Synthesis of 6,7-Dichloro-5,8-phthalazinedione and Its Derivatives

Jin Sung Kim, Kye Jung Shin, Dong Chan Kim, Yong Koo Kang, Dong Jin Kim, Kyung Ho Yoo,* and Sang Woo Park*

Medicinal Chemistry Research Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650, Korea Received July 24, 2002

An efficient procedure for the synthesis of 6,7-dichloro-5,8-phthalazinedione (4) was developed in 49% overall yield via chloroxidation of 5,8-diaminophthalazine (8). And a series of its derivatives, 7-pyridinium-5,8phthalazinedione-6-oxide (9), 6-chloro-7-phenylamino-5,8-phthalazinedione (10), 6,6-dimethoxy-6H-2,3,6b,11tetraazabenzo[a]fluoren-5-one (11a), and 6,6-diethoxy-6H-2,3,6b,11-tetraazabenzo[a]fluoren-5-one (11b) have been synthesized.

method.3

Key Words: Phthalazine, Efficient synthetic route, Chloroxidation, 6,7-Dichloro-5,8-phthalazinedione

Introduction

The quinone compounds show various biological activities¹ and some of the heterocyclic quinones are especially known to have an anticancer activity.² In a previous paper,³ we described the synthesis and cytotoxicity of 2-methyl-4,9dihydro-1-substituted-1*H*-imidazo[4,5-*g*]quinoxaline-4,9-diones (1) and 2,3-disubstituted-5,10-pyrazino[2,3-g]quinoxalinediones (2), respectively, which showed excellent biological activity against human gastric adenocarcinoma cells

Results and Discussion The synthesis of 6,7-dichloro-5,8-phthalazinedione (4) is depicted in Scheme 1. Nitrophthalazine (6) was obtained by

development of novel DNA intercalators based on nitrogencontaining heterocyclic quinones, we envisaged that 6,7dichloro-5,8-phthalazinedione could be an useful intermediate for the preparation of phthalazinedione derivatives which would be a novel DNA intercalator. Although the method has been described for the preparation of compound **4** in the literature, ⁴ its overall yield was very low (total yield: 10%). We describe here an efficient procedure for the syntheses of 6,7-dichloro-5,8-phthalazinedione (4) and its derivatives 9, 10, 11a and 11b from 4.

treatment of phthalazine (5) with KNO₃ in H₂SO₄. Introduction of the amino group was realized by exposure to HONH₂ in a mixture of EtOH and MeOH in the presence of KOH at

(MKN 45). The compounds 1 and 2 were obtained from 6,7dichloro-5,8-quinoxalinedione (3) by an improved synthetic

During the course of our program directed towards the

 NO_2 HONH₂ • HCI, KOH EtOH / MeOH 66% KCIO₃ conc.HCI 94%

NO₂ KNO₃ H₂SO₄ 79% 5 6 NH_2 Charcoal / MeOH 99% NH_2 8

Scheme 1

50-55 °C to give 4-nitro-7-aminophthalazine (**7**) in 66% yield. In the presence of FeCl₃ catalyst, reduction of **7** with hydrazine hydrate gave diaminophthalazine **8** in quantitative yield. Subsequently chloroxidation with NaClO₃ in concentrated hydrochloric acid led to 6,7-dichloro-5,8-phthalazine-dione (**4**) in 94% yield. Under these conditions, the key intermediate **4** could be prepared in improved yield compared to the previous process (total yield: 49%).

Having the key intermediate **4** in hand, we carried out the reactions of **4** with the appropriate nucleophiles in alcoholic solvents or CH₃CN (Scheme 2). The 6,7-dichloro-5,8-phthalazinedione **4** was treated with pyridine in EtOH at 60

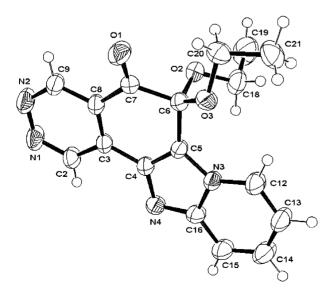


Figure 1. The ORTEP drawing of the molecular structure of 11b.

°C to furnish zwitterionic compound **9** in 83% yield.⁶ Treatment of **4** with aniline in CH₃CN in the presence of CeCl₃·6H₂O gave compound **10**.⁶ Interestingly, when **4** was treated with 2-aminopyridine in alcoholic solvents (MeOH, EtOH) at 60 °C, we obtained the tetracyclic compounds **11a** and **11b**.^{6,7} The structure of tetracyclic compound **11b** was unambiguously determined by X-ray crystallographic analysis (Figure 1).

The mechanism might be postulated as follows: the chlorine atom in the initial cyclized product **A** is replaced by an alkoxy group to give the intermediate **B**. And then attack of one more alkoxy group is followed to provide the products **11a** and **11b**.

In conclusion, we developed an efficient procedure for the synthesis of 6,7-dichloro-5,8-phthalazinedione (4), and prepared four of its derivatives 9, 10, 11a and 11b by the treatment of 4 with pyridine, aniline and 2-aminopyridine in alcoholic solvents or CH₃CN, respectively. The illustrated method for the preparation of 4 and its reaction with nucleophiles may serve as a important tool for the synthesis of phthalazine derivatives.

Experimental Section

Melting points were determined on Thomas-Hoover capillary apparatus and were uncorrected. IR spectra were measured with a Perkin-Elmer 1710 spectrophotometer. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Avance 300. Mass spectra were obtained on Jeol SX-102. Elemental analyses were performed with FISONS instruments EA 1108 elemental analyzer. The X-Ray diffraction was measured on an Enraf Nonius CAD4 diffractometer.

5-Nitrophthalazine (6). Potassium nitrate (73.2 g, 0.72 mol) was added in small portions to a solution of phthalazine (20.0 g, 0.15 mol) in conc. H₂SO₄ (150 mL) at 0 °C. After the addition was completed, the mixture was heated at 55-60 °C for 2 days, and then diluted with water at 0 °C. The mixture was neutralized with sodium hydroxide solution. The precipitate was filtered, and washed with water. The filtrate was extracted with EtOAc, and the extract was washed with brine, dried over MgSO₄ and concentrated to dryness. The residue was washed with cold MeOH and combined with the precipitate obtained above. The small amount of water in the product was removed by evaporation with toluene to afford 6 (21.3 g, 79%) as a pale yellow solid: mp 186-189 °C (from EtOH) (lit.4, 188-189 °C).

5-Nitro-8-amino-phthalazine (7). A solution of HONH₂· HCl (62.0 g, 0.89 mol) in MeOH (1 L) was added to a solution of 6 (26.0 g, 0.15 mol) in EtOH (1.5 L) slowly with stirring over a period of 3 h at 50-55 °C. The reaction mixture was quenched by addition of ice water. The precipitate was filtered, and washed with water. The solvents of filtrate were evaporated off and the residue was taken up in EtOAc and water, which was extracted with EtOAc. The extract was washed with brine, dried over MgSO4 and concentrated to dryness. The residue was combined with the precipitate obtained above, and which was washed with cold MeOH to give 7 (18.7 g, 66%) as a pale yellow solid: mp >300 °C (from EtOH). ¹H NMR (300 MHz, DMSO- d_6): δ 10.29 (s, 1H), 9.76 (s, 1H), 8.50 (d, J = 9.2 Hz, 1H), 8.23 (s, 2H), 6.97 (d, J = 9.2 Hz, 1H). ¹³C NMR (75 MHz, DMSO d_6): δ 154.0, 146.8, 146.4, 134.7, 129.4, 122.0, 113.5, 112.4. IR (KBr): 3346, 3136, 1682, 1610, 1574, 1504, 1342 cm⁻¹. HR-FABMS Calcd for C₈H₆N₄O₂ (M⁺+H): 191.0569. Found: 191.0573. Anal. Calcd for C₈H₆N₄O₂: C, 50.53; H, 3.18; N, 29.46. Found: C, 50.74; H, 3.25; N, 28.61.

5,8-Diaminophthalazine (8). To a solution of **7** (14.2 g, 74.7 mmol) in MeOH (700 ml) was added FeCl₃ (70.0 mg, 0.43 mmol) and charcoal (4.50 g), and the mixture was refluxed for 5 h. The product was filtered through celite. Evaporation of the solvent gave 8 (11.9 g, 99%) as a pale yellow solid: mp 249-250 °C (from EtOH). ¹H NMR (300 MHz, DMSO- d_6): δ 9.54 (s, 2H), 6.93 (s, 2H), 5.44 (s, 4H). ¹³C NMR (75 MHz, DMSO- d_6): δ 147.5, 135.8, 118.3, 115.3. IR (KBr): 3312, 3170, 1556, 1472, 1372 cm⁻¹. FABMS m/z 161 (M⁺+H). Anal. Calcd for C₈H₈N₄: C, 59.99; H, 5.03; N, 34.98. Found: C, 59.86; H, 5.04; N, 34.31.

6,7-Dichlorophthalazine-5,8-dione (4). To a solution of **8** (7.09 g, 44.3 mmol) in conc. HCl (90.0 mL) was added NaClO₃ (6.08 g, 49.6 mmol) in many portions at 0 °C. The reaction mixture was stirred for 1 h at rt, quenched by addition of water and the precipitate was filtered. The filtrate was neutralized with saturated NaHCO3 solution, and extracted with CH2Cl2. The extract was washed with water and brine, dried over MgSO₄ and concentrated to dryness. The residue was combined with the precipitate obtained above to give 4 (9.56 g, 94%) as a pale yellow solid: mp 223-225 °C (from EtOH) (lit.4, 223-225 °C). 1H NMR (300 MHz, CDCl₃): δ 9.93 (s, 2H). ¹³C NMR (75 MHz, DMSO- d_6): δ 176.5, 147.1, 143.0, 125.5; IR (KBr): 1694, 1588, 1552 cm⁻¹. Anal. Calcd for C₈H₂Cl₂N₂O₂: C, 41.96; H, 0.88; N, 12.23. Found: C, 42.14; H, 1.00; N, 11.88.

7-Pyridinium-5,8-phthalazinedione-6-oxide (9). A suspension of 4 (200 mg, 0.88 mmol) in EtOH (40.0 mL) was heated until the starting material was dissolved. To this solution was added pyridine (0.30 mL, 3.96 mmol), and the reaction mixture was stirred for 3 h at 60 °C. After reaction was completed the mixture was cooled. The precipitate was collected by filtration to yield 9 (185 mg, 83%) as a deep purple solid: mp >300 °C (from EtOH). ¹H NMR (300 MHz. DMSO- d_6): δ 9.79 (d, J = 1.1 Hz, 1H), 9.57 (d, J = 1.1 Hz, 1H), 8.84 (d, J = 6.8 Hz, 2H), 8.64 (t, J = 6.8 Hz, 1H), 8.21 (t, J = 6.8 Hz, 2H). ¹³C NMR (75 MHz, DMSO- d_6): δ 184.4, 170.3, 165.4, 148.6, 148.3, 146.2, 145.8, 128.3, 127.7, 126.8, 125.4; IR (KBr): 1704, 1590, 1552, 1470 cm⁻¹. HR-FABMS Calcd for $C_{13}H_7N_3O_3$ (M⁺+H): 254.0566. Found: 254.0566. Anal. Calcd for C₁₃H₇N₃O₃: C, 61.66; H, 2.79; N, 16.59. Found: C, 61.52; H, 2.70; N, 16.36.

6-Chloro-7-phenylamino-5,8-phthalazinedione (10). To a solution of 4 in CH₃CN was added cerium (III) chloride hexahvdrate, and the reaction mixture was stirred for 10 min at rt. Aniline was added to the reaction mixture at same temperature. The reaction mixture was stirred for overnight at rt, the solvent was evaporated off. The residue was diluted with water and extracted with CH₂Cl₂. The extract was washed with brine, dried over MgSO₄ concentrated to dryness. The collected crude product was washed with hexane to give 10 as a purple solid: mp 226-227 °C (from EtOH). ¹H NMR (300 MHz, CDCl₃): δ 9.93 (d, J = 1.1 Hz, 1H), 9.78 (d, J = 1.1 Hz, 1H), 7.73 (bs, 1H), 7.40 (t, J = 7.6Hz, 2H), 7.31 (t, J = 7.6 Hz, 1H), 7.12 (d, J = 7.6 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 180.3, 175.6, 147.1, 145.3, 141.4, 136.4, 128.7, 126.9, 124.9, 124.5, 122.9, 115.0; IR (KBr): 3294, 1682, 1644, 1590, 1556, 1504, 1450 cm⁻¹. FABMS m/z 286 (M++H), 288 (M++2). HR-FABMS Calcd for C₁₄H₈O₂ClN₃O₂ (M⁺+H): 286.0383. Found: 286.0407. Anal. Calcd for C₁₄H₈O₂ClN₃O₂: C, 58.86; H, 2.82; N, 14.71. Found: C, 58.35; H, 2.82; N, 14.54.

6,6-Dimethoxy-6H-2,3,6b,11-tetraazabenzo[a]fluoren-**5-one** (11a). A suspension of 4 (150 mg, 0.66 mmol) in MeOH (20 mL) was heated until the starting material was dissolved. To this solution was added 2-aminopyridine (154) mg, 1.64 mmol). After being stirred for 6 h at 60 °C, the reaction mixture was cooled. The solvent was removed by evaporation, and the residue was extracted with water and CH₂Cl₂. The organic extract was washed with brine, dried over MgSO₄, concentrated to dryness. The residue was purified by column chromatography (EtOAc) to give 11a (103 mg, 53%) as a pale yellow solid; mp 200-205 °C (decomp) (from MeOH). ¹H NMR (300 MHz, CDCl₃): δ 10.03 (d, J = 1.2 Hz, 1H), 9.50 (d, J = 1.2 Hz, 1H), 8.52 (dt, J = 1.2 Hz, 1H)J = 6.8, 1.1 Hz, 1H, 7.76 (dt, J = 9.1, 1.1 Hz, 1H), 7.41(ddd, J = 9.1, 6.8, 1.1 Hz, 1H), 7.00 (td, J = 6.8, 1.1 Hz, 1H),3.42 (s, 6H). ¹³C NMR (75MHz, CDCl₃): δ 193.1, 148.6, 147.3, 146.8, 137.1, 129.6, 128.0, 126.8, 122.7, 121.6, 119.1, 115.0, 95.7, 52.6. IR (KBr): 1716, 1594, 1572 cm⁻¹.

FABMS m/z 297 (M⁺+H); Anal. Calcd for C₁₅H₁₂N₄O₃: C, 60.81; H, 4.08; N, 18.91. Found: C, 60.66; H, 4.02; N, 18.70.

6,6-Diethoxy-6H-2,3,6b,11-tetraazabenzo[a]fluoren-5one (11b). According to the procedure described for the preparation of the 11a from 4, the title compound 11b (137 mg, 48%) was obtained from the reaction of 4 (200 mg, 0.87) mmol) in ethanol as a pale yellow solid: mp 174-175 °C (from EtOH). ¹H NMR (300 MHz, CDCl₃): δ 10.04 (d, J =1.2 Hz, 1H), 9.52 (d, J = 1.2 Hz, 1H), 8.58 (dt, J = 6.8, 1.1 Hz, 1H), 7.77 (dt, J = 9.2, 1.1 Hz, 1H), 7.42 (ddd, J = 9.2, 6.8, 1.1 Hz, 1H), 7.01 (td, J = 6.8, 1.1 Hz, 1H), 3.71 (qd, J =7.0, 2.1 Hz, 2H), 3.58 (qd, J = 7.0, 2.1 Hz, 2H), 1.22 (t, J =7.0 Hz, 6H); 13 C NMR (75 MHz, CDCl₃): δ 193.8, 148.5, 147.4, 146.9, 136.6, 129.7, 127.9, 126.6, 122.7, 122.6, 119.1, 114.8, 95.2, 60.8, 15.7. IR (KBr): 1718, 1588, 1568 cm⁻¹. HR-FABMS Calcd for $C_{17}H_{16}N_4O_3$ (M⁺+H): 325.1301. Found: 325.1302. Anal. Calcd for C₁₇H₁₆N₄O₃: C, 62.95; H, 4.97; N, 17.27. Found: C, 62.62; H, 4.82; N, 16.93.

Crystal struture determination of compound 11b. Single crystals of 11b were obtained from EtOH. Crystal data: $C_{17}H_{16}N_4O_3$, $M_W = 324.34$, Wavelength = 0.71073 Å, triclinic, $P\overline{1}$ (No. 2), Z = 2, a = 8.389 (2) Å, b = 9.232 (2) Å, c = 8.389 (2) Å, c = 9.232 (2) Å, c = 9.232 (2) Å, c = 9.232 (2)

11.699 (2) Å, $\alpha = 68.10$ (2) deg, $\beta = 72.69$ (2) deg, $\gamma = 67.61$ (2) deg, V = 764.4 (3) Å 3 , $d_{\text{calc}} = 1.409$ g/cm 3 , R1 = 0.0501, wR2 = 0.1369 for 2007 unique reflections ($I > 2\sigma$ (I)) and 217 variables.

Acknowledgment. We thank the II Dong Pharm. Co. for its donation of Chair Fund to KIST, and wish also to thank Dr. Kwan Mook Kim for the X-ray structure determination.

References

- Morton, R. A. Biochemistry of Quinones; Academic Press: New York, 1965.
- 2. Efimove, G. A.; Efros, L. S. Zh. Org. Khim. 1967, 3, 162.
- Yoo, H.-W.; Suh, M. E.; Park, S. W. J. Med. Chem. 1998, 41, 4716.
- Shaikh, I. A.; Johnson, F.; Grollman, A. P. J. Med. Chem. 1986, 29, 1329.
- Ryu, C.-K.; Lee, I.-K.; Jung, S.-H.; Lee, C.-O. Bioorg. Med. Chem. Lett. 1999, 9, 1075.
- Han, G.; Shin, K. J.; Kim, D. C.; Yoo, K. H.; Kim, D. J.; Park, S. W. Heterocycles 1996, 43, 2495.
- Allan, J. A. V.; Reynolds, G. A. Polynuclear Heterocycles 1963, 28, 1019.