Brownian Dynamics Simulation Study on Polymer Melt Bull. Korean Chen@Vol. 21, No. 9 875

Brownian Dynamics Simulation Study on the Anisotropic FENE Dumbbell Model
for Concentrated Polymer Solution and the Melt

Hoon Goo Sim, Chang Jun Lee, Woon Chun Kim, and Hyungsuk Pak

Department of Chemistry, Seoul National University, Seoul 151-742, Korea
Received March 27, 2000

We study the rheological properties of concentrated polymer solution and the melt under simple shear and elon-
gational flow using Brownian dynamics simulation. In order to describe the anisotropic molecular motion, we
modified the Giesekus’ mobility tensor by incorporating finéely extensiblenondinear elastic (FENE)

spring force into dumbbell model. To elucidate the nature of this model, our simulation results are compared
with the data of FENE-P (“P” stands for the Perterin) dumbbell model and experiments. While in steady state
both original FENE and FENE-P models exhibit a similar viscosity response, the growth of viscosity becomes
dissimilar as the anisotropy decreases and the flow rate increases. The steady state viscosity obtained from the
simulation well describes the experiments including the shear-thinning behavior in shear flow and viscosity-
thinning behavior in elongational flow. But the growth of viscosity of original FENE dumbbell model cannot
describe the experimental results in both flow fields.

Introduction simulation®
Wiest® modified the Giesekus constitutive equation by

The molecular motions in concentrated polymer solutionincorporating the finite extensibility of polymer chains into
and the melt are complex because of the intermoleculahe dumbbell kinetic theory. The modified constitutive equa-
interactions between different chains. In recent years, dgon quantitatively described the steady state viscosity in the
Gennes, Doi,>® and Curtis®t al* have described the chain shear and elongational flow, but could not reproduce the
motion in such a topologically interacting system. In order togrowth of viscosity in elongational flow. When he modified
derive the theoretical formula, they assumed that the molethe constitutive equation, he used the FENEspring force
cular motion in the direction of the chain contour might bein order to obtain an analytically more tractable constitutive
easier than the motion perpendicular to it. Giestkiso  equation because no closed constitutive equation for the
used the assumption of anisotropic molecular motion irpolymeric stress tensor exists and no simple analytical solu-
order to derive the constitutive equation for polymeric lig- tions are possible for original FENE dumbbell model.
uids. One-mode simple Giesekus’ model well predicted the In this paper, we use the Brownian dynamics simulation
steady state viscosity and the growth of shear viscdsity. method to obtain the polymeric stress tensors for the original
However, in elongational flow field, his simple model could FENE dumbbell model with the anisotropic mobility tensor.
not show the characteristic behaviors of polymeric liquidsWe also derive the constitutive equation in simple form for
such as strain-hardening in transient state and viscosityhe FENE-P dumbbell model using the phase-space kinetics
thinning in steady state. To overcome the oversimplifiedtheory. From the Brownian dynamics simulation, we obtain
one-mode simple model, he introduced the relaxation-typ¢he growth of and steady state viscosity for simple shear and
dependence of the mobilft§on the configuration tensor. elongational flow. These results will be compared with those

The same constitutive equation of simple Giesekus’ modebf FENE-P dumbbell model and experimental data.
can be also derived in terms of the phase-space kinetic
theory of polymeric liquids if we consider a polymer chain Constitutive equation for the FENE-P dumbbell model
as a Hookian dumbbell which consists of two identical beads
connected by a massless spring named connector vector. ThéThe diffusion equation of configurational distribution
linear Hookean spring force is realistic only for small defor-function (Q, t)*¢ for connector vectorsQ =r,-r,  of
mation from the equilibrium. Whereas the dumbbell with anisotropic dumbbells can be represented by:
Hookean spring is infinitely extensible, real polymers can o P
certainly be extended to their fully stretched length at most. X - 20
For large extension of a polymer the linear spring-force law Q
is a poor approximation, so it can be improved by introduc- 0 A0 1] oA (9, U
ing the FENE spring forceDumbbell models with FENE ' %K[QW_ZKBTC E[dQ 24 lﬂ} 2¢ F lﬂ% (1)
spring force are now widely used in numerical flow calcula-
tions; both in the classical approagh a closed constitutive  wherek is the transpose of macroscopic velocity gradient,
equatiod and in a new approach in which the polymericis the Boltzmann constaritjs the absolute temperatuig,
stress tensors are computéd Brownian dynamics (BD) is the anisotropic mobility tenso&™ ' is a tensor for the
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anisotropic Brownian motion, anB © is the connector Ay = ¢/4H, lengthQ=1Q", I2=kgT/H, finite extensibility
force. In order to represent the anisotropic molecular motionparameterb = HQ#/ksT, and stress tensor,= nksTTy".

we use the anisotropic mobility tensczr‘,1 , suggested byHereafter, we will express the physical quantities in reduced
Giesekus® in terms of the macroscopic quantity: units without any superscripts.
-1 _ ;% __@ .0 @) Brownian dynamics simulation for original FENE
s nkgT PO dumbbell
wherecis the friction coefficient of a beadjs a unit tensor, When we assume the Brownian motion is isotrogi¢ (

o is an anisotropy parameter,is the number density of =¢), Eqg. (1) is equivalent to the Ito stochastic differential
polymer molecules, andg, is the stress tensor contributed equatiod* (SDE) for a three-dimensional Markov process
from polymer molecules. If we assume the Brownian motionQ:
is isotropic € ‘=5 ), we can obtain the polymer contribu-
tion to the stress tensor of Kramers expressfon:

dQ = [Q—%c_l Qe+ BW  (7)

1-(Q"/b)
1, =Nk To - nIQF0 ©)

where¢'=6- atn, BB =¢", OW(t)E0, and OW(t,)
W(t,)0= minty, t) &

The Wiener procesd/ is the 3-dimensional Gaussian pro-
cess of which first moment is zero vector and second
moment is a diagonal matrix whose element is minimum
time between two Wiener processes. The first term of right
F© = Lz (Q= Q) 4) side of Eq. (7) is that of the deterministic ordinary differen-

1-(Q/Qy) tial equation (ODE), and referred as drift term. The Brown-
ian motion of dumbbell causes Wiener process that
; . . ; distinguishes the SDE from the ODE, so the second term is
vector, andQo is the maximum extensible spring length. e . .
X - ' ; . referred as diffusion term. Since the non-linear Eq. (7) can-
When this original spring force is applied to Eqg. (1), no . . ) .
o - : not be solved analytically, we have to integrate it numeri-
closed constitutive equation for the polymeric stress tensor . . : .
. . . e . cally. The simplest numerical method to integrate Eq. (7) is
exists and no simple analytical solution is possible. There; : .
. ‘the Euler schem¥. For a given timestegt, the Euler
fore, we will evaluate the average of the stress tensor Vg heme is aiven b
Brownian dynamics simulatiod:** An analytically more 9 y
tractable dumbbell model which leads to a closed constitu-
tive equation can be obtained by replacing the configuration-
dependent non-linear factor in the FENE spring force with a t Hm + B(t) AW
self-consistenly averaged term. The FENE-P (“P” stands for 1—(Q(t)2/b) ®)
Peterlit! who introduced this idea) approximation for
FENE spring force is expressed as: where the incremedW=W(t + At)-W(t) is an indepen-
dent 3-dimensional Gaussian process that has the same sta-
O - HQ (Q<Qy) ®) tistical properties in Eq. (7).
1- E(Q/Qo)zd =0 During the simulation according to Eq. (8), there is a cer-
tain probability that the connector vector exceeds the
Using the FENE-P spring force, we obtain the closed constiallowed spring extension for FENE dumbbell model. To

where the angular brackets indicate an ensemble avera

over all Qusingy(Q, t) .
Warnef proposed the following original FENE spring

force:

whereH is the spring constar is the length of connector

Q(t+a0) = Q) +
Sty () - S0

tutive equation avoid such unphysical range, we use the predictor-corrector
Euler method? At low flow rate, the diffusion term intro-
* * X b duces the fluctuation into the ensemble averaged stress ten-
+ — = = —— R . . .
T, + (Z1)y-a{ 1, O} = (29)ry, Z b+3-Tr(r)) sor, which appears as unwanted “noise”. This noise severely

limits our ability to calculate low flow rate viscosity, where
©) the signal to noise ratio becomes very small. This undesir-

where Tr(r;) is the trace of the stress tensor in reducedble noise can be reduced by variance reduction méthod

units, and the subscription (1) &f;)  denotes upper convecwe run a parallel equilibrium simulatione{ k = 0) from the

. L DA T same initial configurations and with the same stochastic dis-

tive derivative ofAA; Ay = Tr—(KIN+A LK) , her®/  hiacementsie. Wei=W), then we obtain the variance

Dt is the material time derivative ard is the transpose of reduced stress tensor by subtracting equilibrium values from

k. This constitutive equation is equivalent to Eq. (8) ofthe stress tensor calculated from the non-equilibrium simula-

Wiest? if we express the paramet@into reciprocal form. tion.

In deriving Eq. (6), we used the reduced units: timaut’, Before closing this section we briefly define the flow situ-
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ations and the material functions that we investigate. In sim LA A
ple shear flow, the velocity field is given by = yy, v,=0

andv,=0 , where/ is the shear rate and may be time depe 0
dent. At inception of shear flow, the system is initially at
equilibrium and the stress tensor vanishes. For tim@ ,
constant shear rat$  is applied and the stresses grow ur

= 4t J
they reach their steady state values. In this case, we defii 3 b
three time-dependent material functions such as visagsity -
first normal stress coefficier¥; , and second normal stres
coefficient &, in dimensionless form7+:—rxylyo Y = 2r T

(T Ty ‘,U;=—(ryy—rzz)/y§. In simple elonga-
tional flow, the velocity profile is given byvxz—ééx,
vy=—l$:y, andv,=+é&z , where the elongation rate may be a_. . _

: . . . . Figure 2. Shear-rate-dependent viscosity as a function o
function of time. Fortimé >0 , a time-dependent materialshear rate for various anisotropy parameter{Open symbo

function describing the growth of the stresses in constarfépresent simulation data and line curves represent the pre
positive rateo is defined ag’'=—(1,,— 1,,)/&, from constitutive equation)

log(7,)

Results and Discussion Shear flow field Shear-rate-dependent viscosity is pre-
sented for various finite extensibility and anisotropy para-
In this section, we compare the viscosities obtained frometers for FENE-P and original FENE dumbbell model in
simulation for the original FENE model with those of Figyre 1 and 2. We can see that both models exhibit very
FENE-P model and experimental date in both simple sheafimijjar steady responses. The shear-rate-dependent viscosity
and elongational flow. In order to obtain the polymeric stres@pproaches a constant value, zero-shear-rate visgsay
tensors of original FENE dumbbell model, we simulate|oy shear rates and decreases at high shear rates according to
30000 dumbbells in each strain rate until the stress tensogs power-law. The finite extensibility parameter has a little
reach their steady state values. When the strain rate is lojflyence on the shear-rate-dependent viscosity. The shear-
(o<1.0, £&<1.0), we used the timestéyi = 0.01, 0.0025  ate-dependent viscosity for both models also shows very
for shear and elongational flow, respectively. As the strainsimilar responses at higher shear rate regardless of the
rate increases, the timestep decreases in inverse ratio to tgﬁisotropy parameters. As the shear rate increases, the slope
strain rate:At=0.01/5, 0.0025& . Time-dependent stress ¢ power-law region has the same value-bfas mentioned
tensor contributed from polymer molecule is calculated apy Wiestl® In experimentat? however, the slope ranges
follows: between-0.4 and-0.9 in typical polymeric liquids.
N In Figure 3 and 4, we present the growth of viscosity after
1 QMM ) inception of shear flow for various shear rates and aniso-
N;<y 1—Q2(t)/b tropy parameters. The viscosity of both models exhibits an
) overshoot at high shear rate before it reaches plateau region
whereN is the number of dumbbells. regardless of the anisotropy parameter. However, in contra-
diction to experimental observatioh$the lower shear rate
04T ' L curve cannot envelope the higher shear rate curves in both
models as shown in Figure 3. The protrusions of higher rate
curve over the lower rate curve become greater as the shear
rate increases for both models. However, we can see that the
protrusions of viscosity curve in higher shear rate gradually
] disappear as the anisotropy parameter increase. Figure 4
explains these behaviors. Figure 4 also shows that the maxi-
mum and plateau value of viscosity decrease as the aniso-
tropy parameter increases. Moreover, the overshoot occurs
in earlier time as the anisotropy parameter increases. The
. mobility tensor used in Eq. (7) can account for these behav-
2 » o p > iors. That is, as the anisotropy parameter increases under the
log(7,) same strain rate, the inward movement of beads caused by

Figure 1. Shear-rate-dependent viscosity as a function of theT[he spring force through the mobility tensor becomes larger;

shear rate for various finite extensibility parameters b. (Oper Other words, the connector vector is likely to be less

symbols represent simulation data and line curves represent tt¢eformed against the imposed strain.
prediction from constitutive equation) The above results imply that shear-rate-dependent viscos-

() =3 -
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Figure 3. The growth of the viscosity after inception of shea Figure 5. Steady state elongational viscosity as a function ¢
flow for various shear ratesy . (Open symbols represenelongation rate for various extensibility parameters b. (
simulation data and line curves represent the prediction fronsymbols represent simulation data and line curves represt
constitutive equation) prediction from constitutive equation)
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Figure 4. The growth of the viscosity after inception of shea Figure 6. The steady state elongational viscosity as a functi
flow for various anisotropy parameters(Open symbols represent the elongation rate for various anisotropy parameter¢Opet
simulation data and line curves represent the prediction fronsymbols represent simulation data and line curves represt
constitutive equation) prediction from constitutive equation)

ity is more sensitive to the anisotropy parameter than to theponding zero-shear-rate viscosity. Contrary to the original
extensibility parameter for both models. While both modelsGiesekus simple mode&f, we can just find the viscosity-
show a similar response in steady state viscosity, the growtiinning behaviors except = 0.0. In Figure 5, we can see
of viscosity of both models does not coincide with eachthat the maximum value of viscosity increases and the
other in overshoot region at high strain rate. Especially ircurves become broad with increasing the finite extensibility
small anisotropy parameter, the growth of viscosities of botlparameter. Figure 6 clearly shows that the viscosity-thinning
models cannot predict the experimental results. behavior occur even in a small anisotropy parameter.
Elongational flow field. When the elongational rate is  The growth of the viscosity after inception of elongational
high, the distribution function of dumbbell becomes sharplyflow for various elongational rates and anisotropy parame-
peaked, thus the original FENE spring force can be approxiters is shown in Figure 7 and 8. As does in shear flow, the
mated to the FENE-P spring force as pointed out by Tandifferences of viscosity for both models increase at interme-
ner'® Consequently, the steady state elongational viscositdiate time region regardless of the elongational rate and the
of FENE-P model at high elongational rate will coincide anisotropy parameters. Figure 7 shows that the growth of the
with that of original FENE model. viscosity becomes steeper and occurs earlier in time as the
Figure 5 and 6 show the steady state elongational viscosi®longational rate increases in both models. The viscosity of
for various finite extensibility and anisotropy parameters,the original FENE model approaches the steady state value
respectively. Two models show very similar steady statenore smoothly than that of the FENE-P model at high elon-
responses; the elongational viscosity approaches a constagdtional rate. In Figure 8, we can see that the elongational
value at low elongational rate, which is three times the correviscosity decreases as the anisotropy parameter increases.
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Figure 7. The growth of the viscosity after inceptionf o Figure 9. Comparison of th_e original _FENE dumbbell mode
elongational flow for various elongational rates . (Open symbolsthe shear-rate-dependent viscosity with the data of Meieipe
represent simulation data and line curves represent the predicticPolystyrene solution. The data of dumbbells are draw

from constitutive equation) An = 31.6s anchkTA, = 63,095 Pa s. (Filled symbols represen
data of Menezé$and line-open symbols represent the simul
' . : data)
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Figure 8. The growth of the viscosity after inception of elon- 3 -2 -1 0 1 2 3 4
gational flow for various anisotropy parametar§Open symbols log('t)
represent simulation data and line curves represent the predicticrigure 10. Comparison of the original FENE dumbbell mode
from constitutive equation) the growth of shear viscosity with the data of polysty

solution!” The data of FENE dumbbells are drawn Agr= 31.6:

However, we cannot reproduce the strain-hardening beha@nd NkTAx d=t79'4?’tﬁ 'cha s, which e Odbt‘t"‘i”‘?d l‘:".’he“ N ﬁF'
ior at high rate regardless of any extensibility and anisotropj‘s’;lsrf]%f)'g re;raes‘gr'“ thee dz;‘;%r]!m,\fgng}m? da"'nne_o'ggr:esyrhé(
parameters in both models. represent simulation data)

From the above results of shear and elongation flow, wi
saw that there exists discrepancy in growth of viscosity
between both models, whereas the steady state viscosity isComparisons with experimental data Besides the depen-
coincided with each other. These disagreements are causddnce of the viscoelasticity on the external parameters such
by the difference of FENE spring force and the expressioms strain rate, time, temperature, and concentration, the rheo-
of stress tensor. That is to say, the non-linear force factdogical properties of polymeric liquid are affected by the
of the original FENE spring force increase steeply as thenolecular parameters: molecular weight, molecular weight
extension of the dumbbell is close to the allowable lengthdistribution, and chain branching. In this section, we com-
Thus some population of highly stretched dumbbells leads tpare our simulation data of original FENE dumbbell model
the high valued stress tensor and mobility tensor. Furthemwith nearly monodisperse polystyrene solutiand melt®
more the original FENE dumbbells response to the indivi-and largely polydisperse and branched low-density polyeth-
dual spring force, while the FENE-P dumbbells is enforced/lene melt®
by the non-linear spring force in which the non-linear spring Figure 9 shows the steady state shear viscosity and first
force factor is replaced by an averaged value. These differormal stress coefficient as a function of shear rate for simu-
ences of non-linear spring force and its insertion into thdation and the nearly monodisperse polystyrene solttion.
stress and the mobility tensor are drastically shown in Figur&hough our simulation data describe the experimental results
7. qualitatively, we cannot fit the data of viscosity and first
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normal stress coefficient simultaneously; if we make viscosviscosity of FENE dumbbell model coincides well with the
ity coincided, there is a bit of discrepancies in first normalexperimental results, the behaviors of growth of viscosity
stress coefficient between simulation and experiment, and viceannot describe the growth of the elongational viscosity,
versa. In Figure 10, we show the start-up viscosity for theespecially in the early time region.
same material with the parameters with which the viscosity Figure 13 shows the data of Miinst&ér the steady state
data are coincided in Figure 9. As we mentioned in Figure 3longational viscosity of polystyrene melt and the results of
that is, the viscosity curve of lower shear rate cannot envesimulation. As does in IUPAC-A melts, the agreement
lope the high shear rate curves, the simulation data cametween the results of simulation and experiment is remark-
hardly describe the experimental results except for the plateable. Using the same parameters used in Figure 13, we show
region. the growth of viscosity for the same material in Figure 14.
Figure 11 shows the data of Latifor the steady state Though the growth of viscosity of dumbbell model cannot
elongational viscosity of low-density polyethylene melt, exactly describe the growth of the elongational viscosity for
named by IUPAC-A, and the corresponding results of simunearly monodisperse polystyrene melt, the discrepancy in
lation. The agreement between the simulation results anthe viscosity of polystyrene melt is smaller than IUPAC-A
experimental data is remarkable. With the parameters usgeblymer melt. This is probably a consequence of the mole-
in Figure 11, we show the growth of elongational viscositycular parameters. The IUPAC-A polymer melt is the largely
for the same material in Figure 12. Though the steady statgolydisperse M,/M, =24.9 and highly branched chain.

1 1 1 1 Ll 1 1
1 ] 1 1
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Figure 11. Comparison of the original FENE dumbbell model fo Figure 13. Comparison of the original FENE dumbbell mode
the steady state elongational viscosity with the data of £dan the steady state elongational viscosity with the data of Miff
the IUPAC-A polymer melt. The data of dumbbell are drawn fo for the polystyrene melt. The data of original FENE dumbbe
An = 100.0s anakTAx = 56,234 Pa s. (Filled symbols represent the drawn forAy = 19.9 s anahkTA4 = 2,818,382 Pa s. (Filled symb
data of Lau®® and line-open symbols represents the simulationrepresent the data of Munst€dind line-open symbols represt
data) the simulation date)

log(n+)
log(n+)

log(t) ) log(t)

Figure 12. Comparison of the original FENE dumbbell model fo Figure 14. Comparison of the FENE dumbbell model for
the growth of viscosity with the data of LaBifor the IUPAC-A  growth of elongational viscosity with the data of Minstédthe
polymer melt. The data of dumbbells are drawn for the samedata of FENE dumbbell are drawn for the same paramet
parameters in Figure 11. (Filled symbols represent the data cFigure 13. (Filled symbols represent the data of MiinStedic
Laun' and line-open symbols represent the simulation data) line-open symbols represent the simulation date)
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Whereas the polystyrene melt possesses a narrow molecular
weight distributionM,/M,, =1.28

From our study for the anisotropic FENE dumbbell mod- 1.
els, we find that these models well describe the experimental2.

results in steady state viscosity for shear flow and elonga-
tional flow. However, the FENE dumbbell models cannot
reproduce the growth of viscosity of polymer solution and
the melt in both flow fields. Besides the molecular parame-
ters such as molecular weight, molecular weight distribution, 4

and branching, there are several causes for the discrepancy

in growth of viscosity between dumbbell models and experi-
ments. 1) We oversimplify the polymer chain as dumbbell
model that cannot take up an enormous number of configu-
rations of polymer chain. 2) The diffusion equation for
dumbbell model cannot represent the chain entanglement

phenomena, by which the viscoelasticity of concentrated 5-

polymer solution and the melt is rigorously affected. 3) The
averaged mobility tensor cannot correctly represent the
anisotropy of polymer chain. In concentrated polymer solu-
tion and the melt, we can reasonably assume that the chai

motion is governed not by averaged means but by the instan-

taneous configuration of individual chain.

8.

Conclusions

9.

We have investigated the viscosity of concentrated poly-

mer solution and the melt using the Brownian dynamics sim40.
ulation for anisotropic original FENE dumbbell model. The 11.
original FENE dumbbell model as well as FENE-P modell2.

described well the steady state viscosity of polymer solution
and the melt in shear and elongational flow. Considering th
simplicity of the dumbbell model in our study, we can prob-
ably predict the growth of viscosity in both flow fields by
using a more realistic polymer chain model such as bead-
spring chain model or bead-rod chain model. Furthermore; g

ity tensors.

Acknowledgment Financial support (in part) from the 18.
19.

Brain Korea 21 program is gratefully acknowledged.

14.

Bull. Korean Chen2@xrVol. 21, No. 9 881

References

de Gennes, P.J.Chem. Phy4.979 55, 572.

(a) Doi, M.; Edwards, S. B. Chem. Soc. Faraday Trans. 2
1978 74, 1789. (b) Doi, M.; Edwards, S.iBid. 1978 74,
1802. (c) Doi, M.; Edwards, S. iBid. 1978 74, 1818. (d)
Doi, M.; Edwards, S. Rbid. 1979 75, 38.

3. Doi, M.; Edwards, S. Fhe Theory of Polymer Dynamics

Clarendon Press: Oxford, U. K., 1986; Ch. 6-7.

(a) Curtiss, C. F.; Bird, R. B. Chem. Phys1982 74,
2016. (b) Bird, R. B.; Saab, H. H.; Curtiss, Cib#l. 1982
86, 1102. (c) Saab, H. H.; Bird, R. B.; Curtiss, Cibkd.
1982 77, 4758. (d) Bird, R. B.; Curtiss, C. F.; Armstrong,
R. C.; Hassager, @ynamics of Polymeric Liquigd&/ol.
1: Fluid MechanicsVol. 2: Kinetic Theory2™ ed.; John
Wiley & Sons; Inc.: New York, U.S.A., 1987.

(a) Giesekus, HRheol. Actal982 21, 366. (b) Giesekus,
H. J. Non-Newtonian Fluid Mechl1982 11, 69. (c)
Giesekus, HJ. Non-Newtonian Fluid Mechl983 12,
367. (d) Giesekus, HJ. Non-Newtonian Fluid Mech.
1985 17, 349.

Bird, R. B.; Wiest, J. Ml. Rheol1985 29, 519.

Warner, H. R. Jr., Ph.D. Thesis, University of Wisconsin,
Madison, 1971.

Bird, R. B.; Wiest, J. MAnnu. Rev. Fluid Mech.995 27,
169.

Herrchen, M.; Ottinger, H. Cl. Non-Newtonian Fluid
Mech 1997, 68, 17.

Wiest, J. MRheol. Actal989 28, 4.

Peterin, AMakromol. Chem1961, 44, 338.

Ermak, D. L.; McCammon, J. A. Chem. Phy4.978 69,
1352.

&3 Ottinger, H. CStochastic Processes in Polymeric Flyids

Springer: Berlin, Germany, 1996.

Kloeden, P. E.; Platen, E.; ShurzNdimerical Solution of
SDE Through Computer Experimentefpringer: Berlin,
Germany, 1994; Ch. 5.

- . . ! . Ottinger, H. CMacromoleculed994 27, 3415.
we can also obtain better simulation results by taking accounts.

of entanglement effect and introducing instantaneous mobil17.

Tanner, R. Trans. Soc. Rheal975 19, 37.

Menezes, E. V.; Graessley, W. Rheol. Actal98Q 19,
38.

Miinstedt, HJ. Rheol 198Q 24, 847.

Laun, H. M.; Minstedt, H. MRheol. Actdl979 18, 492.




	Brownian Dynamics Simulation Study on the Anisotropic FENE Dumbbell Model for Concentrated Polyme...
	Hoon Goo Sim, Chang Jun Lee, Woon Chun Kim, and Hyungsuk Pak*
	Department of Chemistry, Seoul National University, Seoul 151-742, Korea Received March 27, 2000
	We study the rheological properties of concentrated polymer solution and the melt under simple sh...
	Introduction
	Constitutive equation for the FENE-P dumbbell model
	Brownian dynamics simulation for original FENE dumbbell
	Results and Discussion
	Conclusions
	References
	1. de Gennes, P. J. J. Chem. Phys. 1979, 55, 572.
	2. (a) Doi, M.; Edwards, S. F. J. Chem. Soc. Faraday Trans. 2 1978, 74, 1789. (b) Doi, M.; Edward...
	3. Doi, M.; Edwards, S. F. The Theory of Polymer Dynamics; Clarendon Press: Oxford, U. K., 1986; ...
	4. (a) Curtiss, C. F.; Bird, R. B. J. Chem. Phys. 1982, 74, 2016. (b) Bird, R. B.; Saab, H. H.; C...
	5. (a) Giesekus, H. Rheol. Acta 1982, 21, 366. (b) Giesekus, H. J. Non-Newtonian Fluid Mech. 1982...
	6. Bird, R. B.; Wiest, J. M. J. Rheol. 1985, 29, 519.
	7. Warner, H. R. Jr., Ph.D. Thesis, University of Wisconsin, Madison, 1971.
	8. Bird, R. B.; Wiest, J. M. Annu. Rev. Fluid Mech. 1995, 27, 169.
	9. Herrchen, M.; Öttinger, H. C. J. Non-Newtonian Fluid Mech. 1997, 68, 17.
	10. Wiest, J. M. Rheol. Acta 1989, 28, 4.
	11. Peterin, A. Makromol. Chem. 1961, 44, 338.
	12. Ermak, D. L.; McCammon, J. A. J. Chem. Phys. 1978, 69, 1352.
	13. Öttinger, H. C. Stochastic Processes in Polymeric Fluids; Springer: Berlin, Germany, 1996.
	14. Kloeden, P. E.; Platen, E.; Shurz, H. Numerical Solution of SDE Through Computer Experimental...
	15. Öttinger, H. C. Macromolecules 1994, 27, 3415.
	16. Tanner, R. I. Trans. Soc. Rheol. 1975, 19, 37.
	17. Menezes, E. V.; Graessley, W. W. Rheol. Acta 1980, 19, 38.
	18. Münstedt, H. J. Rheol. 1980, 24, 847.
	19. Laun, H. M.; Münstedt, H. M. Rheol. Acta 1979, 18, 492.






