =
0.00375 (8.4% of JHH) on the average for each of four
vicinal protons. Our success may be due to the fact that the
effect arising from the vicinal protons is merely secondary to
that of the geminal protons, so that the small difference in
JCM and JHM between the two groups of vicinal protons does
not make significant contribution to the fitting results. These
parameters are small in magnitude compared with JCH and
JHH, respectively, but large enough to indicate that the effect
of vicinal protons cannot be fully described by random field
interactions only. And all the spectral density values
deduced from the fitting results differ from the case of AX2

model by more than 5%.23 
One conventional method that is usually considered to

minimize the effect due to vicinal protons is to deuterate
them. However, this method is not easy to be applied for the
type of experiments we described here, because not only the
vicinal protons should be deuterated but at the same time the
carbon of interest must be isotopically labeled as well for the
sake of signal intensity. Fuson et al. have discussed the
effect of vicinal protons on the relaxation of central carbon
in n-nonane by comparing the measured data for deuterated
and nondeuterated compound. They have also found that JCH

decreases only slightly in the presence of vicinal protons and
have recommended that JCH values calculated from the AX2

model can be used for the study of molecular dynamics
without much ado. However, the deuterated nonane mole-
cule that they have used for comparison is a heavily
deuterated species; i.e. the molecule in which all the protons,
let alone the vicinal protons, except those in central
methylene moiety of interest were deuterated. Such a
heavily deuterated molecule may exhibit somewhat different
dynamical behavior in comparison with a non-deuterated
species due to increased mass and moment of inertia.
Therefore, it remains to be seen that deuteration is a sure
way to eliminate the uncertainty in the values of various
spectral densities. In this respect the method we propose in
this paper may be considered to provide a viable way of
serving for this purpose. 
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Appendices

I. Relaxation matrix elements for AX2M
Γ11 = 20/3JCH + 10/3JCM + 2jC Γ12 = JCH

Γ13 = 2JHCH Γ14 = JHCH

Γ113 = JHCM Γ116 = 5/3JCM

Γ22 = 10/3JCH + 5JHH + 10/3JHM + 2jH

Γ23 = JCHH Γ24 = 5/3JHCH − 2JCHH Γ213 = 2JCHM

Γ214 = JHHM Γ215 = -2JHHM + 5/3JHMH

Γ216 = JHM

Γ33 = 4JCH +10/3JCM + 2JHH + 20/3JHM + 2jC + 4jH

Γ34 = - JHCH − JHH − JHMH − 2 jHH

Γ313 = JHCM + JHHM + JHM

Γ314 = 4JCHM + 5/3JCM Γ315 = - JCHHM

Γ44 = 14/3JCH − 4/3JHCH + 10/3JCM + JHH + 20/3JHM 

 − 10/3JHMH + 2jC + 4jH − 2jHH

Γ413 = -2JHHM − 5/3JHMH Γ414 = - JCHHM

Γ415 = 14/3JCHM − 8/3JCHHM + 5/3JCM 

Γ55 = 16/3JCH + 2JHCH + 10/3JCM + 5JHH + 10/3JHM + 2jC 

 + 2jH

Γ56 = JCH + JCHH Γ57 = -5/3JHCH − 2JCHH

Γ59 = JHCM + JHM Γ510 = 2JCHM + 5/3JCM

Γ511 = JHCM + JHHM Γ512 = -2JHHM + 5/3JHMH

Γ66 = 20/3JCH + 2JHH + 20/3JHM + 4jH

Γ67 = - JHCH − JHH − JHMH −2 jHH

Γ610 = JHHM + JHM Γ611 = 4JCHM 

Γ612 = - JCHHM 

Γ77 = 20/3JCH − 10/3JHCH + JHH +20/3JHM − 10/3JHMH + 4jH 

 − 2jHH

Γ710 = -2JHHM − 5/3JHMH Γ711 = - JCHHM

Γ712 = 14/3JCHM − 8/3JCHHM

Γ99 = 20/3JCH + 2JCM + 20/3JHM + 2jC + 2jM

Γ910 = JCH + JCMH Γ911 = 2JHCH + 2JHMH

Γ912 = JHCH + JHMH

Γ1010 = 10/3JCH + 10/3JCM + 5JHH + 16/3JHM + 2JHMH + 2jH 

+ 2jM

Γ1011 = JCHH + JCMH Γ1012 = 5/3JHCH − 2JCHH

Γ1111 = 4JCH + 2JCM + 2JHH + 4JHM + 2jC + 4jH + 2jM

Γ1112 = - JHCH − JHH − JHMH − 2 jHH

Γ1212 = 14/3JCH − 4/3JHCH + 2JCM + JHH + 14/3JHM − 4/3JHMH

   + 2jC + 4jH − 2jHH + 2jM

Γ1313 = 16/3JCH + 2JHCH + 2JCM + 5JHH + 16/3JHM + 2JHMH 

  + 2jC  + 2jH + 2jM

Γ1314 = JCH + 2 JCHH + 2 JCMH

Γ1315 = -5/3JHCH −2JCHH

Γ1316 = 2 JCMH5 2/3

7 2/3

2 2

2 2

2 2

5 2/3

2 2 10 2/3 2

2 2 2 2 5 2/3

2 2

2 2

5 2/3 2 2

2 2 5 2/3

2 2 2 2

10 2/3 2 10 2/3 2

2 2 5 2/3

2 2

2 2

5 2/3 2 2

7 2/3 7 2/3

2 2 2 2

2 2 2 2

5 2/3 2 2

2
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Γ1414 = 20/3JCH + 10/3JCM + 2JHH + 4JHM + 4jH + 2jM

Γ1415 = - JHCH − JHH − JHMH −2 jHH

Γ1416 = 2JHMH

Γ1515 = 20/3JCH T 10/3JHCH + 10/3JCM + JHH + 14/3JHM 

T 4/3JHMH + 4jH − 2jHH + 2jM Γ1516 = JHMH

Γ1616 = 10/3JCM + 20/3JHM + 2jM

II. Action of BIRD Pulse on AX2Y Spin System 
We analyze here the action of the BIRD-type pulses

shown in Figure A1 on an AX2Y spin system in which the
spin coupling between A and X spins is much larger than
both the spin coupling and the chemical shift difference
between X and Y protons as well as the spin coupling
between A and Y spin.

At equilibrium and after the first 90o proton pulse, the
density operators are, respectively, written as

,  (A1)

,  (A2)

where I, S and T are the angular momentum operators for car-
bon-13, geminal protons and a vicinal proton and α is γC/γH with
γ standing for the magnetogyric ratio of a nucleus of the given
kind. After a BIRD pulse sequence, the density operator be-
comes

 
(A3)

where , , and C  are, respectively, the
operators describing the action of hard proton and carbon
pulses; that is.

, and 

 (A4)
 

L is the operator for free evolution between two successive
pulses; that is,

 (A5)

where H is the spin Hamiltonian for the given spin system
and τ is the evolution period between hard proton 90o and
180o pulse. The spin Hamiltonian for the system may be
written in the form

, (A6)

where  and  are, respectively, the chemical shift part

and the spin coupling part of the Hamiltonian expressed in
unit of ; that is,

, (A7)

and

 (A8)

with the following definitions:

ωA = chemical shift frequency of carbon,
ωX = chemical shift frequency of geminal protons,
ωY = chemical shift frequency of vicinal proton, 
J = spin coupling constant between carbon and geminal protons,
J' = spin coupling constant between carbon and vicinal proton,
and
J'' = spin coupling constant between geminal and vicinal protons.

On action of simultaneous hard proton and carbon 180o

pulses the coupling part HJ remains invariant while the
chemical shift part changes its sign, and, therefore, we may
rewrite (A3) as

 (A9)

where 

 (A10)

Since  does not commute with HJ, two exponent
operators in (A10) do not commute either and it is
troublesome to deal with the operator LL'. However, we can
deal with this operator approximately using the following
formula:24 

 

, (A11)

where M = -Hω + HJ and N = Hω + HJ. 
For τ = 1/2J the magnitude of the second term in the

exponent series in (A11) can be shown to be of the order of
(∆ω J''/J)2 where ∆ω is the chemical shift difference between
vicinal and geminal protons. For our system J is much larger
than both ∆ω and J'' and therefore the second and ensuing
terms may safely be ignored. This amounts to writing

 (A12)

HJ operator itself still consists of two non-commuting parts,
but by the same logic as we have used for deriving (A12) we
can show that 

 (A13)

On substituting (A13) into (A9), we see that for τ = 1/2J the
carbon signal associated with proton zero-quantum coherence
involving geminal and vicinal protons can arise if the non-

10 2/3 2 2 2

7 2/3

σ0 = αI z + S1z + S2z + Tz

σ1 = αI z S1y– S2y– Ty–

σ5 = P π 2⁄( )xLC π( )P π( )xLσ1L
+P π( )x

+C π( )+L+P π 2⁄( )x
+,

P π 2⁄( )x P π( )x π( )

P π 2⁄( )x = exp i π 2⁄( ) S1x S2x Tx+ +( )–[ ],

P π( )x = exp iπ S1x S2x Tx+ +( )–[ ]

C π( )x = exp iπI x–( ).

L = exp iHτ–( )

H = Hω + HJ

Hω HJ

h

Hω = ωAI z + ωX S1z S2z+( ) + ωYTz

HJ = πJ 2I z S1z S2z+( ) + πJ′ 2I z⋅ Tz⋅

 + πJ″ 2 S1 S2+( ) T•⋅

σ5 = P π/2( )xLL′C π( )P 3π/2( )xσ1P 3π/2( )x
+

C π( )+ LL′( )+P π/2( )x
+

LL′ = exp i– Hω HJ+( )τ[ ]exp i– Hω– HJ+( )τ[ ]

Hω

exp iMτ–( )exp iNτ–( ) = 

exp i– M N+( )τ−τ2

2
---- M,N[ ]−i

τ3

6
---- M, M,N[ ][ ]+…

LL′ = exp 2iH τJ–( )

LL′ exp≈ 4π– JIz S1z S2z+( )τ[ ]exp 4πiJ′I zTzτ–( )

exp 4π– iJ″ S1 S2+( ) Tτ•[ ]

Figure A1. A BIRD Pulse SequenceU
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secular part of the spin coupling between these two protons
cannot be ignored and its intensity is roughly proportional to
sin( )sin( ) which is very small if J is very
large compared with both J' and J''. 
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