BULLETIN

OF THE

KOREAN CHEMICAL SOCIETY

ISSN 0253-2964 Volume 20, Number 10 BKCSDE 20(10) 1111-1248 October 20, 1999

Communication

A Decanuclear Lithium Niobium(V) Heterometallic Oxo Phenoxide Complex : The Synthesis and Structural Characterization of $[Li_6Nb_4O_6(OPh)_{14}(THF)_6]LL'(THF = tetrahydrofuran,\ L=1/2hexane,\ L=1/2H_2O)$

Seung Kju Park and Sang Man Koo*

Department of Industrial Chemistry and CPRC, College of Engineering, Hanyang University, Seoul 133-791, Korea Received June 30, 1999

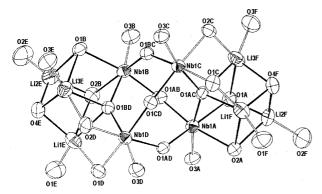
Recently, the use of transition metal alkoxides as molecular precursors for high-tech ceramic materials has resulted in an intense activity in the field of coordination chemistry. The sol-gel process for hydrolytic condensation has been used for many years as a low-temperature method for conversion of transition metal alkoxides to metal oxides. Although there are many examples of the use of this process for the synthesis of metal oxides, the chemistry involved in this process is very little known.

Increasing interest has been devoted to the study of transition metal oxo alkoxo clusters. 4 The coordination compounds play an important role in understanding and characterizing transition metal oxo based materials prepared by sol-gel process.^{2a,5a} Numerous metal oxo alkoxide clusters (metal = Si, Ti, Zr, etc.) synthesized through hydrolysis and condensation reactions have received much attention and have been structurally characterized.⁵ In contrast, much less work have been devoted to niobium oxo alkoxide complexes. Particularly, structural information of heterometallic niobium oxo alkoxides remains scarce. Since octanuclear compound, Nb₈O₁₀ (OEt)₂₀,⁶ was first obtained through controlled hydrolysis of niobium ethoxide, and its structure was resolved by single crystal X-ray diffraction analysis, the tetranuclear complex, [Li₂Nb₂O₂(OEt)₈] · 2EtOH, ⁷ as an intermediate in a hydrolysis reaction to [LiNb(OEt)₆]_x,⁸ and the decanulcear complex, Pb₆Nb₄O₄(OEt)₂₄, have been reported. Recently, tetranuclear compounds capped by chelating ligands, Nb₄O₄(OAc)₄ $(O^{i}Pr)_{8}^{10}$ and $Nb_{4}O_{4}(Mc)_{4}(O^{i}Pr)_{8}$ (Mc = $O_{2}CCMeCH_{2}$), ¹¹ have been prepared and characterized.

In this communication, we report the synthesis and structural characterization of the novel decanuclear lithium nio-bium(V) oxo-aryloxide complex, [Li₆Nb₄O₆(OPh)₁₄(THF)₆]LL'

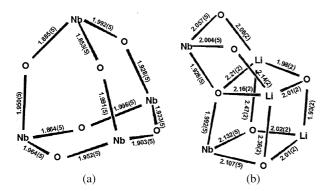
(THF = tetrahydrofuran, L = 1/2hexane, $L' = 1/2H_2O$), which may be an intermediate in hydrolysis and/or condensation reactions of lithium niobium phenoxide.

The synthesis of [Li₆Nb₄O₆(OPh)₁₄(THF)₆]LL' was accomplished by the methathesis reaction of niobium chloride, NbCl₅, with lithium phenoxide, LiOPh, in THF (eq. 1). At room temperature under N₂ atmosphere, THF solution (50 mL) of NbCl₅ (2 g, 7.4 mmol) was added dropwise to THF solution (50 mL) of 6 equivalent LiOPh (4.45 g, 44.4 mmol), and the reaction mixture was stirred for 24 h. After the yellow solution was concentrated to half volume and ether (150 mL) was added, the resultant mixture was filtered to eliminate LiCl. The filtrate was then concentrated to half volume, layered with n-hexane, and the yellow crystals of [Li₆Nb₄O₆ (OPh)₁₄(THF)₆]LL' was obtained in > 60% yield.


$$(4-6 \text{ eq.})\text{LiOPh} + \text{NbCl}_5 \rightarrow [\text{Li}_6\text{Nb}_4\text{O}_6(\text{OPh})_{14}(\text{THF})_6]\text{LL'}$$

(RT, in THF)

The molecular structure of [Li₆Nb₄O₆(OPh)₁₄(THF)₆]LL' was determined by X-ray single crystal diffraction analysis.¹² The spectroscopic analyses of these compounds supported the crystal structure.¹³ The ORTEP diagram and schematic view of the structure of [Li₆Nb₄O₆(OPh)₁₄(THF)₆]LL' are shown in Figures 1 and 2, respectively, which reveals that this compound exists as a decanuclear cluster with oxo bridging units.


The selected bond distances and angles of $[Li_6Nb_4O_6 (OPh)_{14}(THF)_6]LL'$ are given in Table 1.

The [Li₆Nb₄O₆(OPh)₁₄(THF)₆]LL' exists as a tetrameric decanuclear complex occupying a special position on the two-fold symmetry axis. The molecular structure of the decanuclear species [Li₆Nb₄O₆(OPh)₁₄(THF)₆]LL' includes

the tetrahedron of the central core consisting of Nb₄(μ_2 -O)₄(μ_4 -O)₂ unit and the cubes of the side consisting of NbLi₃(μ_3 -O)₃(μ_4 -O) units. The tetrahedron and cubes are linked by a μ_4 -oxo ligand, two μ_2 -OPh ligands, and two μ_3 -OPh ligands, with sharing the edges mutually. The tetrahedron contains four niobium octahedra and the cubes contain a niobium octahedron and three lithium atoms in its alternating vertices. The niobium atoms are coordinated by three oxo ligands (μ_2 -O and μ_4 -O bridging) and three OPh ligands (terminal, μ_2 -O, and/or μ_3 -O bridging). The lithium atoms are of two structually independent types: one is four-coordi-

Figure 1. ORTEP diagram of [Li₆Nb₄O₆(OPh)₁₄(THF)₆]LL' in the solid state. The hydrogen atoms and the carbon atoms in ligands are omitted for clarity.

Figure 2. Schematic view of the structure of Li₆Nb₄(μ_2 -O)₈(μ_3 -O)₆(μ_4 -O)₂ (a) Tetrahedral central core of Nb₄(μ_2 -O)₄(μ_4 -O)₂ unit, (b) Cubic side of NbLi₃(μ_3 -O)₃(μ_4 -O) unit.

nated by three μ_3 -OPh ligands and a THF ligand, the other five-coordinated by a μ_4 -oxo ligand, a μ_2 -OPh ligand, two μ_3 -OPh ligands, and a THF ligand.

The oxygen environments of the various metal atoms are significantly distorted: octahedron for the niobium atom, trigonal-bipyramid and tetrahedron for the lithium atom. Each octahedron exhibits Nb-O bond distances from 1.853(5) to 2.136(5) Å, cis O-Nb-O bond angles from 79.8(2) to 98.6(2)°, and trans O-Nb-O bond angles from 168.4(2) to 173.9(2)°. The Nb-OPh bond distances are close to those of previously known complexes^{8,14} (1.88-1.90 Å in terminal bonds and 1.98-2.05 Å in bridging bonds) with the following pattern, terminal-OPh $< \mu_2$ -OPh $< \mu_3$ -OPh, but the Nb- μ_2 -O and Nb- μ_4 -O bond distances are significantly increased compared with those of the other structurally characterized complexes (1.81-1.85 Å). 6,10,11 It should be emphasized that the Nb-O bond distances in this complex are practically independent of the bond character of oxo group (μ_4 -O or μ_2 -O bridging). 15 The large deviations of cis O-Nb-O bond angles are similar to those in Nb₄O₄(OAc)₄(OⁱPr)₈¹⁰ (from 79.7 to 100.6°), while the trans O-Nb-O bond angles exhibit very small difference in their values. The differences between the cis O-Nb-O bond angles and the reduction in the trans O-Nb-O bond angles presumably result from the geometric constraints of Nb₄(μ_2 -O)₄(μ_4 -O)₂ core. ¹⁰ The structure of NbLi₃(μ_3 -O)₃(μ_4 -O) corresponding to three lithium atoms is analogous to opened cube observed previously for [LiTi(OⁱPr)₅]₂. ¹⁶ The coordination environments of lithium atoms could be described as severely distorted trigonal-bipyramid with Li-O bond distances from 1.92(2) to 2.47(2) Å and O-Li-O bond angles from 69.0(5) to 159.6(10)° and tetrahedron with Li-O bond distances from 1.90(2) to 2.04(2) Å and O-Li-O bond angles from 84.5(6) to 127.6(9)°.

The oxo units were generated during the substitution of LiOPh into niobium center, which compose central tetrahedral Nb₄(μ_2 -O)₄(μ_4 -O)₂ core. The formation of bridging oxo ligands in situ might results from side reaction of NbCl₅ with THF at initial stage of reaction or induction by trace amounts of water. ¹⁷ It is also surprising that the extra LiOPh bearing cubic structure exists in NbLi₃(μ_3 -O)₃(μ_4 -O) unit. The existence of extra LiOPh introduces the five coordination geometry of lithium in spite of the small atomic size. ¹⁸

Table 1. Selected Bond Distances (Å) and Angles (deg) for [Li₆Nb₄O₆(OPh)₁₄(THF)₆]LL'

Distances					
Bond Types	Averages	Ranges	Bond Types	Averages	Ranges
Nb-OPh	1.902	1.891(5)-1.919(5)			
Nb-(μ ₂ -O)Ph	2.032	2.004(5)-2.057(5)	Li-OPh	2.10	1.90(2)-2.47(2)
Nb-(<i>μ</i> ₃ -O)Ph	2.121	2.107(5)-2.136(5)	Li-O	2.16	2.12(2)-2.21(2)
Nb- $(\mu_2$ -O)	1.922	1.853(5)-1.996(5)	Li-O (THF)	1.94	1.91(2)-1.95(2)
Nb-(μ ₄ -O)	1.959	1.928(5)-1.992(5)			
		Ang	les		
O-Nb-O (cis)	89.9	79.8(2)-98.6(2)	O-Li-O	105.5	69.0(5)-159.6(10)
O-Nb-O (trans)	170.7	168.4(2)-173.9(2)	Nb-O-Li	101.0	95.8(5)-112.4(5)
Nb-O-Nb	140.4	137.9(3)-144.1(3)	Li-O-Li	86.4	77.8(7)-93.2(8)

The five-coordinated lithium has never been reported in lithium niobium complexes.

The structure adopted by [Li₆Nb₄O₆(OPh)₁₄(THF)₆]LL' in the solution state was investigated using NMR spectroscopy. The ¹³C NMR spectra show resonances for two coordination types of OPh groups attributed to the bridging and the terminal OPh ligands of the niobium octahedra as well as THF molecules coordinated to lithium at room temperature. The ¹H NMR spectra also reveal multiplet resonances for two types of OPh groups in agreement with the ¹³C NMR spectra. In FT-IR spectra of this complex, the presence of a broad band at 590cm⁻¹ is assigned to vibration of a oxo ligands (μ_2 -O and μ_4 -O bridging) and the doublet bands at 638 and 621 cm⁻¹ are also attributed to OPh ligands (terminal, μ_2 -O, and μ_3 -O bridging), which is significantly shifted compared to those of neutral niobium compounds.¹⁹

Lithium niobium oxo phenoxide, [Li₆Nb₄O₆(OPh)₁₄(THF)₆] LL', represents the first example of an oxo aryloxide adduct. Due to its compact structure connected by bridging oxo ligands, this compound could be strongly favoured precursor for the preparation of lithium niobate, LiNbO3, in the respect of ceramic yield and hydrolysis control. Further studies will verify a more detailed reaction mechanism, reactivity in solution, and behaviour towards hydrolysis of this complex.

Acknowledgment. This work has been generously supported by grants from the Korean Ministry of Education (BSRI-99-015-D00165). Authors also acknowledge the support from the Korea Science and Engineering Foundation (KOSEF) through the Ceramic Processing Research Center at Hanyang University.

References

- 1. (a) Bradley, D. C. Chem. Rev. 1989, 89, 1317. (b) Bradley, D. C. Polyhedron 1994, 13, 1111. (c) Herrmann, W. A.; Huber, N. W.; Runte, O. Angew. Chem. Int. Ed. Engl. 1995, 34, 2187. (d) Caulton, K. G.; Hubert-Pfalzgraf, L. G. Chem. Rev. 1990, 90, 969. (e) Hubert-Pfalzgraf, L. G. Polyhedron 1994, 13, 1181.
- 2. (a) Chandler, C. D.; Roger, C.; Hampden-Smith, M. J. Chem. Rev. 1993, 93, 1205. (b) Segal, D. J. Mater. Chem. **1997**, 7, 1297.
- 3. (a) Zeng, H. C.; Tung, S. K. Chem. Mater. 1996, 8, 2667. (b) Hirano, S. I.; Hayashi, T.; Nosaki, K.; Kato, K. J. Am. Ceram. Soc. 1989, 72, 707. (c) Nazeri-Eshghi, A.; Kuang, A. X.; Mackenzie, J. D. J. Mater. Sci. 1990, 25, 3333. (d) Yanovskaya, M. I.; Turevskaya, E. P.; Leonov, A. P.; Ivanov, S. A.; Kolganova, N. V.; Stefanovich, S. Y.; Turova, N. Y.; Venevtsev, Y. N. J. Mater. Sci. 1988, 23, 395. (e) Chen, X. M. J. Mater. Sci. 1996, 7, 51, (f) Ono. S.: Böse, O.; Unger, W.; Takeichi, Y.; Hirano, S. I. J. Am. Ceram. Soc. 1998, 81, 1749.
- 4. Mehrotra, R. C.; Singh, A. Chem. Soc. Rev. 1996, 1.
- 5. (a) Schubert, U. J. Chem. Soc., Dalton Trans. 1996, 3343. (b) Boyle, T. J.; Schwartz, R. W. Comments Inorg. Chem. **1994**, 16, 243.

- 6. Kessler, V. G.; Turova, N. Y.; Yanovskii, A. I.; Belokon, A. I.; Struchov, Y. T. Russ. J. Inorg. Chem. 1991, 36, 938.
- 7. Yanovsky, A. I.; Turevskaya, E. P.; Turova, N. Y.; Struchkov, Y. T. Soviet J. Coord. Chem. 1985, 11, 63.
- 8. Eichorst, D. J.; Payne, D. A.; Wilson, S. R.; Howard, K. E. Inorg. Chem. 1990, 29, 1458.
- 9. Papiernik, R.; Hubert-Pfalzgraf, L. G.; Daran, J. C.; Jeannin, Y. J. Chem. Soc., Chem. Commun. 1990, 695.
- 10. Steunou, N.; Bonhomme, C.; Sanchez, C.; Vaissermann, J.; Hubert-Pfalzgraf, L. G. Inorg. Chem. 1998, 37, 901.
- 11. Hubert-Pfalzgraf, L. G.; Abada, V.; Halut, S.; Roziere, J. Polyhedron 1997, 16, 581.
- 12. Crystal and refinement data: Yellow crystal of [Li₆Nb₄O₆ $(OPh)_{14}(THF)_{6}$] · 1/2hexane · 1/2H₂O is monoclinic, space group $P2_1/c$ with a = 26.796(6) Å, b = 15.404(4) Å, c =28.217(6) Å, $\beta = 94.640(10)^{\circ}$, and Z = 4. Single X-ray diffraction data for the crystal was collected on Bruker P4 four circle diffractometer using Mo-K α radiation (λ = 0.71073 Å). The solution of the structure was carried out by a combination of heavy atom Patterson techniques, direct methods, and Fourier techniques. The refinement of the structure by full matrix least squares methods was based on 14945 unique reflections $(2\theta = 45, I > 2\sigma)$. Anisotropic temperature factors were used for all nonhydrogen. At the current stage of refinement on 1334 parameters with all atoms present in the asymmetric units, R = 0.0638, Rw = 0.1644.
- 13. Spectroscopic data for [Li₆Nb₄O₆(OPh)₁₄(THF)₆] · 1/2 hexane $\cdot 1/2H_2O$: FT-IR (cm⁻¹; KBr) v = 3060 (w), 3029 (w), 3010 (w), 2955 (w, br), 2873 (w), 1592 (m), 1483 (s), 1448 (w), 1371 (w), 1270 (m), 1243 (m), 1161 (w), 1068 (w), 1040 (w), 1020 (w), 996 (w), 893 (w), 851 (w), 827 (w), 757 (s, br), 691 (m), 638 (w), 621 (w), 590 (m, br), 498 (w): ¹H NMR (300 MHz, C₆D₆, 25 °C) δ = 7.53-6.59 (m, 70H, OC₆ H_5), δ = 4.60 (s, 1H, H_2 O), δ = 3.52 (t, 24H, OCH_2CH_2), $\delta = 1.33$ (q, 24H, OCH_2CH_2), $\delta = 1.25$ (s, 4H, hexane), $\delta = 0.89$ (t, 3H, hexane): ¹³C NMR (300 MHz, C_6D_6 , 25 °C) δ = 163.6, 161.9 (ipso- C_6H_5), δ = 129.8, 129.2, 128.6, 128.2 (o- C_6H_5), $\delta = 121.4$, 120.9, 120.5, 119.9 (m- C_6H_5), $\delta = 117.6$ (p- C_6H_5), $\delta = 70.8$, 68.1 (OCH₂CH₂), $\delta =$ 27.0, 25.0 (OCH₂CH₂), δ = 31.8, 22.9, 14.2 (hexane): Anal. calcd. for C₁₁₁H₁₂₆O_{26.5}Li₆Nb₄: C 58.03, H 5.53; found: C 58.19, H 5.17.
- 14. Goel, S. C.; Hollingsworth, J. A.; Beatty, A. M.; Robinson, K. D.; Buhro, W. E. Polyhedron 1998, 17, 781.
- 15. Turevskaya, E. P.; Turova, N. Y.; Korolev, A. V.; Yanovsky, A. I.; Struchkov, Y. T. Polyhedron 1995, 14, 1531.
- 16. Hampden-Smith, M. J.; Williams, D. S.; Rheingold, A. L. Inorg. Chem. 1990, 29, 4076.
- 17. (a) Kanehisa, N.; Kai, Y.; Kasai, N.; Yasuda, H.; Nakayama, Y.; Takei, K.; Nakamura, A. Chem. Lett. **1990**, 2167. (b) Hubert-Pfalzgraf, L. G.; Tsunoda, M.; Le Borgne, G. J. Chem. Soc., Dalton Trans. 1988, 533.
- 18. Olsher, U.; Izatt, R. M.; Bradshaw, J. S.; Dalley, N. K. Chem. Rev. 1991, 91, 137.
- 19. (a) Kee, T. P.; Gibson, V. C. *Polyhedron* **1992**, *11*, 587. (b) Malhotra, K. C.; Banerjee, U. K.; Chaudhry, S. C. J. Indian Chem. Soc. 1980, 7L, 868.